首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Disulfides cross-link residues in a protein that are separated in primary sequence and stabilize the protein through entropic destabilization of the unfolded state. While the removal of naturally occurring disulfides leads to protein destabilization, introduction of engineered disulfides does not always lead to significant stabilization of a protein. We have analyzed naturally occurring disulfides that span adjacent antiparallel strands of beta sheets (cross-strand disulfides). Cross-strand disulfides have recently been implicated as redox-based conformational switches in proteins such as gp120 and CD4. The propensity of these disulfides to act as conformational switches was postulated on the basis of the hypothesis that this class of disulfide is conformationally strained. In the present analysis, there was no evidence to suggest that cross-strand disulfides are more strained compared to other disulfides as assessed by their torsional energy. It was also observed that these disulfides occur solely at non-hydrogen-bonded (NHB) registered pairs of adjacent antiparallel strands and not at hydrogen-bonded (HB) positions as suggested previously. One of the half-cystines involved in cross-strand disulfide formation often occurs at an edge strand. Experimental confirmation of the stabilizing effects of such disulfides was carried out in Escherichia coli thioredoxin. Four pairs of cross-strand cysteines were introduced, two at HB and two at NHB pairs. Disulfides were formed in all four cases. However, as predicted from our analysis, disulfides at NHB positions resulted in an increase in melting temperature of 7-10 degrees C, while at HB positions there was a corresponding decrease of -7 degrees C. The reduced state of all proteins had similar stability.  相似文献   

2.
The 5'(rGGCAAGCCU)(2) duplex contains tandem A.A pairs. The three-dimensional structure of the 5'(rGGCAAGCCU)(2) duplex was modeled by molecular dynamics and energy minimization with NMR-derived distance and dihedral angle restraints. Although the 5'(rCAAG)(2) loop is thermodynamically destabilizing by 1.1 kcal/mol, the tandem A.A pairs adopt a predominant conformation: a sheared anti-anti (A.A trans Hoogsteen/Sugar-edge) alignment similar to that observed in the crystal structure of the P4-P6 domain of the Tetrahymena thermophila intron [Cate, J. H., Gooding, A. R., Podell, E., Zhou, K., Golden, B. L., Kundrot, C. E., Cech, T. R., and Doudna, J. A. (1996) Science 273, 1678-1685]. The NMR-derived structure of the 5'(rGGCAAGCCU)(2) duplex exhibits cross-strand hydrogen bonds from N3 of A4 to an amino hydrogen of A5 and from the 2' oxygen of the A4 sugar to the other amino hydrogen of A5. An intrastrand hydrogen bond is formed from the 2' OH hydrogen of A4 to O5' of A5. The cross-strand A5 bases are stacked. The Watson-Crick G-C regions are essentially A-form. The sheared anti-anti (A.A trans Hoogsteen/Sugar-edge) alignment provides potential contact sites for tertiary interactions and, therefore, is a possible target site for therapeutics. Thus, thermodynamically destabilizing internal loops can be preorganized for tertiary interactions or ligand binding.  相似文献   

3.
Balaji S  Aruna S  Srinivasan N 《Proteins》2003,53(4):783-791
Occurrence and accommodation of charged amino acid residues in proteins that are structurally equivalent to buried non-polar residues in homologues have been investigated. Using a dataset of 1,852 homologous pairs of crystal structures of proteins available at 2A or better resolution, 14,024 examples of apolar residues in the structurally conserved regions replaced by charged residues in homologues have been identified. Out of 2,530 cases of buried apolar residues, 1,677 of the equivalent charged residues in homologues are exposed and the rest of the charged residues are buried. These drastic substitutions are most often observed in homologous protein pairs with low sequence identity (<30%) and in large protein domains (>300 residues). Such buried charged residues in the large proteins are often located in the interface of sub-domains or in the interface of structural repeats, Beyond 7A of residue depth of buried apolar residues, or less than 4% of solvent accessibility, almost all the substituting charged residues are buried. It is also observed that acidic sidechains have higher preference to get buried than the positively charged residues. There is a preference for buried charged residues to get accommodated in the interior by forming hydrogen bonds with another sidechain than the main chain. The sidechains interacting with a buried charged residue are most often located in the structurally conserved regions of the alignment. About 50% of the observations involving hydrogen bond between buried charged sidechain and another sidechain correspond to salt bridges. Among the buried charged residues interacting with the main chain, positively charged sidechains form hydrogen bonds commonly with main chain carbonyls while the negatively charged residues are accommodated by hydrogen bonding with the main chain amides. These carbonyls and amides are usually located in the loops that are structurally variable among homologous proteins.  相似文献   

4.
The hemicellulosic polysaccharide xyloglucan binds with a strong affinity to cellulosic cell wall microfibrils, the resulting heterogeneous network constituting up to 50% of the dry weight of the cell wall in dicotyledonous plants. To elucidate the molecular details of this interaction, we have performed theoretical potential energy calculations of the static and dynamic equilibrium conformations of xyloglucan using the GEGOP software. In particular, we have evaluated the preferred sidechain conformations of hexa-, octa-, deca- and heptadecasaccharide model fragments of xyloglucan for molecules with a cellulose-like, flat, glucan backbone, and a cellobiose-like, twisted, glucan backbone conformation. For the flat backbone conformation the determination of static equilibrium molecular conformations revealed a tendency for sidechains to fold onto one surface of the backbone, defined here as the H1S face, in the fucosylated region of the polymer. This folding produces a molecule that is sterically accessible on the opposite face of the backbone, the H4S face. Typically, this folding onto the H1S surface is significantly stabilized by favorable interactions between the fucosylated, trisaccharide sidechain and the backbone, with some stabilization from adjacent terminal xylosyl sidechains. In contrast, the trisaccharide sidechain folds onto the H4S face of xyloglucan fragments with a twisted backbone conformation. Preliminary NMR data on nonasaccharide fragments isolated from sycamore suspension-cultured cell walls are consistent with the hypothesis that the twisted conformation of xyloglucan represents the solution form of this molecule. Metropolis Monte Carlo (MMC) simulations were employed to assess sidechain flexibility of the heptadecasaccharide fragments. Simulations performed on the flat, rigid, backbone xyloglucan indicate that the trisaccharide sidechain is less mobile than the terminal xylosyl sidechains. MMC calculations on a fully relaxed molecule revealed a positive correlation between a specific trisaccharide sidechain orientation and the 'flatness' of the backbone glucosyl residues adjacent to this sidechain. These results suggest that the trisaccharide sidechain may play a role in the formation of nucleation sites that initiate the binding of these regions to cellulose. Based on these conformational preferences we suggest the following model for the binding of xyloglucan to cellulose. Nucleation of a binding site is initiated by the fucosylated, trisaccharide sidechain that flattens out an adjacent region of the xyloglucan backbone. Upon contacting a cellulose microfibril this region spreads by step-wise flattening of successive segments of the backbone. Self-association of xyloglucan molecules in solution may be prevented by the low frequency of formation of these nucleation sites and the geometry of the molecules in solution.  相似文献   

5.
Electrostatic contributions to the folding free energy of several hyperthermophilic proteins and their mesophilic homologs are calculated. In all the cases studied, electrostatic interactions are more favorable in the hyperthermophilic proteins. The electrostatic free energy is found not to be correlated with the number of ionizable amino acid residues, ion pairs or ion pair networks in a protein, but rather depends on the location of these groups within the protein structure. Moreover, due to the large free energy cost associated with burying charged groups, buried ion pairs are found to be destabilizing unless they undergo favorable interactions with additional polar groups, including other ion pairs. The latter case involves the formation of stabilizing ion pair networks as is observed in a number of proteins. Ion pairs located on the protein surface also provide stabilizing interactions in a number of cases. Taken together, our results suggest that many hyperthermophilic proteins enhance electrostatic interactions through the optimum placement of charged amino acid residues within the protein structure, although different design strategies are used in different cases. Other physical mechanisms are also likely to contribute, however optimizing electrostatic interactions offers a simple means of enhancing stability without disrupting the core residues characteristic of different protein families.  相似文献   

6.
In the Tyr-(Gly)1-4-Tyr series maximal thermal stabilization of calf thymus DNA (δTm=10°) occurred with the Tyr-(Gly)2-Tyr peptide, where three base pairs could separate the two tyrosyl residues. Tyr-Gly-Tyr-Gly-Tyr stabilized the DNA by 6°. The alternating Trp-Gly-Trp-Gly-Trp and His-Gly-His-Gly-His peptides were equally as effective as the Tyr-Gly-Tyr-Gly-Tyr peptide in stabilizing calf thymus DNA against thermal denaturation. But the alternating Phe-Gly-Phe-Gly-Phe peptide afforded little stabilization, suggesting that a sidechain possessing both a conjugated π-electron system and an electron donor atom is necessary for DNA stabilization. Introduction of electron withdrawing iodo or nitro group into the tyrosyl sidechains almost completely abolished the stabilizing effect. Although the tyrosyl peptides seem to be specific for GC-base pairs, no correlation was found in natural DNA between% GC and% thermal stabilization. Eukaryotic DNAs showed twice the stabilization of prokaryotic DNAs with the same GC content.  相似文献   

7.
The conformational energy for the pentapeptide Arg-Lys-Asp-Val-Tyr (TP5) is calculated using empirical potential functions. Calculation of the local interactions for each independent residue gives a local energy term for which the probabilities as a function of phi, psi are plotted on Ramachandran-type maps. The interaction energy between residues is calculated only for these points in the maps with maximum probability. The most probable conformation for TP5 is found to have an extended backbone arrangement having the Arg and Tyr sidechains folded over the backbone. 13C n.m.r. spin lattice relaxation time measurements show no increase in T1 of the alpha-carbons at the first and terminal amino acids. The increase in T1 along the sidechain as found for Lys does not occur for Arg and Tyr. These signs of reduced mobility are consistent with a set of folded conformations in which the Arg and Tyr sidechains have hindered internal rotations. The vicinal NH-C alpha H couplings agree well with those calculated for the most probable conformer. This is not so for the C alpha H-C beta H couplings. These data are consistent with previous n.m.r. and structure activity studies.  相似文献   

8.
It was shown earlier, from database analysis, model building studies, and molecular dynamics simulations that formation of cross-strand bifurcated or Extra Watson-Crick hydrogen (EWC) bonds between successive base pairs may lead to extra rigidity to DNA double helices of certain sequences. The strengths of these hydrogen bonds are debatable, however, as they do not have standard linear geometry criterion. We have therefore carried out detailed ab initio quantum chemical studies using RHF/6-31G(2d,2p) and B3LYP/6-31G(2p,2d) basis sets to determine strengths of several bent hydrogen bonds with different donor and acceptors. Interaction energy calculations, corrected for the basis set superposition errors, suggest that N-H...O type bent EWC hydrogen bonds are possible along same strands or across the strands between successive base pairs, leading to significant stability (ca. 4-9 kcal/mol). The N-H...N and C-H...O type interactions, however, are not so stabilizing. Hence, consideration of EWC N-H...O H-bonds can lead to a better understanding of DNA sequence directed structural features.  相似文献   

9.
Nanda V  Schmiedekamp A 《Proteins》2008,70(2):489-497
Proteins fold and maintain structure through the collective contributions of a large number of weak, noncovalent interactions. The hydrogen bond is one important category of forces that acts on very short distances. As our knowledge of protein structure continues to expand, we are beginning to appreciate the role that weak carbon-donor hydrogen bonds play in structure and function. One property that differentiates hydrogen bonds from other packing forces is propensity for forming a linear donor-hydrogen-acceptor orientation. To ascertain if carbon-donor hydrogen bonds are able to direct acceptor linearity, we surveyed the geometry of interactions specifically involving aromatic sidechain ring carbons in a data set of high resolution protein structures. We found that while donor-acceptor distances for most carbon donor hydrogen bonds were tighter than expected for van der Waals packing, only the carbons of histidine showed a significant bias for linear geometry. By categorizing histidines in the data set into charged and neutral sidechains, we found only the charged subset of histidines participated in linear interactions. B3LYP/6-31G**++ level optimizations of imidazole and indole-water interactions at various fixed angles demonstrates a clear orientation dependence of hydrogen bonding capacity for both charged and neutral sidechains. We suggest that while all aromatic carbons can participate in hydrogen bonding, only charged histidines are able to overcome protein packing forces and enforce linear interactions. The implications for protein modeling and design are discussed.  相似文献   

10.
Kumar S  Nussinov R 《Proteins》2000,41(4):485-497
In solution proteins often exhibit backbone and side-chain flexibility. Yet electrostatic interactions in proteins are sensitive to motions. Hence, here we study the contribution of ion pairs toward protein stability in a range of conformers which sample the conformational space in solution. Specifically, we focus on the electrostatic contributions of ion pairs to the stability of each of the conformers in the NMR ensemble of the c-Myc-Max leucine zipper and to their average energy minimized structure. We compute the electrostatic contributions of inter- and intra-helical ion pairs and of an ion pair network. We find that the electrostatic contributions vary considerably among the 40 NMR conformers. Each ion pair, and the network, fluctuates between being stabilizing and being destabilizing. This fluctation reflects the variability in the location of the ion pairing residues and in the geometric orientation of these residues, both with respect to each other and with respect to other charged groups in the rest of the protein. Ion pair interactions in the c-Myc-Max leucine zipper in solution depend on the protein conformer which is analyzed. Hence, the overall stabilizing (or destabilizing) contribution of an ion pair is conformer population-dependent. This study indicates that free energy calculations performed using the continuum electrostatics methodology are sensitive to protein conformational details.  相似文献   

11.
Protein folding is directed by the sequence of sidechains along the polypeptide backbone, but despite this the developement of sidechain interactions during folding is not well understood. Here, the thiol-active reagent, dithio-nitrobenzoic acid (DTNB), is used to probe the exposure of the cysteine sidechain thiols in the kinetic folding intermediates of the N-terminal domain of phosphoglycerate kinase (N-PGK) and a number of conservative (I-, L-, or V-to-C) single cysteine variants. Rapid dilution of chemically denatured protein into folding conditions in the presence of DTNB allowed the degree of sidechain protection in any rapidly formed intermediate to be determined through the analysis of the kinetics of labelling. The protection factors derived for the intermediate(s) were generally small (<25), indicating only partial burial of the sidechains. The distribution of protection parallels the previously reported backbone amide protection for the folding intermediate of N-PGK. These observations are consistent with the hypothesis that such intermediates resemble molten globule states; i.e. with native-like backbone hydrogen bonding and overall tertiary structure, but with the sidechains that make up the hydrophobic protein core dynamic and intermittently solvent exposed. The success of the competition technique in characterizing this kinetic intermediate invites application to other model systems.  相似文献   

12.
This paper describes a rapid, automated procedure which can be used for model building sidechains using (i) spatial information from sidechains in topologically equivalent positions as far as such a correlation is observed, and then (ii) most probable conformations of the sidechains in the respective secondary structure type. Analysis of topologically equivalent residues in the structurally conserved regions of a family of proteins implies that the spatial positions of the atoms in the sidechains rather than conformations should be considered when model building. Rules for the modelling of all 20 side-chains from each other in alpha-helical, beta-sheet and loop regions--a total of 1200--are established. Cluster analysis is used on positional data from the sidechain atoms of structurally equivalent residues in an homologous family to guide modelling. The most probable conformation for the sidechain is used for modelling atoms where no useful guidance is obtainable from equivalent sidechains of the homologous proteins. In order to test the procedure we have modelled the sidechains of the residues in the structurally conserved regions of myoglobin from four other globins. The automated procedure described here has been incorporated into the program COMPOSER.  相似文献   

13.
NMR spin relaxation measurements of picosecond to nanosecond timescale backbone and sidechain fluctuations of protein molecules, and subsequent entropic interpretation yield interesting, but sometimes counterintuitive, insights into proteins. The stabilities of proteins and protein interactions are achieved through enthalpy-entropy compensation, which is partitioned between the backbone and sidechains depending on the nature of the system.  相似文献   

14.
A series of designed peptides has been analyzed by 1H-NMR spectroscopy in order to investigate the influence of cross-strand side-chain interactions in beta-hairpin formation. The peptides differ in the N-terminal residues of a previously designed linear decapeptide that folds in aqueous solution into two interconverting beta-hairpin conformations, one with a type I turn (beta-hairpin 4:4) and the other with a type I + G1 beta-bulge turn (beta-hairpin 3:5). Analysis of the conformational behavior of the peptides studied here demonstrates three favorable and two unfavorable cross-strand side-chain interactions for beta-hairpin formation. These results are in agreement with statistical data on side-chain interactions in protein beta-sheets. All the peptides in this study form significant populations of the beta-hairpin 3:5, but only some of them also adopt the beta-hairpin 4:4. The formation of beta-hairpin 4:4 requires the presence of at least two favorable cross-strand interactions, whereas beta-hairpin 3:5 seems to be less susceptible to side-chain interactions. A protein database analysis of beta-hairpins 3:5 and beta-hairpins 4:4 indicates that the former occur more frequently than the latter. In both peptides and proteins, beta-hairpins 3:5 have a larger right-handed twist than beta-hairpins 4:4, so that a factor contributing to the higher stability of beta-hairpin 3:5 relative to beta-hairpin 4:4 is due to an appropriate backbone conformation of the type I + G1 beta-bulge turn toward the right-handed twist usually observed in protein beta-sheets. In contrast, as suggested previously, backbone geometry of the type I turn is not adequate for the right-handed twist. Because analysis of buried hydrophobic surface areas on protein beta-hairpins reveals that beta-hairpins 3:5 bury more hydrophobic surface area than beta-hairpins 4:4, we suggest that the right-handed twist observed in beta-hairpin 3:5 allows a better packing of side chains and that this may also contribute to its higher intrinsic stability.  相似文献   

15.
Previous conformational analysis of 10-residue linear peptides enabled us to identify some cross-strand side-chain interactions that stabilize beta-hairpin conformations. The stabilizing influence of these interactions appeared to be greatly reduced when the interaction was located at the N- and C-termini of these 10-residue peptides. To investigate the effect of the position relative to the turn of favorable interactions on beta-hairpin formation, we have designed two 15-residue beta-hairpin forming peptides with the same residue composition and differing only in the location of two residues within the strand region. The conformational properties of these two peptides in aqueous solution were studied by 1H and 13C NMR. Differences in the conformational behavior of the two designed 15-residue peptides suggest that the influence of stabilizing factors for beta-hairpin formation, in particular, cross-strand side-chain interactions, depends on their proximity to the turn. Residues adjacent to the turn are most efficient in that concern. This result agrees with the proposal that the turn region acts as the driving force in beta-hairpin folding.  相似文献   

16.
Crandall YM  Bruch MD 《Biopolymers》2008,89(3):197-209
Mastoparan-X, a 14-residue peptide found in wasp venom, does not adopt a well-defined structure in water, but it folds into an alpha-helix upon addition of trifluoroethanol (TFE). At low levels of TFE, the peptide is partially folded, passing through intermediate stages of folding as the amount of TFE is increased. These partially folded states have been characterized by CD and NMR spectroscopy, and methods to estimate the helical content from CD, chemical shift, and nuclear overhauser effect (NOE) data are compared. Variation in the sign and intensity of NOE cross-peaks is observed in different regions of the peptide, indicative of greater mobility of the sidechains compared to the backbone of the peptide. Furthermore, variation in the sidechain mobility is observed, both between sidechains of different amino acids and within the sidechain of a given amino acid. By monitoring chemical shifts and NOE intensities as the TFE concentration is increased, the initiation site for helix formation could be identified. Furthermore, details of the peptide structure and dynamics during the folding process were elucidated.  相似文献   

17.
The relationship between mutation, protein stability and protein function plays a central role in molecular evolution. Mutations tend to be destabilizing, including those that would confer novel functions such as host-switching or antibiotic resistance. Elevated temperature may play an important role in preadapting a protein for such novel functions by selecting for stabilizing mutations. In this study, we test the stability change conferred by single mutations that arise in a G4-like bacteriophage adapting to elevated temperature. The vast majority of these mutations map to interfaces between viral coat proteins, suggesting they affect protein-protein interactions. We assess their effects by estimating thermodynamic stability using molecular dynamic simulations and measuring kinetic stability using experimental decay assays. The results indicate that most, though not all, of the observed mutations are stabilizing.  相似文献   

18.
S H Friend  F R Gurd 《Biochemistry》1979,18(21):4620-4630
The pattern of electrostatic interactions between pairs of charge sites in sperm whale ferrimyoglobin was examined as a function of pH in terms of proton site occupancy, static solvent accessibility, and distance of separation. By grouping all examples of the most stabilizing interactions and all examples of the most destabilizing interactions, we can easily show that at pH 7.50 the former is much stronger; that is, the negative contributions to electrostatic free energy far outweigh the positive contributions. Much of the electrostatic energy of stabilization in native myoglobin is provided by specific charge-pair partners that are very highly conserved among 53 mammalian myoglobin species and is invariant substantially from pH 8.5 to 3.5. Destablizing interactions that become most significant, but not actually dominant, near the acid unfolding pH range can be recognized in emerging clusters of uncompensated positive charges. Binding of azide ion by the heme iron effectively reduces the most prominent destabilizing set of such interactions. In general, thoe charged residues that experience the largest summed stabilizing interactions with other groups are the most conserved between species. The histidine residues, however, show their best correlation of conservation with low values of static accessibility. Although histidine residue 64 has an effective pK corresponding to the midpoint of the unfolding transition near pH 4.2 at an ionic strength of 0.10 M and so might be called a "trigger group", its interactions contribute only a modest fraction of the overall pH-dependent free energy change. An examination of the primary stabilizing interactions represented by the charge-pair partners indicates a probably major role of electrostatic interactions in the nucleation and docking stages of the condensation of the polypeptide chain into the compact native structure.  相似文献   

19.
Mutations in K-Ras GTPase replacing Gly12 with either Asp or Val are common in cancer. These mutations decelerate intrinsic and catalyzed GTP hydrolysis, leading to accumulation of K-Ras-GTP in cells. Signaling cascades initiated by K-Ras-GTP promote cell proliferation, survival, and invasion. Despite functional differences between the most frequent G12D mutation and the most aggressive and chemotherapy resistant G12V mutation, their long-suspected distinct structural features remain elusive. Using NMR, X-ray structures, and computational methods, we found that oncogenic mutants of K-Ras4B, the predominant splice variant of K-Ras, exhibit distinct conformational dynamics when GDP-bound, visiting the “active-like” conformational state similar to the one observed in GTP-bound K-Ras. This behavior distinguishes G12V from wild type and G12D K-Ras4B-GDP. The likely reason is interactions between the aliphatic sidechain of V12 and the Switch II region of K-Ras4BG12V-GDP, which are distinct in K-Ras4BG12D-GDP. In the X-ray structures, crystal contacts reduce the dynamics of the sidechain at position 12 by stabilizing the Switch I region of the protein. This explains why structural differences between G12V and G12D K-Ras have yet not been reported. Together, our results suggest a previously unknown mechanism of K-Ras activation. This mechanism relies on conformational dynamics caused by specific oncogenic mutations in the GDP-bound state. Our findings also imply that the therapeutic strategies decreasing the level of K-Ras-GTP by interfering with nucleotide exchange or by expediting GTP hydrolysis may work differently in different oncogenic mutants.  相似文献   

20.
Misfit sidechains in protein crystal structures are a stumbling block in using those structures to direct further scientific inference. Problems due to surface disorder and poor electron density are very difficult to address, but a large class of systematic errors are quite common even in well-ordered regions, resulting in sidechains fit backwards into local density in predictable ways. The MolProbity web site is effective at diagnosing such errors, and can perform reliable automated correction of a few special cases such as 180° flips of Asn or Gln sidechain amides, using all-atom contacts and H-bond networks. However, most at-risk residues involve tetrahedral geometry, and their valid correction requires rigorous evaluation of sidechain movement and sometimes backbone shift. The current work extends the benefits of robust automated correction to more sidechain types. The Autofix method identifies candidate systematic, flipped-over errors in Leu, Thr, Val, and Arg using MolProbity quality statistics, proposes a corrected position using real-space refinement with rotamer selection in Coot, and accepts or rejects the correction based on improvement in MolProbity criteria and on χ angle change. Criteria are chosen conservatively, after examining many individual results, to ensure valid correction. To test this method, Autofix was run and analyzed for 945 representative PDB files and on the 50S ribosomal subunit of file 1YHQ. Over 40% of Leu, Val, and Thr outliers and 15% of Arg outliers were successfully corrected, resulting in a total of 3,679 corrected sidechains, or 4 per structure on average. Summary Sentences: A common class of misfit sidechains in protein crystal structures is due to systematic errors that place the sidechain backwards into the local electron density. A fully automated method called “Autofix” identifies such errors for Leu, Val, Thr, and Arg and corrects over one third of them, using MolProbity validation criteria and Coot real-space refinement of rotamers. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号