首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Southern Africa was likely exclusively inhabited by San hunter-gatherers before ~2000 years ago. Around that time, East African groups assimilated with local San groups and gave rise to the Khoekhoe herders. Subsequently, Bantu-speaking farmers, arriving from the north (~1800 years ago), assimilated and displaced San and Khoekhoe groups, a process that intensified with the arrival of European colonists ~350 years ago. In contrast to the western parts of southern Africa, where several Khoe-San groups still live today, the eastern parts are largely populated by Bantu speakers and individuals of non-African descent. Only a few scattered groups with oral traditions of Khoe-San ancestry remain. Advances in genetic research open up new ways to understand the population history of southeastern Africa. We investigate the genomic variation of the remaining individuals from two South African groups with oral histories connecting them to eastern San groups, i.e., the San from Lake Chrissie and the Duma San of the uKhahlamba-Drakensberg. Using ~2.2 million genetic markers, combined with comparative published data sets, we show that the Lake Chrissie San have genetic ancestry from both Khoe-San (likely the ||Xegwi San) and Bantu speakers. Specifically, we found that the Lake Chrissie San are closely related to the current southern San groups (i.e., the Karretjie people). Duma San individuals, on the other hand, were genetically similar to southeastern Bantu speakers from South Africa. This study illustrates how genetic tools can be used to assess hypotheses about the ancestry of people who seemingly lost their historic roots, only recalling a vague oral tradition of their origin.  相似文献   

2.
North African populations are distinct from sub-Saharan Africans based on cultural, linguistic, and phenotypic attributes; however, the time and the extent of genetic divergence between populations north and south of the Sahara remain poorly understood. Here, we interrogate the multilayered history of North Africa by characterizing the effect of hypothesized migrations from the Near East, Europe, and sub-Saharan Africa on current genetic diversity. We present dense, genome-wide SNP genotyping array data (730,000 sites) from seven North African populations, spanning from Egypt to Morocco, and one Spanish population. We identify a gradient of likely autochthonous Maghrebi ancestry that increases from east to west across northern Africa; this ancestry is likely derived from "back-to-Africa" gene flow more than 12,000 years ago (ya), prior to the Holocene. The indigenous North African ancestry is more frequent in populations with historical Berber ethnicity. In most North African populations we also see substantial shared ancestry with the Near East, and to a lesser extent sub-Saharan Africa and Europe. To estimate the time of migration from sub-Saharan populations into North Africa, we implement a maximum likelihood dating method based on the distribution of migrant tracts. In order to first identify migrant tracts, we assign local ancestry to haplotypes using a novel, principal component-based analysis of three ancestral populations. We estimate that a migration of western African origin into Morocco began about 40 generations ago (approximately 1,200 ya); a migration of individuals with Nilotic ancestry into Egypt occurred about 25 generations ago (approximately 750 ya). Our genomic data reveal an extraordinarily complex history of migrations, involving at least five ancestral populations, into North Africa.  相似文献   

3.
Identification and study of genetic variation in recently admixed populations not only provides insight into historical population events but also is a powerful approach for mapping disease loci. We studied a population (OG-W-IP) that is of African-Indian origin and has resided in the western part of India for 500 years; members of this population are believed to be descendants of the Bantu-speaking population of Africa. We have carried out this study by using a set of 18,534 autosomal markers common between Indian, CEPH-HGDP, and HapMap populations. Principal-components analysis clearly revealed that the African-Indian population derives its ancestry from Bantu-speaking west-African as well as Indo-European-speaking north and northwest Indian population(s). STRUCTURE and ADMIXTURE analyses show that, overall, the OG-W-IPs derive 58.7% of their genomic ancestry from their African past and have very little inter-individual ancestry variation (8.4%). The extent of linkage disequilibrium also reveals that the admixture event has been recent. Functional annotation of genes encompassing the ancestry-informative markers that are closer in allele frequency to the Indian ancestral population revealed significant enrichment of biological processes, such as ion-channel activity, and cadherins. We briefly examine the implications of determining the genetic diversity of this population, which could provide opportunities for studies involving admixture mapping.  相似文献   

4.
Previous studies show that the indigenous people of the southern Cape of South Africa were dramatically impacted by the arrival of European colonists starting ~400 years ago and their descendants are today mixed with Europeans and Asians. To gain insight on the occupants of the Vaalkrans Shelter located at the southernmost tip of Africa, we investigated the genetic make-up of an individual who lived there about 200 years ago. We further contextualize the genetic ancestry of this individual among prehistoric and current groups. From a hair sample excavated at the shelter, which was indirectly dated to about 200 years old, we sequenced the genome (1.01 times coverage) of a Later Stone Age individual. We analyzed the Vaalkrans genome together with genetic data from 10 ancient (pre-colonial) individuals from southern Africa spanning the last 2000 years. We show that the individual from Vaalkrans was a man who traced ~80% of his ancestry to local southern San hunter–gatherers and ~20% to a mixed East African-Eurasian source. This genetic make-up is similar to modern-day Khoekhoe individuals from the Northern Cape Province (South Africa) and Namibia, but in the southern Cape, the Vaalkrans man's descendants have likely been assimilated into mixed-ancestry “Coloured” groups. The Vaalkrans man's genome reveals that Khoekhoe pastoralist groups/individuals lived in the southern Cape as late as 200 years ago, without mixing with non-African colonists or Bantu-speaking farmers. Our findings are also consistent with the model of a Holocene pastoralist migration, originating in Eastern Africa, shaping the genomic landscape of historic and current southern African populations.  相似文献   

5.
The Siddis are a tribal group of African origin living in Karnataka, India. They have undergone considerable cultural change due to their proximity to neighboring population groups. To understand the biological consequences of these changes, we describe the genomic structure of the Siddis and the contribution from putative ancestral populations using 20 autosomal DNA markers. The distribution of Alu indel markers and a genetic distance analysis reveals their closer affinities with Africans. The levels of genomic diversity and heterozygosity are high in all the populations of southern India. Genetic admixture analysis reveals a predominant contribution from Africans, a lesser contribution from south Indians, and a slight one from Europeans. There is no evidence of gametic disequilibrium in the Siddis. The genetic homogeneity of the Siddis, in spite of its admixed origin, suggests the utility of this population for genetic epidemiological studies.  相似文献   

6.
Twenty‐one years ago, a landmark exploration of mitochondrial DNA diversity popularized the idea of a recent African origin for all living humans. 1 The ancestral African population was estimated to have existed 200 ka (thousands of years ago) plus or minus a few tens of thousands of years. A corollary was that at some later date the fully modern African descendants of that population expanded to swamp or replace the Neanderthals and other nonmodern Eurasians. The basic concept soon became known as “Out of Africa,” after the Academy Award winning film (1985) that took its title, in turn, from Isak Dinesen's classic autobiography (1937). Many subsequent genetic analyses, including those of Ingman and coworkers 2 and Underhill and coworkers, 3 have reaffirmed the fundamental Out of Africa model. The fossil and archeological records also support it strongly. The fossil record implies that anatomically modern or near‐modern humans were present in Africa by 150 ka; the fossil and archeological records together indicate that modern Africans expanded to Eurasia beginning about 50 ka.  相似文献   

7.
Previous genetic studies have suggested a history of sub-Saharan African gene flow into some West Eurasian populations after the initial dispersal out of Africa that occurred at least 45,000 years ago. However, there has been no accurate characterization of the proportion of mixture, or of its date. We analyze genome-wide polymorphism data from about 40 West Eurasian groups to show that almost all Southern Europeans have inherited 1%-3% African ancestry with an average mixture date of around 55 generations ago, consistent with North African gene flow at the end of the Roman Empire and subsequent Arab migrations. Levantine groups harbor 4%-15% African ancestry with an average mixture date of about 32 generations ago, consistent with close political, economic, and cultural links with Egypt in the late middle ages. We also detect 3%-5% sub-Saharan African ancestry in all eight of the diverse Jewish populations that we analyzed. For the Jewish admixture, we obtain an average estimated date of about 72 generations. This may reflect descent of these groups from a common ancestral population that already had some African ancestry prior to the Jewish Diasporas.  相似文献   

8.
Nine Atlantic islands with approximately five and a half centuries of demographic history constitute the Portuguese archipelago of the Azores. Despite the recent peopling history of these islands, written records regarding the specific origin and relative proportions of the first settlers are scarce and incomplete. To gain insights into the history of the peopling of the Azores and to evaluate to what extent population imports described in historical sources left their marks on the genetic constitution of the present-day populations, we analyzed 11 Y-chromosome biallelic markers in a sample of 145 unrelated individuals of Azorean ancestry. The main results of this study indicate that the genetic profile of the Azorean male population shows high affinities with that of mainland Portugal, in accordance with the general knowledge, derived from historical sources, that the Portuguese were the major contributors to the Azorean founding population. Nevertheless, genetic traces of settlers from other origins also mentioned in historical records can still be found in the present-day population. Thus typically sub-Saharan male lineages were detected in the archipelago, in contrast to what has been described for mainland Portugal. Furthermore, compared to what has been described for the mainland Portugal population, our data support a stronger influence of people of Jewish origin, as detected by an increased frequency of lineages belonging to haplogroup J.  相似文献   

9.
Studying the genetic history of the Orang Asli of Peninsular Malaysia can provide crucial clues to the peopling of Southeast Asia as a whole. We have analyzed mitochondrial DNA (mtDNAs) control-region and coding-region markers in 447 mtDNAs from the region, including 260 Orang Asli, representative of each of the traditional groupings, the Semang, the Senoi, and the Aboriginal Malays, allowing us to test hypotheses about their origins. All of the Orang Asli groups have undergone high levels of genetic drift, but phylogeographic traces nevertheless remain of the ancestry of their maternal lineages. The Semang have a deep ancestry within the Malay Peninsula, dating to the initial settlement from Africa >50,000 years ago. The Senoi appear to be a composite group, with approximately half of the maternal lineages tracing back to the ancestors of the Semang and about half to Indochina. This is in agreement with the suggestion that they represent the descendants of early Austroasiatic speaking agriculturalists, who brought both their language and their technology to the southern part of the peninsula approximately 4,000 years ago and coalesced with the indigenous population. The Aboriginal Malays are more diverse, and although they show some connections with island Southeast Asia, as expected, they also harbor haplogroups that are either novel or rare elsewhere. Contrary to expectations, complete mtDNA genome sequences from one of these, R9b, suggest an ancestry in Indochina around the time of the Last Glacial Maximum, followed by an early-Holocene dispersal through the Malay Peninsula into island Southeast Asia.  相似文献   

10.
Eocene ocean currents and prevailing winds correlate with over-water dispersals of terrestrial mammals from Africa to Madagascar. Since the Early Miocene (about 23 Ma), these currents flowed in the reverse direction, from the Indian Ocean towards Africa. The Comoro Islands are equidistant between Africa and Madagascar and support an endemic land vertebrate fauna that shares recent ancestry predominantly with Madagascar. We examined whether gene flow in two Miniopterus bat species endemic to the Comoros and Madagascar correlates with the direction of current winds, using uni- and bi-parentally inherited markers with different evolutionary rates. Coalescence-based analyses of mitochondrial matrilines support a Pleistocene (approximately 180,000 years ago) colonization event from Madagascar west to the Comoros (distance: 300 km) in the predicted direction. However, nuclear microsatellites show that more recent gene flow is restricted to a few individuals flying against the wind, from Grande Comore to Anjouan (distance: 80 km).  相似文献   

11.
The Uyghur (UIG) population, settled in Xinjiang, China, is a population presenting a typical admixture of Eastern and Western anthropometric traits. We dissected its genomic structure at population level, individual level, and chromosome level by using 20,177 SNPs spanning nearly the entire chromosome 21. Our results showed that UIG was formed by two-way admixture, with 60% European ancestry and 40% East Asian ancestry. Overall linkage disequilibrium (LD) in UIG was similar to that in its parental populations represented in East Asia and Europe with regard to common alleles, and UIG manifested elevation of LD only within 500 kb and at a level of 0.1 相似文献   

12.
Identifying the ancestry of chromosomal segments of distinct ancestry has a wide range of applications from disease mapping to learning about history. Most methods require the use of unlinked markers; but, using all markers from genome-wide scanning arrays, it should in principle be possible to infer the ancestry of even very small segments with exquisite accuracy. We describe a method, HAPMIX, which employs an explicit population genetic model to perform such local ancestry inference based on fine-scale variation data. We show that HAPMIX outperforms other methods, and we explore its utility for inferring ancestry, learning about ancestral populations, and inferring dates of admixture. We validate the method empirically by applying it to populations that have experienced recent and ancient admixture: 935 African Americans from the United States and 29 Mozabites from North Africa. HAPMIX will be of particular utility for mapping disease genes in recently admixed populations, as its accurate estimates of local ancestry permit admixture and case-control association signals to be combined, enabling more powerful tests of association than with either signal alone.  相似文献   

13.
The human lineage has a very ancient origin, as most of the mammals. Its oldest representatives, anthropoid primates, have been described from Asia some 45 million years ago. During this long evolutionary story, two critical stages have appeared as especially important, their beginning in Asia and the emergence of hominids in Africa, some seven million years ago. These two stages are discussed hereby with new data relative to their Asian origins and their dispersal into Africa between 45 and 40 million years ago. Following this dispersal event, these primates evolved in Africa and gave rise to the early hominids. These appeared around seven million years ago and have three distinct representatives. Among them, Toumaï appears as the oldest and the closest to our ancestry, a point that is evidenced here.  相似文献   

14.
A 3-kb region encompassing the beta-globin gene has been analyzed for allelic sequence polymorphism in nine populations from Africa, Asia, and Europe. A unique gene tree was constructed from 326 sequences of 349 in the total sample. New maximum-likelihood methods for analyzing gene trees on the basis of coalescence theory have been used. The most recent common ancestor of the beta-globin gene tree is a sequence found only in Africa and estimated to have arisen approximately 800,000 years ago. There is no evidence for an exponential expansion out of a bottlenecked founding population, and an effective population size of approximately 10,000 has been maintained. Modest differences in levels of beta-globin diversity between Africa and Asia are better explained by greater African effective population size than by greater time depth. There may have been a reduction of Asian effective population size in recent evolutionary history. Characteristically Asian ancestry is estimated to be older than 200,000 years, suggesting that the ancestral hominid population at this time was widely dispersed across Africa and Asia. Patterns of beta-globin diversity suggest extensive worldwide late Pleistocene gene flow and are not easily reconciled with a unidirectional migration out of Africa 100,000 years ago and total replacement of archaic populations in Asia.  相似文献   

15.
Recently admixed populations offer unique opportunities for studying human history and for elucidating the genetic basis of complex traits that differ in prevalence between human populations. Historical records, classical protein markers, and preliminary genetic data indicate that the Cape Verde islands in West Africa are highly admixed and primarily descended from European males and African females. However, little is known about the variation in admixture levels, admixture dynamics and genetic diversity across the islands, or about the potential of Cape Verde for admixture mapping studies. We have performed a detailed analysis of phenotypic and genetic variation in Cape Verde based on objective skin color measurements, socio-economic status (SES) evaluations and data for 50 autosomal, 34 X-chromosome, and 21 non-recombinant Y-chromosome (NRY) markers in 845 individuals from six islands of the archipelago. We find extensive genetic admixture between European and African ancestral populations (mean West African ancestry = 0.57, sd = 0.08), with individual African ancestry proportions varying considerably among the islands. African ancestry proportions calculated with X and Y-chromosome markers confirm that the pattern of admixture has been sex-biased. The high-resolution NRY-STRs reveal additional patterns of variation among the islands that are most consistent with differentiation after admixture. The differences in the autosomal admixture proportions are clearly evident in the skin color distribution across the islands (Pearson r = 0.54, P-value<2e–16). Despite this strong correlation, there are significant interactions between SES and skin color that are independent of the relationship between skin color and genetic ancestry. The observed distributions of admixture, genetic variation and skin color and the relationship of skin color with SES relate to historical and social events taking place during the settlement history of Cape Verde, and have implications for the design of association studies using this population.  相似文献   

16.
We investigate the evolutionary history of the greater white-toothed shrew across its distribution in northern Africa and mainland Europe using sex-specific (mtDNA and Y chromosome) and biparental (X chromosome) markers. All three loci confirm a large divergence between eastern (Tunisia and Sardinia) and western (Morocco and mainland Europe) lineages, and application of a molecular clock to mtDNA divergence estimates indicates a more ancient separation (2.25 M yr ago) than described by some previous studies, supporting claims for taxonomic revision. Moroccan ancestry for the mainland European population is inconclusive from phylogenetic trees, but is supported by greater nucleotide diversity and a more ancient population expansion in Morocco than in Europe. Signatures of rapid population expansion in mtDNA, combined with low X and Y chromosome diversity, suggest a single colonization of mainland Europe by a small number of Moroccan shrews >38 K yr ago. This study illustrates that multilocus genetic analyses can facilitate the interpretation of species' evolutionary history but that phylogeographic inference using X and Y chromosomes is restricted by low levels of observed polymorphism.  相似文献   

17.
Basques, Portuguese, Spaniards, and Algerians have been studied for HLA and mitochondrial DNA markers, and the data analysis suggests that pre-Neolithic gene flow into Iberia came from ancient white North Africans (Hamites). The Basque language has also been used to translate the Iberian-Tartesian language and also Etruscan and Minoan Linear A. Physical anthropometry of Iberian Mesolithic and Neolithic skeletons does not support the demic replacement in Iberia of preexisting Mesolithic people by Neolithic people bearing new farming technologies from Europe and the Middle East. Also, the presence of cardial impressed pottery in western Mediterranean Europe and across the Maghreb (North Africa) coasts at the beginning of the Neolithic provides good evidence of pre-Neolithic circum-Mediterranean contacts by sea. In addition, pre-dynastic Egyptian El-Badari culture (4,500 years ago) is similar to southern Iberian Neolithic settlements with regard to pottery and animal domestication. Taking the genetic, linguistic, anthropological, and archeological evidence together with the documented Saharan area desiccation starting about 10,000 years ago, we believe that it is possible that a genetic and cultural pre-Neolithic flow coming from southern Mediterranean coasts existed toward northern Mediterranean areas, including at least Iberia and some Mediterranean islands. This model would substitute for the demic diffusion model put forward to explain Neolithic innovations in Western Europe.  相似文献   

18.
Throughout most of the Americas, post-colonial dogs largely erased the genetic signatures of pre-historical dogs. However, the North American Arctic harbors dogs that are potentially descended from pre-historical ancestors, as well as those affected by post-colonial translocations and admixtures. In particular, Inuit dogs from Canada and Greenland are thought to descend from dogs associated with Thule peoples, who relied on them for transportation ca. 1000 years ago. Whether Thule dogs reflected an earlier colonization by Paleoeskimo dogs ca. 4500 years ago is unknown. During the Alaskan Gold Rush, additional sled dogs, possibly of post-colonial derivation, the Alaskan Husky, Malamute and Siberian Husky, were used in the Arctic. The genealogical relationships among and origins of these breeds are unknown. Here we use autosomal, paternal and maternal DNA markers to (1) test the hypothesis that Inuit dogs have retained their indigenous ancestry, (2) characterize their relationship to one another and to other Arctic breeds, and (3) estimate the age of North American indigenous matrilines and patrilines. On the basis of the agreement of all three markers we determined that Inuit dogs have maintained their indigenous nature, and that they likely derive from Thule dogs. In addition, we provide support for previous research that the Inuit dogs from Canada and Greenland dog should not be distinguished as two breeds. The Alaskan Husky displayed evidence of European introgression, in contrast to the Malamute and Siberian Husky, which appear to have maintained most of their ancient Siberian ancestry.  相似文献   

19.
Genetic studies have identified substantial non-African admixture in the Horn of Africa (HOA). In the most recent genomic studies, this non-African ancestry has been attributed to admixture with Middle Eastern populations during the last few thousand years. However, mitochondrial and Y chromosome data are suggestive of earlier episodes of admixture. To investigate this further, we generated new genome-wide SNP data for a Yemeni population sample and merged these new data with published genome-wide genetic data from the HOA and a broad selection of surrounding populations. We used multidimensional scaling and ADMIXTURE methods in an exploratory data analysis to develop hypotheses on admixture and population structure in HOA populations. These analyses suggested that there might be distinct, differentiated African and non-African ancestries in the HOA. After partitioning the SNP data into African and non-African origin chromosome segments, we found support for a distinct African (Ethiopic) ancestry and a distinct non-African (Ethio-Somali) ancestry in HOA populations. The African Ethiopic ancestry is tightly restricted to HOA populations and likely represents an autochthonous HOA population. The non-African ancestry in the HOA, which is primarily attributed to a novel Ethio-Somali inferred ancestry component, is significantly differentiated from all neighboring non-African ancestries in North Africa, the Levant, and Arabia. The Ethio-Somali ancestry is found in all admixed HOA ethnic groups, shows little inter-individual variance within these ethnic groups, is estimated to have diverged from all other non-African ancestries by at least 23 ka, and does not carry the unique Arabian lactase persistence allele that arose about 4 ka. Taking into account published mitochondrial, Y chromosome, paleoclimate, and archaeological data, we find that the time of the Ethio-Somali back-to-Africa migration is most likely pre-agricultural.  相似文献   

20.
Humans reached present-day Island Southeast Asia (ISEA) in one of the first major human migrations out of Africa. Population movements in the millennia following this initial settlement are thought to have greatly influenced the genetic makeup of current inhabitants, yet the extent attributed to different events is not clear. Recent studies suggest that south-to-north gene flow largely influenced present-day patterns of genetic variation in Southeast Asian populations and that late Pleistocene and early Holocene migrations from Southeast Asia are responsible for a substantial proportion of ISEA ancestry. Archaeological and linguistic evidence suggests that the ancestors of present-day inhabitants came mainly from north-to-south migrations from Taiwan and throughout ISEA approximately 4,000 years ago. We report a large-scale genetic analysis of human variation in the Iban population from the Malaysian state of Sarawak in northwestern Borneo, located in the center of ISEA. Genome-wide single-nucleotide polymorphism (SNP) markers analyzed here suggest that the Iban exhibit greatest genetic similarity to Indonesian and mainland Southeast Asian populations. The most common non-recombining Y (NRY) and mitochondrial (mt) DNA haplogroups present in the Iban are associated with populations of Southeast Asia. We conclude that migrations from Southeast Asia made a large contribution to Iban ancestry, although evidence of potential gene flow from Taiwan is also seen in uniparentally inherited marker data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号