首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Moyamoya is a cerebrovascular condition characterized by a progressive stenosis of the terminal part of the internal carotid arteries (ICAs) and the compensatory development of abnormal “moyamoya” vessels. The pathophysiological mechanisms of this condition, which leads to ischemic and hemorrhagic stroke, remain unknown. It can occur as an isolated cerebral angiopathy (so-called moyamoya disease) or in association with various conditions (moyamoya syndromes). Here, we describe an autosomal-recessive disease leading to severe moyamoya and early-onset achalasia in three unrelated families. This syndrome is associated in all three families with homozygous mutations in GUCY1A3, which encodes the α1 subunit of soluble guanylate cyclase (sGC), the major receptor for nitric oxide (NO). Platelet analysis showed a complete loss of the soluble α1β1 guanylate cyclase and showed an unexpected stimulatory role of sGC within platelets. The NO-sGC-cGMP pathway is a major pathway controlling vascular smooth-muscle relaxation, vascular tone, and vascular remodeling. Our data suggest that alterations of this pathway might lead to an abnormal vascular-remodeling process in sensitive vascular areas such as ICA bifurcations. These data provide treatment options for affected individuals and strongly suggest that investigation of GUCY1A3 and other members of the NO-sGC-cGMP pathway is warranted in both isolated early-onset achalasia and nonsyndromic moyamoya.  相似文献   

2.

Background

Moyamoya syndrome is a vasculopathy characterised by progressive occlusion of the cerebral arteries resulting in the development of abnormal collateral circulation. To diagnose this syndrome, imaging of the cerebral arteries is required including CT- or MR-angiography and conventional angiography. We present a case of moyamoya disease with typical findings detected in the sonography. The diagnosis was suspected after reviewing the initial ultrasound images of the cerebral arteries with evidence for obliterated intracranial arteries and the detection of an existing collateral circulation network.

Case presentation

A 62 years old male patient presented in the hospital’s emergency department with symptoms indicating a subacute cerebrovascular event. Immediate sonographic studies showed a right-sided pulsatile Doppler-signal in the common and internal carotid arteries, suggestive of distal stenoses. In addition, the transcranial examination indicated obliteration of both middle cerebral arteries. Numerous arterial vessels suggestive of leptomeningeal collateral arteries revealed a strong arterial leptomeningeal flow. At this stage of the diagnostic work-up, the collateral circulation network, characteristic of moyamoya disease, was indicated by sonography. Moyamoya syndrome was verified by conventional angiography. The aetiological work remained empty, so the diagnosis of moyamoya disease was established.

Conclusion

Our case report indicates that sonography can be a useful tool for detecting the vaculopathy in moyamoya syndrome. In case routine procedures, such as the CT- or MR-angiography, with evidence for obliterated intracerebral arteries, ultrasound studies might provide important information regarding an existing collateral network in the scope of a moyamoya syndrome.
  相似文献   

3.
Mapping of a familial moyamoya disease gene to chromosome 3p24.2-p26.   总被引:13,自引:0,他引:13       下载免费PDF全文
Moyamoya disease is characterized by bilateral stenosis and/or occlusion of the terminal portion of the internal carotid artery. Moyamoya disease is prevalent among patients <10 years of age. Although most cases appear to be sporadic, approximately 10% occur as familial cases. The incidence of familial cases has been increasing because noninvasive diagnostic equipment, such as magnetic-resonance imaging and magnetic-resonance angiography, can detect the disease in almost all affected patients, including asymptomatic patients, during screening studies. In this study, we performed a total genome search to identify the location of a familial moyamoya disease gene in 16 families, assuming an unknown mode of inheritance. A linkage was found between the disease and markers located at 3p24.2-26. A maximum NPL score of 3.46 was obtained with marker D3S3050. This is the first genetic locus found to be involved in the molecular pathogenesis of familial moyamoya disease.  相似文献   

4.
5.

Background  

Moyamoya is a rare cerebrovascular disease of unknown etiology. The data on moyamoya disease from Pakistan is sparse. We report a case series of 13 patients who presented with moyamoya disease to a tertiary care hospital in Pakistan with a national referral base.  相似文献   

6.
We have isolated a holoenzyme complex termed BRCC containing BRCA1, BRCA2, and RAD51. BRCC not only displays increased association with p53 following DNA damage but also ubiquitinates p53 in vitro. BRCC36 and BRCC45 are novel components of the complex with sequence homology to a subunit of the signalosome and proteasome complexes. Reconstitution of a recombinant four-subunit complex containing BRCA1/BARD1/BRCC45/BRCC36 revealed an enhanced E3 ligase activity compared to that of BRCA1/BARD1 heterodimer. In vivo, depletion of BRCC36 and BRCC45 by the small interfering RNAs (siRNAs) resulted in increased sensitivity to ionizing radiation and defects in G2/M checkpoint. BRCC36 shows aberrant expression in sporadic breast tumors. These findings identify BRCC as a ubiquitin E3 ligase complex that enhances cellular survival following DNA damage.  相似文献   

7.
We report here the structure-functional characterization of a novel intronless gene, BRCC2, located on human chromosome 11q24.1. BRCC2 open reading frame (327 bp) codes for an approximately 12-kDa protein (108 amino acids (aa)) localized predominantly in the cytosol and to a lesser extent in the mitochondria. Ectopic expression of BRCC2 cDNA also was found in both the cytosol and mitochondria. Exogenous expression of BRCC2 caused apoptotic cell death in three different cell lines as evidenced by enhanced chromatin condensation, DNA fragmentation, or an enhanced number of cells in the sub-G(1) phase. In human prostate cancer cells (PC-3), BRCC2-induced DNA fragmentation was blocked efficiently by coexpression of the anti-apoptotic molecule, Bcl-X(L). Transient transfection of BRCC2 cDNA into PC-3 cells in the presence of a broad-range caspase inhibitor, Z-VAD-fmk (100 microM, 24 h), abrogated DNA fragmentation. Consistently, BRCC2 expression correlated with the activation of caspase-3 and caspase-9. An N-terminal deletion mutant of BRCC2 (10.2 kDa, Delta1-16 aa) lacking a BH3-like domain (5-12 aa, LPIEGQEI) or BRCC2 containing a mutant BH3-like domain (leucine 5-->glutamate) failed to induce apoptosis, whereas a C-terminal deletion mutant (6.8 kDa, Delta62-108 aa) retained the apoptotic activity comparable to the full-length BRCC2. Finally, the treatment of HeLa cells with doxorubicin or hydrogen peroxide (H(2)O(2)) led to an increase in the mitochondrial (heavy membrane) level of endogenous BRCC2 (doxorubicin (100 ng/ml), 5 h, approximately 2-fold; H(2)O(2) (200 microM), 2 h, approximately 2-fold). These findings demonstrate that BRCC2 functions as a proapoptotic molecule and suggest that BRCC2 induces a caspase-dependent mitochondrial pathway of cell death.  相似文献   

8.
9.
Human cystatin C (HCC) amyloid angiopathy (HCCAA) is characterized by tissue deposition of amyloid fibrils in blood vessels, which can lead to recurrent hemorrhagic stroke. Wild-type HCC forms part of the amyloid deposits in brain arteries of elderly people with amyloid angiopathy. A point mutation causing a glutamine to a leucine substitution at residue 68 in the HCC polypeptide chain greatly increases the amyloidogenic propensity of HCC and causes a more severe cerebral hemorrhage and premature death in young adults. In this study, we used molecular dynamics simulations to assess the importance of disulfide bridge formation upon the stability of chicken cystatin and how this may influence the propensity for amyloid formation. We found that disulfide bridge formation between Cys95 and Cys115 in human cystatin played a critical role in overall protein stability. Importantly, Cys95–Cys115 influenced cystatin structure in regions of the protein that play key roles in the protein-folding transitions that occur, which enable amyloid fibril formation. We hypothesized that correct disulfide bridge formation is a critical step in stabilizing cystatin toward its native conformation. Disrupting Cys95–Cys115 disulfide bridge formation within cystatin appears to significantly enhance the amyloidogenic properties of this protein. In addition, by combining in silico studies with our previous experimental results on Eps1, a molecular chaperone of the PDI family, we proposed that age-related HCCAA, may possess a different pathogenic mechanism compared with its amyloidogenic counterpart, the early onset amyloidogenic cystatin-related CAA.  相似文献   

10.
目的:研究烟雾病(moyamoya disease,MMD)的临床及影像学特征。方法:回顾性分析5例烟雾病患者,分析其临床及影像学特点。结果:本组病例既往均无阳性病史,中、青年起病,男性居多,均以缺血性脑血管病起病,肢体瘫痪不重,经颅多普勒(TCD)及头颅核磁改变明显,数字减影血管造影(DSA)检查均存在血管闭塞及侧支开放,烟雾血管网形成,1例MRA证实烟雾血管网形成。结论:对于无既往史的中、青年脑卒中患者,要考虑MMD的可能,需完善TCD、头核磁检寻找证据,最后完善数字减影血管造影确诊。  相似文献   

11.
Progressive stenosis or occlusion of bilateral internal carotid arteries by fibrocellular intimal thickening results in cerebral ischemia in moyamoya disease. The etiology is unknown. We examined cultured arterial smooth muscle cells (SMC) from scalp arteries of five patients with moyamoya disease. In this study we investigated the responsiveness of the cells in culture to serum mitogens including platelet-derived growth factor (PDGF), a major mitogen of SMC, and compared the response to that of cells derived from age-matched control patients. SMC from patients with moyamoya disease proliferated less rapidly in a medium with 15% serum than did control SMC and responded poorly to the addition of PDGF to 5% serum. PDGF alone did not stimulate SMC in a quiescent state to initiate DNA synthesis in moyamoya disease, without serum factors other than bovine serum albumin, though it significantly stimulated the controls. Simultaneous additions of epidermal growth factor, insulin-like growth factor-I, and PDGF stimulated initiation of DNA synthesis in cells from moyamoya disease, but not as much as PDGF alone did in the controls. Although direct correlations with the pathogenesis of the disease remain to be clarified, the results indicate altered interrelations between serum factors and the cellular responses in vessels of moyamoya disease.  相似文献   

12.
目的:研究烟雾病(moyamoya disease,MMD)的临床及影像学特征。方法:回顾性分析5例烟雾病患者,分析其临床及影像学特点。结果:本组病例既往均无阳性病史,中、青年起病,男性居多,均以缺血性脑血管病起病,肢体瘫痪不重,经颅多普勒(TCD)及头颅核磁改变明显,数字减影血管造影(DSA)检查均存在血管闭塞及侧支开放,烟雾血管网形成,1例MRA证实烟雾血管网形成。结论:对于无既往史的中、青年脑卒中患者,要考虑MMD的可能,需完善TCD、头核磁检寻找证据,最后完善数字减影血管造影确诊。  相似文献   

13.
BRCC36 is a member of the JAMM/MPN+ family of zinc metalloproteases that specifically cleaves Lys 63-linked polyubiquitin chains in vitro. We and others showed previously that BRCC36 is a component of the BRCA1-A complex, which consists of RAP80, CCDC98/ABRAXAS, BRCC45/BRE, MERIT40/NBA1, BRCC36, and BRCA1. This complex participates in the regulation of BRCA1 localization in response to DNA damage. Here we provide evidence indicating that BRCC36 regulates the abundance of Lys63-linked ubiquitin chains at chromatin and that one of its substrates is diubiquitinated histone H2A. Moreover, besides interacting with CCDC98 within the BRCA1-A complex, BRCC36 also associates with another protein KIAA0157, which shares significant sequence homology with CCDC98. Interestingly, although CCDC98 functions as an adaptor of BRCC36 and regulates BRCC36 activity in the nucleus, KIAA0157 mainly localizes in cytosol and activates BRCC36 in the cytoplasm. Moreover, these two complexes appear to exist in fine balance in vivo because reduction of KIAA0157 expression led to an increase of the BRCA1-A complex in the nucleus. Together, these results suggest that scaffold proteins not only participate in the regulation of BRCC36 activity but also determine its subcellular localization and cellular functions.  相似文献   

14.
Moyamoya disease (MMD) is a chronic, progressive, cerebrovascular occlusive disease that causes abnormal enlargement of collateral pathways (moyamoya vessels) in the region of the basal ganglia and thalamus. Cerebral revascularization procedures remain the preferred treatment for patients with MMD, improving the compromised cerebral blood flow (CBF). However, voxel based analysis (VBA) of revascularization surgery for MMD based on data from pre- and postoperative data has not been established. The latest algorithm called as Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra (DARTEL) has been introduced for VBA as the function of statistical parametric mapping (SPM8), and improved registration has been achieved by SPM8 with DARTEL. In this study, VBA was conducted to evaluate pre- and postoperative single photon emission computed tomography (SPECT) images for MMD by SPM8 with DARTEL algorithm, and the results were compared with those from SPM8 without DARTEL (a conventional method). Thirty-two patients with MMD who underwent superficial temporal artery-middle cerebral artery (STA-MCA) bypass surgery as the first surgery were included and all patients underwent pre- and postoperative 3D T1-weighted imaging and SPECT. Pre- and postoperative SPECT images were registered to 3D T1-weighted images, then VBA was conducted. Postoperative SPECT showed more statistically increased CBF areas in the bypassed side cerebral hemisphere by using SPM8 with DARTEL (58,989 voxels; P<0.001), and increased ratio of CBF after operation was less than 15%. Meanwhile, postoperative SPECT showed less CBF increased areas by SPM8 without DARTEL. In conclusion, VBA was conducted for patients with MMD, and SPM8 with DARTEL revealed that postoperative SPECT showed statistically significant CBF increases over a relatively large area and with at most 15% increase ratio.  相似文献   

15.
The members of the TCL1 proto-oncogene family (TCL1, MTCP1, and TCL1b) bind to Akt1, increasing its phosphorylation status and kinase activity. This is thought to be secondary to the formation of TCL1-Akt oligomers within which Akt is preferentially phosphorylated. Here we show that, in contrast to Akt1 and Akt2, which bind to all members of the TCL1 family, Akt3 specifically interacts with TCL1 but not with MTCP1 or TCL1b. This association is functional, as the presence of TCL1 but not MTCP1 or TCL1b increased Akt3 kinase activity in in vitro kinase assays. Functional specificity is determined by the Akt pleckstrin homology domain as chimeric Akt1, where Akt1 PH domain was replaced by that of Akt3 was no longer able to interact with MTCP1 or TCL1b and its kinase activity was solely enhanced by TCL1. Moreover, we show that, in TCL1-overexpressing SUPT-11 T-cell leukemia and P3HR-1 Burkitt's lymphoma cell lines, TCL1 interacts with endogenous Akt1, Akt2, and Akt3. TCL1 enhanced hetero-oligomerization of Akt1 with Akt3 and as a consequence facilitated transphosphorylation of Akt molecules, which may contribute to Akt activation and TCL1-induced leukemogenesis in vivo.  相似文献   

16.
The vasculature plays a crucial role in inflammation, angiogenesis, and atherosclerosis associated with the pathogenesis of inflammatory rheumatic diseases, hence the term 'vascular rheumatology'. The endothelium lining the blood vessels becomes activated during the inflammatory process, resulting in the production of several mediators, the expression of endothelial adhesion molecules, and increased vascular permeability (leakage). All of this enables the extravasation of inflammatory cells into the interstitial matrix. The endothelial adhesion and transendothelial migration of leukocytes is a well-regulated sequence of events that involves many adhesion molecules and chemokines. Primarily selectins, integrins, and members of the immunoglobulin family of adhesion receptors are involved in leukocyte 'tethering', 'rolling', activation, and transmigration. There is a perpetuation of angiogenesis, the formation of new capillaries from pre-existing vessels, as well as that of vasculogenesis, the generation of new blood vessels in arthritis and connective tissue diseases. Several soluble and cell-bound angiogenic mediators produced mainly by monocytes/macrophages and endothelial cells stimulate neovascularization. On the other hand, endogenous angiogenesis inhibitors and exogenously administered angiostatic compounds may downregulate the process of capillary formation. Rheumatoid arthritis as well as systemic lupus erythematosus, scleroderma, the antiphospholipid syndrome, and systemic vasculitides have been associated with accelerated atherosclerosis and high cardiovascular risk leading to increased mortality. Apart from traditional risk factors such as smoking, obesity, hypertension, dyslipidemia, and diabetes, inflammatory risk factors, including C-reactive protein, homocysteine, folate deficiency, lipoprotein (a), anti-phospholipid antibodies, antibodies to oxidized low-density lipoprotein, and heat shock proteins, are all involved in atherosclerosis underlying inflammatory rheumatic diseases. Targeting of adhesion molecules, chemokines, and angiogenesis by administering nonspecific immunosuppressive drugs as well as monoclonal antibodies or small molecular compounds inhibiting the action of a single mediator may control inflammation and prevent tissue destruction. Vasoprotective agents may help to prevent premature atherosclerosis and cardiovascular disease.  相似文献   

17.
Cerebral amyloid angiopathy is a common feature in Alzheimer’s disease (AD), which is characterized by amyloid deposit around brain vessels including capillaries. The origin of the amyloid protein of CAA remains controversial. In our work, we provide data to show that primary umbilical vein endothelial cells (HUVEC) harbor APP processing secretases and can produce Aβ42 under starvation. Starvation can increase the secretion of Aβ42 by altering the expression of β-secretases (BACE1) and γ-secretases (APH and PEN2). This process is regulated by macroautophagy. Suppression of macroautophagy induction by 3MA further increased the level of Aβ42 produced under starvation in HUVECs. These results suggest that starvation-induced Aβ42 secretion might contribute to the formation of CAA and hence vascular degeneration in AD.  相似文献   

18.
Chromosomal translocations leading to overexpression of p14(TCL1) and its homologue p13(MTCP1) are hallmarks of several human T-cell malignancies (1). p14(TCL1)/p13(MTCP1) co-activate protein kinase B (PKB, also named Akt) by binding to its pleckstrin homology (PH) domain, suggesting that p14(TCL1)/p13(MTCP1) induce T-cell leukemia by promoting anti-apoptotic signals via PKB (2, 3). Here we combined fluorescence anisotropy, NMR, and small angle x-ray-scattering measurements to determine the affinities, molecular interfaces, and low resolution structure of the complex formed between PKBbeta-PH and p14(TCL1)/p13(MTCP1). We show that p14(TCL1)/p13(MTCP1) target PKB-PH at a site that has not yet been observed in PH-protein interactions. Located opposite the phospholipid binding pocket and distal from known protein-protein interaction sites on PH domains, the binding of dimeric TCL1 proteins to this site would allow the crosslinking of two PKB molecules at the cellular membrane in a preactivated conformation without disrupting certain PH-ligand interactions. Thus this interaction could serve to strengthen membrane association, promote trans-phosphorylation, hinder deactivation of PKB, and involve PKB in a multi-protein complex, explaining the array of known effects of TCL1. The binding sites on both proteins present attractive drug targets against leukemia caused by TCL1 proteins.  相似文献   

19.
Oxidative stress is one of the factor contributing to blood brain barrier degeneration. This phenomenon is observed during pathological conditions such as Alzheimer's disease or cerebral amyloid angiopathy in which brain haemorrhages are very frequent. Both diseases are characterized by beta amyloid peptide deposition either in neurons or in vessels. Oxidative stress leads to impairment of mitochondrial functions and apoptotic cell death subsequent to caspases activation. In this paper we demonstrate that BH4 domain of Bcl-xl administrated to endothelial cells as the conjugated form with TAT peptide, reverts Abeta-induced apoptotic cell death by activating a survival programme which is Akt/endothelial nitric oxide synthase dependent.  相似文献   

20.
The enigmatic role of angiopoietin-1 in tumor angiogenesis   总被引:13,自引:0,他引:13  
A tumor vasculature is highly unstable and immature, characterized by a high proliferation rate of endothelial cells, hyper-permeability, and chaotic blood flow. The dysfunctional vasculature gives rise to continual plasma leakage and hypoxia in the tumor, resulting in constant on-sets of inflammation and angiogenesis. Tumors are thus likened to wounds that will not heal. The lack of functional mural cells, including pericytes and vascular smooth muscle cells, in tumor vascular structure contributes significantly to the abnormality of tumor vessels. Angiopoietin-1 (Ang 1) is aphysiological angiogenesis promoter during embryonic development. The function of Angl is essential to endothelial cell survival, vascular branching, and pericyte recruitment. However, an increasing amount of experimental data suggest that Angl-stimulated association of mural cells with endothelial cells lead to stabilization of newly formed blood vessels. This in turn may limit the otherwise continuous angiogenesis in the tumor, and consequently give riseto inhibition of tumor growth. We discuss the enigmatic role of Angl in tumor angiogenesis in this review.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号