首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The structures of acetylcholine-binding protein (AChBP) and nicotinic acetylcholine receptor (nAChR) homology models have been used to interpret data from mutagenesis experiments at the nAChR. However, little is known about AChBP-derived structures as predictive tools. Molecular surface analysis of nAChR models has revealed a conserved cleft as the likely binding site for the 4/7 alpha-conotoxins. Here, we used an alpha3beta2 model to identify beta2 subunit residues in this cleft and investigated their influence on the binding of alpha-conotoxins MII, PnIA, and GID to the alpha3beta2 nAChR by two-electrode voltage clamp analysis. Although a beta2-L119Q mutation strongly reduced the affinity of all three alpha-conotoxins, beta2-F117A, beta2-V109A, and beta2-V109G mutations selectively enhanced the binding of MII and GID. An increased activity of alpha-conotoxins GID and MII was also observed when the beta2-F117A mutant was combined with the alpha4 instead of the alpha3 subunit. Investigation of A10L-PnIA indicated that high affinity binding to beta2-F117A, beta2-V109A, and beta2-V109G mutants was conferred by amino acids with a long side chain in position 10 (PnIA numbering). Docking simulations of 4/7 alpha-conotoxin binding to the alpha3beta2 model supported a direct interaction between mutated nAChR residues and alpha-conotoxin residues 6, 7, and 10. Taken together, these data provide evidence that the beta subunit contributes to alpha-conotoxin binding and selectivity and demonstrate that a small cleft leading to the agonist binding site is targeted by alpha-conotoxins to block the nAChR.  相似文献   

2.
The full three-dimensional structure of the catalytic domain of human collagenase-3 (MMP-13) complexed to a potent, sulfonamide hydroxamic acid inhibitor (CGS 27023) has been determined by NMR spectroscopy. The results reveal a core domain for the protein consisting of three alpha-helices and five beta-sheet strands with an overall tertiary fold similar to the catalytic domains of other matrix metalloproteinase family members. The S1' pocket, which is the major site of hydrophobic binding interaction, was found to be a wide cleft spanning the length of the protein and presenting facile opportunity for inhibitor extension deep into the pocket. Comparison with the reported X-ray structure of collagenase-3 showed evidence of flexibility for the loop region flanking the S1' pocket in both NMR and X-ray data. This flexibility was corroborated by NMR dynamics studies. Inhibitor binding placed the methoxy phenyl ring in the S1' pocket with the remainder of the molecule primarily solvent-exposed. The binding mode for this inhibitor was found to be similar with respect to stromelysin-1 and collagenase-1; however, subtle comparative differences in the interactions between inhibitor and enzyme were observed for the three MMPs that were consistent with their respective binding potencies.  相似文献   

3.
Truncation of a peptide substrate in the N-terminus and replacement of its scissile amide bond with a non-cleavable reduced bond results in a potent inhibitor of HIV-1 protease. A series of such inhibitors has been synthesized, and S2-S3' subsites of the protease binding cleft mapped. The S2 pocket requires bulky Boc or PIV groups, large aromatic Phe residues are preferred in P1 and P1' and Glu in P2'. The S3' pocket prefers Phe over small Ala or Val. Introduction of a Glu residue into the P2' position yields a tight-binding inhibitor of HIV-1 protease, Boc-Phe-[CH2-NH]-Phe-Glu-Phe-OMe, with a subnanomolar inhibition constant. The relevant peptide derived from the same amino acid sequence binds to the protease with a Ki of 110 nM, thus still demonstrating a good fit of the amino acid residues into the protease binding pockets and also the importance of the flexibility of P1-P1' linkage for proper binding. A new type of peptide bond mimetic, N-hydroxylamine -CH2-N(OH)-, has been synthesized. Binding of hydroxylamino inhibitor of HIV-1 protease is further improved with respect to reduced-bond inhibitor.  相似文献   

4.
Xue Y  Chowdhury S  Liu X  Akiyama Y  Ellman J  Ha Y 《Biochemistry》2012,51(18):3723-3731
Rhomboid protease conducts proteolysis inside the hydrophobic environment of the membrane. The conformational flexibility of the protease is essential for the enzyme mechanism, but the nature of this flexibility is not completely understood. Here we describe the crystal structure of rhomboid protease GlpG in complex with a phosphonofluoridate inhibitor, which is covalently bonded to the catalytic serine and extends into the S' side of the substrate binding cleft. Inhibitor binding causes subtle but extensive changes in the membrane protease. Many transmembrane helices tilt and shift positions, and the gap between S2 and S5 is slightly widened so that the inhibitor can bind between them. The side chain of Phe-245 from a loop (L5) that acts as a cap rotates and uncovers the opening of the substrate binding cleft to the lipid bilayer. A concurrent turn of the polypeptide backbone at Phe-245 moves the rest of the cap and exposes the catalytic serine to the aqueous solution. This study, together with earlier crystallographic investigation of smaller inhibitors, suggests a simple model for explaining substrate binding to rhomboid protease.  相似文献   

5.
A conserved O(2) binding pocket residue in Phascolopsis gouldii myohemerythrin (myoHr), namely, L104, was mutated to several other residues, and the effects on O(2) association and dissociation rates, O(2) affinity, and autoxidation were examined. The L104V, -F, and -Y myoHrs formed stable O(2) adducts whose UV-vis and resonance Raman spectra closely matched those of wild-type oxymyoHr. The L104V mutation produced only minimal effects on either O(2) association or dissociation, whereas the L104F and -Y mutations resulted in 100-300-fold decreases in both O(2) association and dissociation rates. These decreases are attributed to introduction of steric restrictions into the O(2) binding pocket, which are not present in either wild-type or L104V myoHrs. The failure to observe increased O(2) association or dissociation rates for L104V indicates that the side chain of leucine at position 104 does not sterically "gate" O(2) entry into or exit from the binding pocket in the rate-determining step(s). L104V myoHr autoxidized approximately 3 times faster than did wild type, whereas L104T autoxidized >10(6) times faster than did wild type. The latter large increase is attributed to increased side chain polarity, thereby increasing water occupancy in the oxymyoHr binding pocket. These results indicate that L104 contributes a hydrophobic barrier that restricts water entry into the oxymyoHr binding pocket. Thus, a leucine at position 104 in myoHr appears to have the optimal combination of size and hydrophobicity to facilitate O(2) binding while simultaneously inhibiting autoxidation.  相似文献   

6.
The x-ray structure of the lipase from Pseudomonas aeruginosa PAO1 has been determined at 2.54 A resolution. It is the first structure of a member of homology family I.1 of bacterial lipases. The structure shows a variant of the alpha/beta hydrolase fold, with Ser(82), Asp(229), and His(251) as the catalytic triad residues. Compared with the "canonical" alpha/beta hydrolase fold, the first two beta-strands and one alpha-helix (alphaE) are not present. The absence of helix alphaE allows the formation of a stabilizing intramolecular disulfide bridge. The loop containing His(251) is stabilized by an octahedrally coordinated calcium ion. On top of the active site a lid subdomain is in an open conformation, making the catalytic cleft accessible from the solvent region. A triacylglycerol analogue is covalently bound to Ser(82) in the active site, demonstrating the position of the oxyanion hole and of the three pockets that accommodate the sn-1, sn-2, and sn-3 fatty acid chains. The inhibited enzyme can be thought to mimic the structure of the tetrahedral intermediate that occurs during the acylation step of the reaction. Analysis of the binding mode of the inhibitor suggests that the size of the acyl pocket and the size and interactions of the sn-2 binding pocket are the predominant determinants of the regio- and enantio-preference of the enzyme.  相似文献   

7.
The azole-based P450 inhibitor ketoconazole is used to treat fungal infections and functions by blocking ergosterol biosynthesis in yeast. Ketoconazole binds to mammalian P450 enzymes and this can result in drug-drug interactions and lead to liver damage. To identify protein-drug interactions that contribute to binding specificity and affinity, we determined the crystal structure of ketoconazole complexed with P450eryF. In the P450eryF/ketoconazole structure, the azole moiety and nearby rings of ketoconzole are positioned in the active site similar to the substrate, 6-deoxyerythronolide B, with the azole nitrogen atom coordinated to the heme iron atom. The remainder of the ketoconazole molecule extends into the active-site pocket, which is occupied by water in the substrate complex. Binding of ketoconazole led to unexpected conformational changes in the I-helix. The I-helix cleft near the active site has collapsed with a helical pitch of 5.4 A compared to 6.6 A in the substrate complex. P450eryF/ketoconazole crystals soaked in 6-deoxyerythronolide B to exchange ligands exhibit a structure identical with that of the original P450eryF/substrate complex, with the I-helix cleft restored to a pitch of 6.6 A. These findings indicate that the I-helix region of P450eryF is flexible and can adopt multiple conformations. An improved understanding of the flexibility of the active-site region of cytochrome P450 enzymes is important to gain insight into determinants of ligand binding/specificity as well as to evaluate models for catalytic mechanism based on static crystal structures.  相似文献   

8.
9.
The physiological effects of anesthetics have been ascribed to their interaction with hydrophobic sites within functionally relevant CNS proteins. Studies have shown that volatile anesthetics compete for luciferin binding to the hydrophobic substrate binding site within firefly luciferase and inhibit its activity (Franks, N. P., and Lieb, W. R. (1984) Nature 310, 599-601). To assess whether anesthetics also compete for ligand binding to a mammalian signal transduction protein, we investigated the interaction of the volatile anesthetic, halothane, with the Rho GDP dissociation inhibitor (RhoGDIalpha), which binds the geranylgeranyl moiety of GDP-bound Rho GTPases. Consistent with the existence of a discrete halothane binding site, the intrinsic tryptophan fluorescence of RhoGDIalpha was quenched by halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) in a saturable, concentration-dependent manner. Bromine quenching of tryptophan fluorescence is short-range and W192 and W194 of the RhoGDIalpha are located within the geranylgeranyl binding pocket, suggesting that halothane binds within this region. Supporting this, N-acetyl-geranylgeranyl cysteine reversed tryptophan quenching by halothane. Short chain n-alcohols ( n < 6) also reversed tryptophan quenching, suggesting that RhoGDIalpha may also bind n-alkanols. Consistent with this, E193 was photolabeled by 3-azibutanol. This residue is located in the vicinity of, but outside, the geranylgeranyl chain binding pocket, suggesting that the alcohol binding site is distinct from that occupied by halothane. Supporting this, N-acetyl-geranylgeranyl cysteine enhanced E193 photolabeling by 3-azibutanol. Overall, the results suggest that halothane binds to a site within the geranylgeranyl chain binding pocket of RhoGDIalpha, whereas alcohols bind to a distal site that interacts allosterically with this pocket.  相似文献   

10.
In this work, we present 10 ns molecular dynamics simulations of the homotetramer of the ABAD enzyme, as well as of the structural units, dimer and monomer, that assemble to form the tetramer, in the presence and absence of a NAD-inhibitor adduct. The aim was to compare the stability of the different structures and to study the effects of the inhibitor binding on the flexibility of the enzyme structure. The results indicate that the tetramer, dimer and monomer show a comparable stability and that tetramerization stabilizes some regions of the protein that when exposed to the solvent in dimer and monomer become more flexible. Binding of the cofactor and inhibitor stabilizes the protein, the main effect being a stabilization of the substrate binding loop. In the absence of the ligand, this region was found to have a much higher flexibility and to adopt an open conformation. An interesting result emerging from this work is the conformational flexibility exhibited by the azepane and benzene rings of the inhibitor moiety of the adduct, which appears to be influenced by the mobility of the substrate binding loop. This highlights the importance of integrate the flexibility of the substrate binding loop into de novo design of inhibitors of ABAD.  相似文献   

11.
Crystal structures of the catalytic domain of human stromelysin-1 (MMP-3) and collagenase-3 (MMP-13) with a hydroxamic acid inhibitor SM-25453 have been solved at 2.01 and 2.37A resolutions, respectively. The results revealed that the binding modes for this inhibitor to MMP-3 and -13 were quite similar. However, subtle comparative differences were observed at the bottom of S1' pockets, which were occupied with the guanidinomethyl moiety of the inhibitor. A remarkable feature of the inhibitor was the deep penetration of its long aliphatic chain into the S1' pocket and exposure of the guanidinomethyl moiety to the solvent.  相似文献   

12.
A major tripartite multidrug efflux pump of Escherichia coli, AcrAB–TolC, confers resistance to a wide variety of compounds. The drug molecule is captured by AcrB probably from the periplasm or the periplasm/inner membrane interface, and is passed through AcrB and then TolC to the medium. Currently, there exist numerous crystallographic and mutation data concerning the regions of AcrB and its homologues that may interact with substrates. Starting with these data, we devised fluorescence assays in whole cells to determine the entire substrate path through AcrB. We tested 48 residues in AcrB along the predicted substrate path and 25 gave positive results, based on the covalent labelling of cysteine residues by a lipophilic dye‐maleimide and the blocking of Nile red efflux by covalent labelling with bulky maleimide reagents. These residues are all located in the periplasmic domain, in regions we designate as the lower part of the large external cleft, the cleft itself, the crystallographically defined binding pocket, and the gate between the pocket and the funnel. Our observations suggest that the substrate is captured in the lower cleft region of AcrB, then transported through the binding pocket, the gate and finally to the AcrB funnel that connects AcrB to TolC.  相似文献   

13.
Local anesthetics (LAs) block voltage-gated Na+ channels in excitable cells, whereas batrachotoxin (BTX) keeps these channels open persistently. Previous work delimited the LA receptor within the D4-S6 segment of the Na+ channel alpha-subunit, whereas the putative BTX receptor was found within the D1-S6. We mutated residues at D4-S6 critical for LA binding to determine whether such mutations modulate the BTX phenotype in rat skeletal muscle Na+ channels (mu1/rSkm1). We show that mu1-F1579K and mu1-N1584K channels become completely resistant to 5 microM BTX. In contrast, mu1-Y1586K channels remain BTX-sensitive; their fast and slow inactivation is eliminated by BTX after repetitive depolarization. Furthermore, we demonstrate that cocaine elicits a profound time-dependent block after channel activation, consistent with preferential LA binding to BTX-modified open channels. We propose that channel opening promotes better exposure of receptor sites for binding with BTX and LAs, possibly by widening the bordering area around D1-S6, D4-S6, and the pore region. The BTX receptor is probably located at the interface of D1-S6 and D4-S6 segments adjacent to the LA receptor. These two S6 segments may appose too closely to bind BTX and LAs simultaneously when the channel is in its resting closed state.  相似文献   

14.
The crystal structure analysis of horse liver alcohol dehydrogenase has been extended to 2.4 Å resolution. From the corresponding electron density map of the apoenzyme we have determined the positions of the 374 amino acids in the polypeptide chain of each subunit.The coenzyme binding domain of the subunit comprises residues 176 to 318. 45% of these residues are helical and 32% are in the central six-stranded pleated sheet structure. The positions and orientations of the helices with respect to the pleated sheet indicate a possible folding mechanism for this part of the subunit structure. The coenzyme analogue ADP-ribose binds to this domain in a position and orientation very similar to coenzyme binding to lactate dehydrogenase. The adenine part binds in a hydrophobic pocket, the adenosine ribose is hydrogen-bonded to the side chain of Asp223, the pyrophosphate is positioned by interaction with Arg47 and the nicotinamide ribose is 6Å away from the catalytic zinc atom.The catalytic domain is mainly built up from three distinct antiparallel pleated-sheet regions. Residues within this domain provide ligands to the catalytic zinc atom; Cys46, His67 and Cys174. An approximate tetrahedral coordination of this zinc is completed by a water molecule or hydroxyl ion depending on the pH. Residues 95 to 113 form a lobe that binds the second zinc atom of the subunit. This zinc is liganded in a distorted tetrahedral arrangement by four sulphur atoms from the cysteine residues 97, 100, 103 and 111. The lobe forms one side of a significant cleft in the enzyme surface suggesting that this region might constitute a second catalytic centre of unknown function.The two domains of the subunit are separated by a crevice that contains a wide and deep hydrophobic pocket. The catalytic zinc atom is at the bottom of this pocket, with the zinc-bound water molecule projecting out into the pocket. This water molecule is hydrogen-bonded to the side chain of Ser48 which in turn is hydrogen-bonded to His51. The pocket which in all probability is the binding site for the substrate and the nicotinamide moiety of the coenzyme, is lined almost exclusively with hydrophobic side chains. Both subunits contribute residues to each of the two substrate binding pockets of the molecule. The only accessible polar groups in the vicinity of the catalytic centre are Ser48 and Thr178 apart from zinc and the zinc-bound water molecule.  相似文献   

15.
16.
Ho DH  Baglia FA  Walsh PN 《Biochemistry》2000,39(2):316-323
To localize the platelet binding site on factor XI, rationally designed, conformationally constrained synthetic peptides were used to compete with [(125)I]factor XI binding to activated platelets. The major platelet binding energy resided within the sequence of amino acids T(249)-F(260). Homology scanning, using prekallikrein amino acid substitutions within the synthetic peptide T(249)-F(260), identified a major role for R(250) in platelet binding. Inhibition of [(125)I]factor XI binding to activated platelets by the recombinant Apple 3 domain of factor XI and inhibition by unlabeled factor XI were identical, whereas the recombinant Apple 3 domain of prekallikrein had little effect. A "gain-of-function" chimera in which the C-terminal amino acid sequence of the Apple 3 domain of prekallikrein was replaced with that of factor XI was as effective as the recombinant Apple 3 domain of factor XI and unlabeled factor XI in inhibiting [(125)I]factor XI binding to activated platelets. Alanine scanning mutagenic analysis of the recombinant Apple 3 domain of factor XI indicated that amino acids R(250), K(255), F(260), and Q(263) (but not K(252) or K(253)) are important for platelet binding. Thus, the binding energy mediating the interaction of factor XI with platelets is contained within the C-terminal amino acid sequence of the Apple 3 domain (T(249)-V(271)) and is mediated in part by amino acid residues R(250), K(255), F(260), and Q(263).  相似文献   

17.
The rat FSH receptor (rFSHR) shares considerable homology with the rat LH receptor (rLHR), yet binds human FSH (hFSH) with high fidelity, suggesting that the binding determinant encoded by the rFSHR gene shares no homology with the analogous rLHR primary sequence, thereby affording specificity of ligand binding. Two such regions of primary sequence have been previously identified and studied by peptide challenge tests and immunoneutralization studies. We therefore implemented site-directed mutagenesis to delete the regions S9-N30 and D300-F315 of the mature rFSHR sequence. The mutant receptor (DeltarFSHR) cDNAs were expressed in insect cells. The large deletion DeltarFSHRS9-N30 and a smaller deletion, DeltarFSHRS9-S18, did not bind (125)I-hFSH. However, DeltarFSHRK19-R29 and DeltarFSHRD300-F315 bound (125)I-hFSH with an affinity indistinguishable from wild-type rFSHR. The deletion mutants DeltarFSHR S9-N30 or DeltarFSHRS9-S18 were not detectable on the cell surface by flow cytometry unless cells were sheared. Although (125)I-hFSH binding to DeltarFSHRK19-R29 was normal, this form of the receptor was defective for signal transduction whereas DeltarFSHRD300-F315 was not. Furthermore, neither region seems to be a specificity determinant, since their removal did not result in high-affinity binding of hCG to DeltarFSHR.  相似文献   

18.
Biophysical evidence has placed the binding site for the naturally occurring marine toxins tetrodotoxin (TTX) and saxitoxin (STX) in the external mouth of the Na+ channel ion permeation pathway. We developed a molecular model of the binding pocket for TTX and STX, composed of antiparallel beta-hairpins formed from peptide segments of the four S5-S6 loops of the voltage-gated Na+ channel. For TTX the guanidinium moiety formed salt bridges with three carboxyls, while two toxin hydroxyls (C9-OH and C10-OH) interacted with a fourth carboxyl on repeats I and II. This alignment also resulted in a hydrophobic interaction with an aromatic ring of phenylalanine or tyrosine residues for the brainII and skeletal Na+ channel isoforms, but not with the cysteine found in the cardiac isoform. In comparison to TTX, there was an additional interaction site for STX through its second guanidinium group with a carboxyl on repeat IV. This model satisfactorily reproduced the effects of mutations in the S5-S6 regions and the differences in affinity by various toxin analogs. However, this model differed in important ways from previously published models for the outer vestibule and the selectivity region of the Na+ channel pore. Removal of the toxins from the pocket formed by the four beta-hairpins revealed a structure resembling a funnel that terminated in a narrowed region suitable as a candidate for the selectivity filter of the channel. This region contained two carboxyls (Asp384 and Glu942) that substituted for molecules of water from the hydrated Na+ ion. Simulation of mutations in this region that have produced Ca2+ permeation of the Na+ channel created a site with three carboxyls (Asp384, Glu942, and Glu1714) in proximity.  相似文献   

19.
Acyl carrier protein (ACP) is an essential co-factor protein in fatty acid biosynthesis that shuttles covalently bound fatty acyl intermediates in its hydrophobic pocket to various enzyme partners. To characterize acyl chain-ACP interactions and their influence on enzyme interactions, we performed 19 molecular dynamics (MD) simulations of Escherichia coli apo-, holo-, and acyl-ACPs. The simulations were started with the acyl chain in either a solvent-exposed or a buried conformation. All four short-chain (< or = C10) and one long-chain (C16) unbiased acyl-ACP MD simulation show the transition of the solvent-exposed acyl chain into the hydrophobic pocket of ACP, revealing its pathway of acyl chain binding. Although the acyl chain resides inside the pocket, Thr-39 and Glu-60 at the entrance stabilize the phosphopantetheine linker through hydrogen bonding. Comparisons of the different ACP forms indicate that the loop region between helices II and III and the prosthetic linker may aid in substrate recognition by enzymes of fatty acid synthase systems. The MD simulations consistently show that the hydrophobic binding pocket of ACP is best suited to accommodate an octanoyl group and is capable of adjusting in size to accommodate chain lengths as long as decanoic acid. The simulations also reveal a second, novel binding mode of the acyl chains inside the hydrophobic binding pocket directed toward helix I. This study provides a detailed dynamic picture of acyl-ACPs that is in excellent agreement with available experimental data and, thereby, provides a new understanding of enzyme-ACP interactions.  相似文献   

20.
《Biophysical journal》2019,116(10):1823-1835
A critical step in injury-induced initiation of blood coagulation is the formation of the complex between the trypsin-like protease coagulation factor VIIa (FVIIa) and its cofactor tissue factor (TF), which converts FVIIa from an intrinsically poor enzyme to an active protease capable of activating zymogens of downstream coagulation proteases. Unlike its constitutively active ancestor trypsin, FVIIa is allosterically activated (by TF). Here, ensemble refinement of crystallographic structures, which uses multiple copies of the entire structure as a means of representing structural flexibility, is applied to explore the impacts of inhibitor binding to trypsin and FVIIa, as well as cofactor binding to FVIIa. To assess the conformational flexibility and its role in allosteric pathways in these proteases, main-chain hydrogen bond networks are analyzed by calculating the hydrogen-bond propensity. Mapping pairwise propensity differences between relevant structures shows that binding of the inhibitor benzamidine to trypsin has a minor influence on the protease flexibility. For FVIIa, in contrast, the protease domain is “locked” into the catalytically competent trypsin-like configuration upon benzamidine binding as indicated by the stabilization of key structural features: the nonprime binding cleft and the oxyanion hole are stabilized, and the effect propagates from the active site region to the calcium-binding site and to the vicinity of the disulphide bridge connecting with the light chain. TF binding to FVIIa furthermore results in stabilization of the 170 loop, which in turn propagates an allosteric signal from the TF-binding region to the active site. Analyses of disulphide bridge energy and flexibility reflect the striking stability difference between the unregulated enzyme and the allosterically activated form after inhibitor or cofactor binding. The ensemble refinement analyses show directly, for the first time to our knowledge, whole-domain structural footprints of TF-induced allosteric networks present in x-ray crystallographic structures of FVIIa, which previously only have been hypothesized or indirectly inferred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号