首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A gene causing autosomal-recessive, nonsyndromic hearing loss, DFNB39, was previously mapped to an 18 Mb interval on chromosome 7q11.22-q21.12. We mapped an additional 40 consanguineous families segregating nonsyndromic hearing loss to the DFNB39 locus and refined the obligate interval to 1.2 Mb. The coding regions of all genes in this interval were sequenced, and no missense, nonsense, or frameshift mutations were found. We sequenced the noncoding sequences of genes, as well as noncoding genes, and found three mutations clustered in intron 4 and exon 5 in the hepatocyte growth factor gene (HGF). Two intron 4 deletions occur in a highly conserved sequence that is part of the 3′ untranslated region of a previously undescribed short isoform of HGF. The third mutation is a silent substitution, and we demonstrate that it affects splicing in vitro. HGF is involved in a wide variety of signaling pathways in many different tissues, yet these putative regulatory mutations cause a surprisingly specific phenotype, which is nonsydromic hearing loss. Two mouse models of Hgf dysregulation, one in which an Hgf transgene is ubiquitously overexpressed and the other a conditional knockout that deletes Hgf from a limited number of tissues, including the cochlea, result in deafness. Overexpression of HGF is associated with progressive degeneration of outer hair cells in the cochlea, whereas cochlear deletion of Hgf is associated with more general dysplasia.  相似文献   

2.
3.
4.
Summary Homoallelic and heteroallelic diploids involving the eth2-1, eth2-2 and eth2-7 alleles have been studied on the basis of several criteria used for the study of haploid strains: resistance towards ethionine, overproduction of either methionine or/and S-adenosylmethionine, repressibility of methionine biosynthetic enzymes. Complete recessivity of the three alleles over the wild type allele has been observed, when resistance and methionine synthesis are considered. However, with the eth2-2 allele, repressibility corresponds more to a dose effect of the ETH2 allele than to recessivity. The implications of these findings have been discussed. Results obtained for heteroallelic combinations show significant deviations from the expected values. These results have been interpreted as indicating possible interactions between two differently impaired products of gene ETH2. They render likely that the product of this gene is at least an homopolymer.  相似文献   

5.
6.
BSND encodes barttin, an accessory subunit of renal and inner ear chloride channels. To date, all mutations of BSND have been shown to cause Bartter syndrome type IV, characterized by significant renal abnormalities and deafness. We identified a BSND mutation (p.I12T) in four kindreds segregating nonsyndromic deafness linked to a 4.04-cM interval on chromosome 1p32.3. The functional consequences of p.I12T differ from BSND mutations that cause renal failure and deafness in Bartter syndrome type IV. p.I12T leaves chloride channel function unaffected and only interferes with chaperone function of barttin in intracellular trafficking. This study provides functional data implicating a hypomorphic allele of BSND as a cause of apparent nonsyndromic deafness. We demonstrate that BSND mutations with different functional consequences are the basis for either syndromic or nonsyndromic deafness.  相似文献   

7.
The majority of the genetic causes of autosomal-recessive (ar) cone-rod dystrophy (CRD) are currently unknown. A combined approach of homozygosity mapping and exome sequencing revealed a homozygous nonsense mutation (c.565C>T [p.Glu189]) in RAB28 in a German family with three siblings with arCRD. Another homozygous nonsense mutation (c.409C>T [p.Arg137]) was identified in a family of Moroccan Jewish descent with two siblings affected by arCRD. All five affected individuals presented with hyperpigmentation in the macula, progressive loss of the visual acuity, atrophy of the retinal pigment epithelium, and severely reduced cone and rod responses on the electroretinogram. RAB28 encodes a member of the Rab subfamily of the RAS-related small GTPases. Alternative RNA splicing yields three predicted protein isoforms with alternative C-termini, which are all truncated by the nonsense mutations identified in the arCRD families in this report. Opposed to other Rab GTPases that are generally geranylgeranylated, RAB28 is predicted to be farnesylated. Staining of rat retina showed localization of RAB28 to the basal body and the ciliary rootlet of the photoreceptors. Analogous to the function of other RAB family members, RAB28 might be involved in ciliary transport in photoreceptor cells. This study reveals a crucial role for RAB28 in photoreceptor function and suggests that mutations in other Rab proteins may also be associated with retinal dystrophies.  相似文献   

8.
9.
10.
11.
Gastric cancer is among the leading causes of cancer-related deaths worldwide. While heritable forms of gastric cancer are relatively rare, identifying the genes responsible for such cases can inform diagnosis and treatment for both hereditary and sporadic cases of gastric cancer. Mutations in the E-cadherin gene, CDH1, account for 40% of the most common form of familial gastric cancer (FGC), hereditary diffuse gastric cancer (HDGC). The genes responsible for the remaining forms of FGC are currently unknown. Here we examined a large family from Maritime Canada with FGC without CDH1 mutations, and identified a germline coding variant (p.P946L) in mitogen-activated protein kinase kinase kinase 6 (MAP3K6). Based on conservation, predicted pathogenicity and a known role of the gene in cancer predisposition, MAP3K6 was considered a strong candidate and was investigated further. Screening of an additional 115 unrelated individuals with non-CDH1 FGC identified the p.P946L MAP3K6 variant, as well as four additional coding variants in MAP3K6 (p.F849Sfs*142, p.P958T, p.D200Y and p.V207G). A somatic second-hit variant (p.H506Y) was present in DNA obtained from one of the tumor specimens, and evidence of DNA hypermethylation within the MAP3K6 gene was observed in DNA from the tumor of another affected individual. These findings, together with previous evidence from mouse models that MAP3K6 acts as a tumor suppressor, and studies showing the presence of somatic mutations in MAP3K6 in non-hereditary gastric cancers and gastric cancer cell lines, point towards MAP3K6 variants as a predisposing factor for FGC.  相似文献   

12.
Targeted genome capture combined with next-generation sequencing was used to analyze 2.9 Mb of the DFNB79 interval on chromosome 9q34.3, which includes 108 candidate genes. Genomic DNA from an affected member of a consanguineous family segregating recessive, nonsyndromic hearing loss was used to make a library of fragments covering the DFNB79 linkage interval defined by genetic analyses of four pedigrees. Homozygosity for eight previously unreported variants in transcribed sequences was detected by evaluating a library of 402,554 sequencing reads and was later confirmed by Sanger sequencing. Of these variants, six were determined to be polymorphisms in the Pakistani population, and one was in a noncoding gene that was subsequently excluded genetically from the DFNB79 linkage interval. The remaining variant was a nonsense mutation in a predicted gene, C9orf75, renamed TPRN. Evaluation of the other three DFNB79-linked families identified three additional frameshift mutations, for a total of four truncating alleles of this gene. Although TPRN is expressed in many tissues, immunolocalization of the protein product in the mouse cochlea shows prominent expression in the taper region of hair cell stereocilia. Consequently, we named the protein taperin.  相似文献   

13.
Proliferative vasculopathy and hydranencephaly-hydrocephaly syndrome (PVHH), also known as Fowler syndrome, is an autosomal-recessively inherited prenatal lethal disorder characterized by hydranencephaly; brain stem, basal ganglia, and spinal cord diffuse clastic ischemic lesions with calcifications; glomeruloid vasculopathy of the central nervous system and retinal vessels; and a fetal akinesia deformation sequence (FADS) with muscular neurogenic atrophy. To identify the molecular basis for Fowler syndrome, we performed autozygosity mapping studies in three consanguineous families. The results of SNP microarrays and microsatellite marker genotyping demonstrated linkage to chromosome 14q24.3. Direct sequencing of candidate genes within the target interval revealed five different germline mutations in FLVCR2 in five families with Fowler syndrome. FLVCR2 encodes a transmembrane transporter of the major facilitator superfamily (MFS) hypothesized to be involved in regulation of growth, calcium exchange, and homeostasis. This is the first gene to be associated with Fowler syndrome, and this finding provides a basis for further studies to elucidate the pathogenetic mechanisms and phenotypic spectrum of associated disorders.  相似文献   

14.
15.
16.
Adaptor protein complex 1 (AP-1) is an evolutionary conserved heterotetramer that promotes vesicular trafficking between the trans-Golgi network and the endosomes. The knockout of most murine AP-1 complex subunits is embryonically lethal, so the identification of human disease-associated alleles has the unique potential to deliver insights into gene function. Here, we report two founder mutations (c.11T>G [p.Phe4Cys] and c.97C>T [p.Arg33Trp]) in AP1S3, the gene encoding AP-1 complex subunit σ1C, in 15 unrelated individuals with a severe autoinflammatory skin disorder known as pustular psoriasis. Because the variants are predicted to destabilize the 3D structure of the AP-1 complex, we generated AP1S3-knockdown cell lines to investigate the consequences of AP-1 deficiency in skin keratinocytes. We found that AP1S3 silencing disrupted the endosomal translocation of the innate pattern-recognition receptor TLR-3 (Toll-like receptor 3) and resulted in a marked inhibition of downstream signaling. These findings identify pustular psoriasis as an autoinflammatory phenotype caused by defects in vesicular trafficking and demonstrate a requirement of AP-1 for Toll-like receptor homeostasis.  相似文献   

17.
We have recently characterized a novel mammalian gene family, encoding membrane glycoproteins with four trans-membrane domains. This gene family includes the previously studiedPMP22,which is involved in the Charcot–Marie–Tooth neuropathy, and three novel genes:TMP, XMP,andYMP(HGMW-approved symbolsEMP1, EMP2andEMP3,respectively). TheTmp(tumor-associated membrane protein) gene was isolated from a c-mycinduced mouse brain tumor and is expressed in several highly proliferative cell types. We have now isolated cDNAs of the mouseXmpandYmpgenes and determined the chromosomal localization of mouseTmp, Xmp,andYmp. Tmpwas mapped to mouse chromosome 6,Xmpwas mapped to chromosome 16, andYmpwas mapped to chromosome 7.TmpandYmpmap to paralogous chromosomal regions, whereasXmpmaps to a chromosomal region that is putatively paralogous to a region on chromosome 11, to whichPmp22was previously mapped. These data suggest that this family of membrane glycoproteins evolved as a result of chromosomal duplications.  相似文献   

18.
19.
Ecto-5′-nucleotidase/CD73/NT5E, the product of the NT5E gene, is the dominant enzyme in the generation of adenosine from degradation of AMP in the extracellular environment. Nonsense (c.662C→A, p.S221X designated F1, c.1609dupA, p.V537fsX7 designated F3) and missense (c.1073G→A, p.C358Y designated F2) NT5E gene mutations in three distinct families have been shown recently to cause premature arterial calcification disease in human patients. However, the underlying mechanisms by which loss-of-function NT5E mutations cause human disease are unknown. We hypothesized that human NT5E gene mutations cause mistrafficking of the defective proteins within cells, ultimately blocking NT5E catalytic function. To test this hypothesis, plasmids encoding cDNAs of wild type and mutant human NT5E tagged with the fluorescent probe DsRed were generated and used for transfection and heterologous expression in immortalized monkey COS-7 kidney cells that lack native NT5E protein. Enzyme histochemistry and Malachite green assays were performed to assess the biochemical activities of wild type and mutant fusion NT5E proteins. Subcellular trafficking of fusion NT5E proteins was monitored by confocal microscopy and western blot analysis of fractionated cell constituents. All 3 F1, F2, and F3 mutations result in a protein with significantly reduced trafficking to the plasma membrane and reduced ER retention as compared to wild type protein. Confocal immunofluorescence demonstrates vesicles containing DsRed-tagged NT5E proteins (F1, F2 and F3) in the cell synthetic apparatus. All 3 mutations resulted in absent NT5E enzymatic activity at the cell surface. In conclusion, three familial NT5E mutations (F1, F2, F3) result in novel trafficking defects associated with human disease. These novel genetic causes of human disease suggest that the syndrome of premature arterial calcification due to NT5E mutations may also involve a novel “trafficking-opathy”.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号