首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Senescence is a universal but poorly understood phenomenon among metazoans. One theoretically convincing but unproven evolutionary theory of senescence is the pleitropic gene theory of Williams (1957). This paper develops the hypothesis that some human genetic diseases exemplify the type of phenotypic effects predicted by this theory. The evidence supporting this contention is reviewed and ways of testing this hypothesis are suggested. Other human genetic diseases could be examined in the same manner. Confirmation of this theory would have significant implications for the study of aging.  相似文献   

2.
Mira H  Martínez N  Peñarrubia L 《Planta》2002,214(6):939-946
Emerging data suggest that the mechanisms regulating plant copper homeostasis could be implicated in stress and senescence signal transduction pathways. To gain insight into copper-modulated patterns of gene expression, copper-treated Arabidopsis thaliana (L.) Heynh. plants were analysed by mRNA differential display. The experimental conditions were selected using aggregation of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) as a molecular sensor to monitor copper-induced oxidative stress. Two copper-induced messengers encoding a vegetative storage protein (VSP2) were isolated by this technique. Both clones differed in the length of their 3'-untranslated region according to the presence of two polyadenylation signals in this region. VSP2 expression was further studied under natural senescence and various conditions causing oxidative stress, such as ozone exposure, paraquat and H2O2 treatments. The expression of other messengers related to copper homeostasis and detoxification processes was followed in parallel to that of VSP2. Here, we describe specific gene-expression responses to copper treatment, and present arguments connecting copper homeostasis, senescence and antioxidative responses in plants. Our results are consistent with the role of VSPs as temporary nitrogen-storage proteins which accumulate if nutrients are abundant, either in developing organs or in cotyledons and mature leaves subjected to generalized protein mobilization, such as those conditions created under severe oxidative stress.  相似文献   

3.
Arabidopsis gain‐of‐resistance mutants, which show HR‐like lesion formation and SAR‐like constitutive defense responses, were used well as tools to unravel the plant defense mechanisms. We have identified a novel mutant, designated constitutive expresser of PR genes 30 (cpr30), that exhibited dwarf morphology, constitutive resistance to the bacterial pathogen Pseudomonas syringae and the dramatic induction of defense‐response gene expression. The cpr30‐conferred growth defect morphology and defense responses are dependent on ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), PHYTOALEXIN DEFICIENT 4 (PAD4), and NONRACE‐SPECIFIC DISEASE RESISTANCE 1 (NDR1). Further studies demonstrated that salicylic acid (SA) could partially account for the cpr30‐conferred constitutive PR1 gene expression, but not for the growth defect, and that the cpr30‐conferred defense responses were NPR1 independent. We observed a widespread expression of CPR30 throughout the plant, and a localization of CPR30‐GFP fusion protein in the cytoplasm and nucleus. As an F‐box protein, CPR30 could interact with multiple Arabidopsis‐SKP1‐like (ASK) proteins in vivo. Co‐localization of CPR30 and ASK1 or ASK2 was observed in Arabidopsis protoplasts. Based on these results, we conclude that CPR30, a novel negative regulator, regulates both SA‐dependent and SA‐independent defense signaling, most likely through the ubiquitin‐proteasome pathway in Arabidopsis.  相似文献   

4.
5.
6.
7.
SnoN represses TGF‐β signalling to promote cell proliferation and has been defined as a proto‐oncogene partly due to its elevated expression in many human cancer cells. Although the anti‐tumourigenic activity of SnoN has been suggested, the molecular basis for this has not been defined. We showed here that high levels of SnoN exert anti‐oncogenic activity by inducing senescence. SnoN interacts with the promyelocytic leukaemia (PML) protein and is recruited to the PML nuclear bodies where it stabilizes p53, leading to premature senescence. Furthermore, overexpression of SnoN inhibits oncogenic transformation induced by Ras and Myc in vitro and significantly blocks papilloma development in vivo in a carcinogen‐induced skin tumourigenesis model. The few papillomas that were developed displayed high levels of senescence and spontaneously regressed. Our study has revealed a novel Smad‐independent pathway of SnoN function that mediates its anti‐oncogenic activity.  相似文献   

8.
Aphids, which are phloem-feeding insects, cause extensive loss of plant productivity and are vectors of plant viruses. Aphid feeding causes changes in resource allocation in the host, resulting in an increase in flow of nutrients to the insect-infested tissue. We hypothesized that leaf senescence, which is involved in the programmed degradation of cellular components and the export of nutrients out of the senescing leaf, could be utilized by plants to limit aphid growth. Using Arabidopsis (Arabidopsis thaliana) and green peach aphid (GPA; Myzus persicae Sulzer), we found that GPA feeding induced premature chlorosis and cell death, and increased the expression of SENESCENCE ASSOCIATED GENES (SAGs), all hallmarks of leaf senescence. Hypersenescence was accompanied by enhanced resistance against GPA in the Arabidopsis constitutive expresser of PR genes5 and suppressor of SA insensitivity2 mutant plants. In contrast, resistance against GPA was compromised in the phytoalexin deficient4 (pad4) mutant plant. The PAD4 gene, which is expressed at elevated level in response to GPA feeding, modulates the GPA feeding-induced leaf senescence. In comparison to the wild-type plant, GPA feeding-induced chlorophyll loss, cell death, and SAG expression were delayed in the pad4 mutant. Although PAD4 is associated with camalexin synthesis and salicylic acid (SA) signaling, camalexin and SA signaling are not important for restricting GPA growth; growth of GPA on the camalexin-biosynthesis mutant, pad3, and the SA deficient2 and NahG plants and the SA-signaling mutant, nonexpresser of PR genes1, were comparable to that on the wild-type plant. Our results suggest that PAD4 modulates the activation of senescence in the aphid-infested leaves, which contributes to basal resistance to GPA.  相似文献   

9.
The genome of Arabidopsis (Arabidopsis thaliana) contains five sequences with high similarity to FLAVONOL SYNTHASE1 (AtFLS1), a previously characterized flavonol synthase gene that plays a central role in flavonoid metabolism. This apparent redundancy suggests the possibility that Arabidopsis uses multiple isoforms of FLS with different substrate specificities to mediate the production of the flavonols, quercetin and kaempferol, in a tissue-specific and inducible manner. However, biochemical and genetic analysis of the six AtFLS sequences indicates that, although several of the members are expressed, only AtFLS1 encodes a catalytically competent protein. AtFLS1 also appears to be the only member of this group that influences flavonoid levels and the root gravitropic response in seedlings under nonstressed conditions. This study showed that the other expressed AtFLS sequences have tissue- and cell type-specific promoter activities that overlap with those of AtFLS1 and encode proteins that interact with other flavonoid enzymes in yeast two-hybrid assays. Thus, it is possible that these "pseudogenes" have alternative, noncatalytic functions that have not yet been uncovered.  相似文献   

10.
Life-history theory predicts that traits involved in maturity, reproduction and survival correlate along a fast–slow continuum of life histories. Evolutionary theories and empirical results indicate that senescence-related traits vary along this continuum, with slow species senescing later and at a slower pace than fast species. Because senescence patterns are typically difficult to estimate from studies in the wild, here we propose to predict the associated trait values in the frame of life-history theory. From a comparative analysis based on 81 free-ranging populations of 72 species of birds and mammals, we find that a nonlinear combination of fecundity, age at first reproduction and survival over the immature stage can account for ca two-thirds of the variance in the age at the onset of actuarial senescence. Our life-history model performs better than a model predicting the onset based on generation time, and it only includes life-history traits during early life as explanatory variables, i.e. parameters that are both theoretically expected to shape senescence and are measurable within relatively short studies. We discuss the good-fit of our life-history model to the available data in the light of current evolutionary theories of senescence. We further use it to evaluate whether studies that provided no evidence for senescence lasted long enough to include the onset of senescence.  相似文献   

11.
The fungus Cochliobolus victoriae causes Victoria blight of oats (Avena sativa) and is pathogenic due to its production of victorin, which induces programmed cell death in sensitive plants. Victorin sensitivity has been identified in Arabidopsis thaliana and is conferred by the dominant gene LOCUS ORCHESTRATING VICTORIN EFFECTS1 (LOV1), which encodes a coiled-coil-nucleotide binding site-leucine-rich repeat protein. We isolated 63 victorin-insensitive mutants, including 59 lov1 mutants and four locus of insensitivity to victorin1 (liv1) mutants. The LIV1 gene encodes thioredoxin h5 (ATTRX5), a member of a large family of disulfide oxidoreductases. To date, very few plant thioredoxins have been assigned specific, nonredundant functions. We found that the victorin response was highly specific to ATTRX5, as the closely related ATTRX3 could only partially compensate for loss of ATTRX5, even when overexpressed. We also created chimeric ATTRX5/ATTRX3 proteins, which identified the central portion of the protein as important for conferring specificity to ATTRX5. Furthermore, we found that ATTRX5, but not ATTRX3, is highly induced in sensitive Arabidopsis following victorin treatment. Finally, we determined that only the first of the two active-site Cys residues in ATTRX5 is required for the response to victorin, suggesting that ATTRX5 function in the victorin pathway involves an atypical mechanism of action.  相似文献   

12.
13.
The plant hormone ethylene plays various functions in plant growth, development and response to environmental stress. Ethylene is perceived by membrane‐bound ethylene receptors, and among the homologous receptors in Arabidopsis, the ETR1 ethylene receptor plays a major role. The present study provides evidence demonstrating that Arabidopsis CPR5 functions as a novel ETR1 receptor‐interacting protein in regulating ethylene response and signaling. Yeast split ubiquitin assays and bi‐fluorescence complementation studies in plant cells indicated that CPR5 directly interacts with the ETR1 receptor. Genetic analyses indicated that mutant alleles of cpr5 can suppress ethylene insensitivity in both etr1‐1 and etr1‐2, but not in other dominant ethylene receptor mutants. Overexpression of Arabidopsis CPR5 either in transgenic Arabidopsis plants, or ectopically in tobacco, significantly enhanced ethylene sensitivity. These findings indicate that CPR5 plays a critical role in regulating ethylene signaling. CPR5 is localized to endomembrane structures and the nucleus, and is involved in various regulatory pathways, including pathogenesis, leaf senescence, and spontaneous cell death. This study provides evidence for a novel regulatory function played by CPR5 in the ethylene receptor signaling pathway in Arabidopsis.  相似文献   

14.
15.
16.
Henk AD  Warren RF  Innes RW 《Genetics》1999,151(4):1581-1589
The RPS5 and RFL1 disease resistance genes of Arabidopsis ecotype Col-0 are oriented in tandem and are separated by 1.4 kb. The Ler-0 ecotype contains RFL1, but lacks RPS5. Sequence analysis of the RPS5 deletion region in Ler-0 revealed the presence of an Ac-like transposable element, which we have designated Tag2. Southern hybridization analysis of six Arabidopsis ecotypes revealed 4-11 Tag2-homologous sequences in each, indicating that this element is ubiquitous in Arabidopsis and has been active in recent evolutionary time. The Tag2 insertion adjacent to RFL1 was unique to the Ler-0 ecotype, however, and was not present in two other ecotypes that lack RPS5. DNA sequence from the latter ecotypes lacked a transposon footprint, suggesting that insertion of Tag2 occurred after the initial deletion of RPS5. The deletion breakpoint contained a 192-bp insertion that displayed hallmarks of a nonhomologous DNA end-joining event. We conclude that loss of RPS5 was caused by a double-strand break and subsequent repair, and cannot be attributed to unequal crossing over between resistance gene homologs.  相似文献   

17.
The dynamic assembly and disassembly of microtubules (MTs) is essential for cell function. Although leaf senescence is a well-documented process, the role of the MT cytoskeleton during senescence in plants remains unknown. Here, we show that both natural leaf senescence and senescence of individually darkened Arabidopsis (Arabidopsis thaliana) leaves are accompanied by early degradation of the MT network in epidermis and mesophyll cells, whereas guard cells, which do not senesce, retain their MT network. Similarly, entirely darkened plants, which do not senesce, retain their MT network. While genes encoding the tubulin subunits and the bundling/stabilizing MT-associated proteins (MAPs) MAP65 and MAP70-1 were repressed in both natural senescence and dark-induced senescence, we found strong induction of the gene encoding the MT-destabilizing protein MAP18. However, induction of MAP18 gene expression was also observed in leaves from entirely darkened plants, showing that its expression is not sufficient to induce MT disassembly and is more likely to be part of a Ca(2+)-dependent signaling mechanism. Similarly, genes encoding the MT-severing protein katanin p60 and two of the four putative regulatory katanin p80s were repressed in the dark, but their expression did not correlate with degradation of the MT network during leaf senescence. Taken together, these results highlight the earliness of the degradation of the cortical MT array during leaf senescence and lead us to propose a model in which suppression of tubulin and MAP genes together with induction of MAP18 play key roles in MT disassembly during senescence.  相似文献   

18.
19.
Abstract.— Most theoretical work on the evolution of senescence has assumed that all individuals within a population are equally susceptible to extrinsic sources of mortality. An influential qualitative prediction based on this assumption is Williams's hypothesis, which states that more rapid senescence is expected to evolve when the magnitude of such extrinsic mortality sources is increased. Much evidence suggests, however, that for many groups of organisms externally imposed mortality risk is a function of an organism's internal condition and hence susceptibility to such hazards. Here we use a model of antagonistic pleiotropy to investigate the consequences that such interactions (between environmental hazard and internal condition) can have for Williams's hypothesis. As with some previous theory examining nonin-teractive extrinsic mortality sources, we find that an increase in interactive extrinsic sources of mortality makes it less likely that an individual will survive from birth to any given age, weakening selection against physiological deterioration at all ages and thus favoring more rapid senescence. However, an increase in interactive mortality sources also typically strengthens selection against physiological deterioration at any age, given an individual has survived to that age, because it reduces the fitness of poor-condition individuals more than good-condition individuals. These opposing effects are not felt equally at all ages, with the latter predominating at early ages. The combined effects can therefore result in the novel prediction that an increase in interactive extrinsic mortality sources can select for slower senescent deterioration early in life but more rapid deterioration late in life.  相似文献   

20.
Autophagy is an intracellular process for vacuolar bulk degradation of cytoplasmic components. The molecular machinery responsible for yeast and mammalian autophagy has recently begun to be elucidated at the cellular level, but the role that autophagy plays at the organismal level has yet to be determined. In this study, a genome-wide search revealed significant conservation between yeast and plant autophagy genes. Twenty-five plant genes that are homologous to 12 yeast genes essential for autophagy were discovered. We identified an Arabidopsis mutant carrying a T-DNA insertion within AtAPG9, which is the only ortholog of yeast Apg9 in Arabidopsis (atapg9-1). AtAPG9 is transcribed in every wild-type organ tested but not in the atapg9-1 mutant. Under nitrogen or carbon-starvation conditions, chlorosis was observed earlier in atapg9-1 cotyledons and rosette leaves compared with wild-type plants. Furthermore, atapg9-1 exhibited a reduction in seed set when nitrogen starved. Even under nutrient growth conditions, bolting and natural leaf senescence were accelerated in atapg9-1 plants. Senescence-associated genes SEN1 and YSL4 were up-regulated in atapg9-1 before induction of senescence, unlike in wild type. All of these phenotypes were complemented by the expression of wild-type AtAPG9 in atapg9-1 plants. These results imply that autophagy is required for maintenance of the cellular viability under nutrient-limited conditions and for efficient nutrient use as a whole plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号