首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Xu L  Appell M  Kennedy S  Momany FA  Price NP 《Biochemistry》2004,43(42):13248-13255
Tunicamycins are potent inhibitors of UDP-N-acetyl-D-hexosamine:polyprenol-phosphate N-acetylhexosamine-1-phosphate translocases (D-HexNAc-1-P translocases), a family of enzymes involved in bacterial cell wall synthesis and eukaryotic protein N-glycosylation. Structurally, tunicamycins consist of an 11-carbon dialdose core sugar called tunicamine that is N-linked at C-1' to uracil and O-linked at C-11' to N-acetylglucosamine (GlcNAc). The C-11' O-glycosidic linkage is highly unusual because it forms an alpha/beta anomeric-to-anomeric linkage to the 1-position of the GlcNAc residue. We have assigned the (1)H and (13)C NMR spectra of tunicamycin and have undertaken a conformational analysis from rotating angle nuclear Overhauser effect (ROESY) data. In addition, chirally deuterated tunicamycins produced by fermentation of Streptomyces chartreusis on chemically synthesized, monodeuterated (S-6)-[(2)H(1)]glucose have been used to assign the geminal H-6'a, H-6'b methylene bridge of the 11-carbon dialdose sugar, tunicamine. The tunicamine residue is shown to assume pseudo-D-ribofuranose and (4)C(1) pseudo-D-galactopyranosaminyl ring conformers. Conformation about the C-6' methylene bridge determines the relative orientation of these rings. The model predicts that tunicamycin forms a right-handed cupped structure, with the potential for divalent metal ion coordination at 5'-OH, 8'-OH, and the pseudogalactopyranosyl 7'-O ring oxygen. The formation of tunicamycin complexes with various divalent metal ions was confirmed experimentally by MALDI-TOF mass spectrometry. Our data support the hypothesis that tunicamycin is a structural analogue of the UDP-D-HexNAc substrate and is reversibly coordinated to the divalent metal cofactor in the D-HexNAc-1-P translocase active site.  相似文献   

2.
Tunicamycin, a potent reversible translocase I inhibitor, is produced by several Actinomycetes species. The tunicamycin structure is highly unusual, and contains an 11-carbon dialdose sugar and an α, β-1″,11′-glycosidic linkage. Here we report the identification of a gene cluster essential for tunicamycin biosynthesis by high-throughput heterologous expression (HHE) strategy combined with a bioassay. Introduction of the genes into heterologous non-producing Streptomyces hosts results in production of tunicamycin by these strains, demonstrating the role of the genes for the biosynthesis of tunicamycins. Gene disruption experiments coupled with bioinformatic analysis revealed that the tunicamycin gene cluster is minimally composed of 12 genes (tunA– tunL). Amongst these is a putative radical SAM enzyme (Tun B) with a potentially unique role in biosynthetic carbon-carbon bond formation. Hence, a seven-step novel pathway is proposed for tunicamycin biosynthesis. Moreover, two gene clusters for the potential biosynthesis of tunicamycin-like antibiotics were also identified in Streptomyces clavuligerus ATCC 27064 and Actinosynnema mirums DSM 43827. These data provide clarification of the novel mechanisms for tunicamycin biosynthesis, and for the generation of new-designer tunicamycin analogs with selective/enhanced bioactivity via combinatorial biosynthesis strategies.  相似文献   

3.
The extent of oxidoreduction of the 3 alpha-, 7 alpha- and 12 alpha-hydroxyl groups in bile acids during the enterohepatic circulation in man was studied with the use of [3 beta-3H]-labeled deoxycholic acid and cholic acid, [7 beta-3H]-labeled cholic acid, and [12 beta-3H]-labeled deoxycholic acid and cholic acid. Each [3H]-labeled bile acid was given per os to healthy volunteers, together with the corresponding [24-14C]-labeled bile acid. The rate of oxidoreduction was calculated from the decrease in the ratio between 3H and 14C in the respective bile acid isolated from duodenal contents collected at different time intervals after administration of the labeled bile acids. The mean fractional conversion rate was found to be 0.29 day-1 for the 3 alpha-hydroxyl group in deoxycholic acid (n = 2), 0.18 day-1 for the 12 alpha-hydroxyl group in deoxycholic acid (n = 6), 0.09 day-1 for the 3 alpha-hydroxyl group in cholic acid (n = 3), 0.05 day-1 for the 7 alpha-hydroxyl group in cholic acid (n = 2), and 0.03 day-1 for the 12 alpha-hydroxyl group in cholic acid (n = 2). The extent of oxidoreduction of the 12 alpha-hydroxyl group in [12 beta-3H]-labeled deoxycholic acid given to two patients operated with subtotal colectomy and ileostomy was markedly reduced (less than 20% of normal).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Rice glutelins consist of acidic (alpha) and basic (beta) subunits which are further separated into three polypeptide components assigned as alpha-1, alpha-2, and alpha-3 subunit components and beta-1, beta-2 and beta-3 subunit components. Nine rice mutant lines with a decreased amount of the glutelin alpha-2 subunit component (alpha-2L) were obtained by screening about 6,800 potential mutant lines derived from the fertilized egg treatment with N-methyl-N-nitrosourea (MNU) using the SDS-PAGE method. The mutants were classified into three types of the increased alpha-1 subunit (alpha-1H/alpha-2L), the decreased beta-2 subunit (beta-2L/alpha-2L) and the increased alpha-3 subunit (alpha-3H/alpha-2L) represented by EM278, CM1707 and EM659, respectively. Iso-electric focus (IEF) analysis revealed that all of the mutants had an extremely low amount of a polypeptide with a 6.71 pI value, whereas a polypeptide with either a 6.50 pI value or with a 6.90 pI value increased significantly in alpha-1H/alpha-2L mutants or in alpha-3H/alpha-2L mutants, respectively. The beta-2L/alpha-2L mutants had a decreased amount of a basic polypeptide with a 8.74 pI value. Genetic analysis revealed that the three types of mutants were controlled by a single incomplete dominant gene respectively, and the three are alleles. The gene was temporarily named glu4, which was found to be located on chromosome 1 linked with the eg and spl6 genes. Two-dimensional electrophoresis analysis revealed that the glu4 encoded polypeptides of pI 6.71/alpha-2 and pI 8.74/beta-2. Amino acid sequence analysis suggested that the mutated acidic polypeptide was the product of a GluA subfamily gene. Northern and RT-PCR analyses revealed that glu4 corresponded to the GluA-1 gene.  相似文献   

5.
In vitro reaction of phycocyanobilin (PCB) with apophycocyanin results in the specific addition of the bilin to two of the cysteinyl residues, alpha-Cys-84 and beta-Cys-82, which normally function in PCB attachment (Arciero, D. M., Bryant, D. A., and Glazer, A. N. (1988) J. Biol. Chem. 263, 18343-18349). These bilin binding sites are designated alpha-1 and beta-1, respectively. Tryptic digestion of the apophycocyanin-PCB adduct releases two major bilin peptides, alpha-1 mesobiliverdin (MBV) and beta-1 MBV, which encompass the two bilin-binding sites. These peptides were examined by 1H NMR and fast atom bombardment mass spectroscopies. The NMR spectra show that the bilin is attached to each peptide through a thioether linkage identical to the linkage observed in the corresponding tryptic peptides, alpha-1 PCB and beta-1 PCB, derived from the natural product, C-phycocyanin. However, the NMR spectra of the adduct peptides lack the resonances corresponding to protons at positions C2 and C3 of ring A seen in the spectra of the alpha-1 PCB and beta-1 PCB peptides. Fast atom bombardment mass spectroscopy shows the masses of the alpha-1 MBV and beta-1 MBV peptides to be 2 atomic mass units lower than those of the alpha-1 PCB and beta-1 PCB peptides, respectively. Comparison of the bilin portion of the NMR spectra of the alpha-1 MBV and beta-1 MBV peptides to the NMR spectra of PCB and mesobiliverdin confirms that the bilin of the two adduct peptides resembles mesobiliverdin in having an extra double bond in the C2-C3 position of ring A. These results show that the major bilin products arising from the reaction of PCB with apophycocyanin differ from the bilins present in C-phycocyanin. The relevance of these results to the biosynthetic pathway for the attachment of tetrapyrroles to phycobiliproteins is discussed.  相似文献   

6.
Metabolite sensing, a fundamental biological process, plays a key role in metabolic signaling circuit rewiring. Hexosamine biosynthetic pathway (HBP) is a glucose metabolic pathway essential for the synthesis of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), which senses key nutrients and integrally maintains cellular homeostasis. UDP-GlcNAc dynamically regulates protein N-glycosylation and O-linked-N-acetylglucosamine modification (O-GlcNAcylation). Dysregulated HBP flux leads to abnormal protein glycosylation, and contributes to cancer development and progression by affecting protein function and cellular signaling. Furthermore, O-GlcNAcylation regulates cellular signaling pathways, and its alteration is linked to various cancer characteristics. Additionally, recent findings have suggested a close association between HBP stimulation and cancer stemness; an elevated HBP flux promotes cancer cell conversion to cancer stem cells and enhances chemotherapy resistance via downstream signal activation. In this review, we highlight the prominent roles of HBP in metabolic signaling and summarize the recent advances in HBP and its downstream signaling, relevant to cancer.  相似文献   

7.
A method is described for the preparation of two types of multi-labeled 6 beta-hydroxycortisol containing either five deuterium atoms at C-19 methyl and C-1 methylene or four 13C atoms at C-1, C-2, C-4, and C-19 in addition to the five deuterium atoms for use as analytical internal standards for gas chromatography-mass spectrometry (GC-MS). BMD derivatives of [1,1,19,19,19-2H(5)]cortisone and [1,2,4,19-13C(4),1,1,19,19,19-2H(5)]cortisone (cortisone-2H(5)-BMD and cortisone-13C(4),2H(5)-BMD) were first synthesized via indan synthon method starting from optical active 11-oxoindanylpropionic acid and labeled isopropenyl anion ([1,1,3,3,3-2H(5)]- or [1,3-13C(2),1,1,3,3,3-2H(5)]isopropenyl anion). The labeled isopropenyl anion was prepared from commercially available [1,1,1,3,3,3-2H(6)]- or [1,3-13C(2),1,1,1,3,3,3-2H(6)]acetone. Ultraviolet (UV) irradiated autoxidation at C-6 position of 3-ethyl-3,5-dienol ether derivatives of the labeled cortisone-BMDs gave 6 beta-hydroxy-[1,1,19,19,19-2H(5)]cortisone-BMD and 6 beta-hydroxy-[1,2,4,19-13C(4),1,1,19,19,19-2H(5)]cortisone-BMD, respectively, as a mixture of 6 beta- and 6 alpha-epimers in a ratio of 4:1. Separation of 6 beta- and 6 alpha-epimers by thin-layer chromatography (TLC) and subsequent hydrolysis of the BMD group at C-17 gave pure labeled 6 beta-hydroxycortisone. After protecting the keto group at C-3 of the labeled 6 beta-hydroxycortisone-BMD as semicarbazone, reduction of 11-keto group with NaBH(4) and subsequent removal of the C-3 and C-17 protecting groups gave 6beta-hydroxy-[1,1,19,19,19-2H(5)]cortisol (6 beta-hydroxycortisol-2H(5)) and 6 beta-hydroxy-[1,2,4,19-13C(4),1,1,19,19,19-2H(5)]cortisol (6 beta-hydroxycortisol-13C(4),2H(5)), respectively, as a mixture of 6 beta- and 6 alpha-epimers (6 beta:6 alpha=4.4:1). The isotopic compositions of 6 beta-hydroxycortisol-2H(5) and 6 beta-hydroxycortisol-13C(4),2H(5) were 90.9 and 92.1 at.%, respectively. Furthermore, 6 beta-hydroxy-[1 alpha,16,16,17 alpha-2H(4)]testosterone was synthesized by the UV irradiated autoxidation at C-6 position of 3-ethyl-3,5-dienol ether derivative of deuterium-labeled testosterone ([1 alpha,16,16,17 alpha-2H(4)]testosterone) obtained by using catalytic deuteration and hydrogen-deuterium exchange reactions.  相似文献   

8.
Deuterated isotopomers of 7alpha- and (25R,S)-26-hydroxycholesterol, internal standards for in vivo determination of the two biosynthetic pathways of bile acids formation from cholesterol, were prepared from [2,2,3,4,4,6-2H(6)]-cholesterol and (20S)-[7,7,21,21-2H(4)]-3beta-(tert-butyldimethylsilyl)oxy-20-methylpregna-5-en-21-ol, respectively.  相似文献   

9.
A variety of eukaryotic cell surface proteins, including the variant surface glycoproteins of African trypanosomes, rely on a covalently attached lipid, glycosylphosphatidylinositol (GPI), for membrane attachment. GPI anchors are synthesized in the endoplasmic reticulum by stepwise glycosylation of phosphatidylinositol (via UDP-GlcNAc and dolichol-P-mannose) followed by the addition of phosphoethanolamine. The experiments described in this paper are aimed at identifying the biosynthetic origin of the terminal phosphoethanolamine group. We show that trypanosome GPIs can be labelled via CDP-[3H]ethanolamine or [beta-32P]CDP-ethanolamine in a cell-free system, indicating that phosphoethanolamine is acquired en bloc. In pulse-chase experiments with CDP-[3H]ethanolamine we show that the GPI phosphoethanolamine is not derived directly from CDP-ethanolamine, but instead from a relatively stable metabolite, such as phosphatidylethanolamine (PE), generated from CDP-ethanolamine in the cell-free system. To test the possibility that PE is the immediate donor of the GPI phosphoethanolamine moiety, we describe metabolic labelling experiments with [3H]serine and show that GPIs can be labelled in the absence of detectable radiolabelled CDP-ethanolamine, presumably via [3H]PE generated from [3H]phosphatidylserine (PS). The data support the proposal that the terminal phosphoethanolamine group in trypanosome GPIs is derived from PE.  相似文献   

10.
The carbohydrate-deficient glycoprotein syndromes (CDGS) are a group of autosomal recessive multisystemic diseases characterized by defective glycosylation of N-glycans. This review describes recent findings on two patients with CDGS type II. In contrast to CDGS type I, the type II patients show a more severe psychomotor retardation, no peripheral neuropathy and a normal cerebellum. The CDGS type II serum transferrin isoelectric focusing pattern shows a large amount (95%) of disialotransferrin in which each of the two glycosylation sites is occupied by a truncated monosialo-monoantennary N-glycan. Fine structure analysis of this glycan suggested a defect in the Golgi enzyme UDP-GlcNAc:alpha-6-D-mannoside beta-1,2-N-acetylglucosaminyltransferase II (GnT II; EC 2.4.1.143) which catalyzes an essential step in the biosynthetic pathway leading from hybrid to complex N-glycans. GnT II activity is reduced by over 98% in fibroblast and mononuclear cell extracts from the CDGS type II patients. Direct sequencing of the GnT II coding region from the two patients identified two point mutations in the catalytic domain of GnT II, S290F (TCC to TTC) and H262R (CAC to CGC). Either of these mutations inactivates the enzyme and probably also causes reduced expression. The CDG syndromes and other congenital defects in glycan synthesis as well as studies of null mutations in the mouse provide strong evidence that the glycan moieties of glycoproteins play essential roles in the normal development and physiology of mammals and probably of all multicellular organisms.  相似文献   

11.
The first two oxygenation steps post-trichodiene in the biosyntheses of the trichothecenes 3-acetyldeoxynivalenol and sambucinol were investigated. The plausible intermediates 2-hydroxytrichodiene (2alpha- and 2beta-) and 12,13-epoxytrichodiene and the dioxygenated compounds 12,13-epoxy-9,10-trichoene-2-ol (2alpha- and 2beta-) were prepared specifically labeled with stable isotopes. They were then fed separately and/or together to Fusarium culmorum cultures, and the derived trichothecenes were isolated, purified, and analyzed. The stable isotopes enable easy localization of the labels in the products by 2H NMR, 13C NMR, and mass spectrometry. We found that 2alpha-hydroxytrichodiene is the first oxygenated step in the biosynthesis of both 3-acetyldeoxynivalenol and sambucinol. The stereoisomer 2beta-hydroxytrichodiene and 12,13-epoxytrichodiene are not biosynthetic intermediates and have not been isolated as metabolites. We also demonstrated that the dioxygenated 12, 13-epoxy-9,10-trichoene-2alpha-ol is a biosynthetic precursor to trichothecenes as had been suggested in a preliminary work. Its stereoisomer was not found in the pathway. A further confirmation of our results was the isolation of both oxygenated trichodiene derivatives 2alpha-hydroxytrichodiene and 12,13-epoxy-9, 10-trichoene-2alpha-ol as natural metabolites in F. culmorum cultures.  相似文献   

12.
Kowal P  Wang PG 《Biochemistry》2002,41(51):15410-15414
Plesiomonas shigelloides is a ubiquitous waterborne pathogen responsible for diseases such as diarrhea and bacillary dysentery, commonly afflicting infants and children. This bacterium is endowed with an O-antigen gene cluster consisting of 10 consecutive reading frames. One of these, designated wbgU (orf3), has been overexpressed and biochemically characterized to show that it encodes a uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) C4 epimerase, only the second microbial enzyme characterized to have this activity. Epimerization is an equilibrium reaction resulting in a 70:30 ratio of UDP-GlcNAc to uridine diphosphate-N-acetylgalactosamine (UDP-GalNAc), irrespective of the initial substrate. The K(m) values for UDP-GalNAc and UDP-GlcNAc are 131 microM and 137 microM, respectively. WbgU is also capable of converting nonacetylated derivatives but with much lower efficiency. It contains a tightly bound nicotinamide adenine dinucleotide [NAD(H)] molecule and requires no other cofactors for activity. We propose here that this enzyme catalyzes the first of the three transformations in the biosynthetic pathway of 2-acetamino-2-deoxy-L-altruronic acid, an unusual sugar present in the O-specific side chains of lipopolysaccharide of P. shigelloides O17 and its close relative Escherichia coli Sonnei.  相似文献   

13.
We measured the activities of alpha-1,3-mannosyl-glycoprotein beta-1,2-N-acetylglucosaminyltransferase, alpha-1,6-mannosyl-glycoprotein beta-1,2-N-acetylglucosaminyltransferase, beta-1,4-mannosyl-glycoprotein beta-1,2-xylosyltransferase and glycoprotein 3-alpha-L-fucosyltransferase in the Golgi fraction of suspension-cultured cells of sycamore (Acer pseudoplatanus L.) using fluorescence-labelled oligosaccharides as acceptor substrates for these transferase reactions. The structures of the pyridylaminated oligosaccharides produced by these reactions were analyzed by two-dimensional sugar mapping using high-performance liquid chromatography. We demonstrated that (formula; see text) was processed to produce by these in vitro reactions. On the basis of these results, we discuss a biosynthetic pathway for xylose containing N-linked oligosaccharides in plant glycoproteins.  相似文献   

14.
Tabtoxinine-beta-lactam, an irreversible inhibitor of glutamine synthetase is produced by several pathovars of Pseudomonas syringae. We have examined tabtoxinine-beta-lactam biosynthesis, an important and poorly characterized step in pathogenesis caused by this organism. We have identified the biosynthetic precursors of tabtoxinine-beta-lactam by incorporating 13C from specifically 13C-labeled D-glucose precursors and determining the labeling pattern using 13C NMR spectroscopy. Tabtoxinine-beta-lactam is generated by combining a 4-carbon fragment, a 2-carbon fragment, and a single carbon. The 4-carbon fragment arises from aspartic acid, and the 2-carbon unit is donated from carbons 2 and 3 of pyruvate. The 6-carbon backbone of tabtoxinine-beta-lactam arises from the condensation of fragments from aspartate and pyruvate, probably using reactions analogous to the initial steps in the pathway of lysine biosynthesis.  相似文献   

15.
Sialic acid is a major determinant of carbohydrate-receptor interactions in many systems pertinent to human health and disease. N-Acetylmannosamine (ManNAc) is the first committed intermediate in the sialic acid biosynthetic pathway; thus, the mechanisms that control intracellular ManNAc levels are important regulators of sialic acid production. UDP-GlcNAc 2-epimerase and GlcNAc 2-epimerase are two enzymes capable of generating ManNAc from UDP-GlcNAc and GlcNAc, respectively. Whereas the former enzyme has been shown to direct metabolic flux toward sialic acid in vivo, the function of the latter enzyme is unclear. Here we study the effects of GlcNAc 2-epimerase expression on sialic acid production in cells. A key tool we developed for this study is a cell-permeable, small molecule inhibitor of GlcNAc 2-epimerase designed based on mechanistic principles. Our results indicate that, unlike UDP-GlcNAc 2-epimerase, which promotes biosynthesis of sialic acid, GlcNAc 2-epimerase can serve a catabolic role, diverting metabolic flux away from the sialic acid pathway.  相似文献   

16.
Two hundred thirteen cytochrome P450 (P450) genes were collected from bacteria and expressed based on an Escherichia coli expression system to test their hydroxylation ability to testosterone. Twenty-four P450s stereoselectively monohydroxylated testosterone at the 2alpha-, 2beta-, 6beta-, 7beta-, 11beta-, 12beta-, 15beta-, 16alpha-, and 17-positions (17-hydroxylation yields 17-ketoproduct). The hydroxylation site usage of the P450s is not the same as that of human P450s, while the 2alpha-, 2beta-, 6beta-, 11beta-, 15beta-, 16alpha-, and 17-hydroxylation are reactions common to both human and bacterial P450s. Most of the testosterone hydroxylation catalyzed by bacterial P450s is on the beta face.  相似文献   

17.
An incorporation study of [1-(13)C] and [1,2-(13)C2] labeled sodium acetates into sorbicillinol 1 established a ring closure system between C-1 and C-6 and the positions that were oxidized and/or methylated on a hexaketide chain. Subsequent investigations, using 13C-labeled 1 prepared from [1-(13)C] labeled sodium acetate, clearly demonstrated that both bisorbicillinol 2 and sorbicillin 6 incorporated 13C-labeled 1 into their carbon skeletons. 13C-labeled bisorbicillinols 2 derived from [1-(13)C]- and [2-(13)C]-labeled sodium acetates clearly indicate that these were on the biosynthetic route from 1 to bisorbibutenolide (bislongiquinolide) 3 and bisorbicillinolide 4 via 2 as a branching point in the fungus.  相似文献   

18.
Preliminary studies from our laboratory have suggested the existence of a novel set of fatty acyltransferases in extracts of Escherichia coli that attach two R-3-hydroxymyristoyl moieties to UDP-GlcNAc (Anderson, M.S., Bulawa, C.E., and Raetz, C.R.H. (1985) J. Biol. Chem. 260, 15536-15541). The resulting "glucosamine-derived" phospholipids appear to be crucial precursors for the biosynthesis of the lipid A component of lipopolysaccharide. We now describe an assay and a 1000-fold purification of the first enzyme in this pathway, which catalyzes the reaction: UDP-GlcNAc + R-3-hydroxymyristoyl-acyl carrier protein----UDP-3-O-(R-3-hydroxymyristoyl)-GlcNAc + acyl carrier protein. The covalent structure of the monoacylated UDP-GlcNAc product was established by fast atom bombardment mass spectrometry and 1H-NMR spectroscopy. The UDP-GlcNAc acyltransferase has a strict requirement for R-3-hydroxymyristoyl-acyl carrier protein, since R-3-hydroxymyristoyl coenzyme A and myristoyl-acyl carrier protein are not substrates. Of various NDP-GlcNAc preparations examined, only the uridine and thymidine derivatives were utilized to a significant extent. When the product of the reaction (UDP-3-O-(R-3-hydroxymyristoyl)-GlcNAc) was isolated and reincubated with crude E. coli extracts, it was rapidly converted to more hydrophobic products in the presence of R-3-hydroxymyristoyl-acyl carrier protein. We propose that the addition of an R-3-hydroxymyristoyl residue to the 3 position of the GlcNAc moiety of UDP-GlcNAc is the first committed step in lipid A biosynthesis and that UDP-GlcNAc is situated at a biosynthetic branchpoint in E. coli leading either to lipid A or to peptidoglycan.  相似文献   

19.
Lipid A, a major component of the outer membranes of Escherichia coli and other Gram-negative bacteria, is usually constructed around a beta-1',6-linked glucosamine disaccharide backbone. However, in organisms like Acidithiobacillus ferrooxidans, Leptospira interrogans, Mesorhizobium loti, and Legionella pneumophila, one or both glucosamine residues are replaced with the sugar 2,3-diamino-2,3-dideoxy-d-glucopyranose. We now report the identification of two proteins, designated GnnA and GnnB, involved in the formation of the 2,3-diamino-2,3-dideoxy-d-glucopyranose moiety. The genes encoding these proteins were recognized because of their location between lpxA and lpxB in A. ferrooxidans. Based upon their sequences, the 313-residue GnnA protein was proposed to catalyze the NAD(+)-dependent oxidation of the glucosamine 3-OH of UDP-GlcNAc, and the 369-residue GnnB protein was proposed to catalyze the subsequent transamination to form UDP 2-acetamido-3-amino-2,3-dideoxy-alpha-d-glucopyranose (UDP-GlcNAc3N). Both gnnA and gnnB were cloned and expressed in E. coli using pET23c+. In the presence of l-glutamate and NAD(+), both proteins were required for the conversion of [alpha-(32)P]UDP-GlcNAc to a novel, less negatively charged sugar nucleotide shown to be [alpha-(32)P]UDP-GlcNAc3N. The latter contained a free amine, as judged by modification with acetic anhydride. Using recombinant GnnA and GnnB, approximately 0.4 mg of the presumptive UDP-GlcNAc3N was synthesized. The product was purified and subjected to NMR analysis to confirm the replacement of the GlcNAc 3-OH group with an equatorial NH(2). As shown in the accompanying papers, UDP-GlcNAc3N is selectively acylated by LpxAs of A. ferrooxidans, L. interrogans, and M. loti. UDP-GlcNAc3N may be useful as a substrate analog for diverse enzymes that utilize UDP-GlcNAc.  相似文献   

20.
The basidiolipids of six mushroom species, i.e. the basidiomycetes Amanita virosa (engl., death cup), Calvatia exipuliformis (engl., puffball), Cantharellus cibarius (engl., chanterelle), Leccinum scabrum (engl., red birch boletus), Lentinus edodes (jap., Shiitake), and Pleurotus ostreatus (engl., oystermushroom), were isolated, and their chemical structures investigated. All glycolipids are structurally related to those of the Agaricales (engl., field mushroom). They are glycoinositolphosphosphingolipids, their ceramide moiety consisting of t18:0-trihydroxysphinganine and an alpha-hydroxy long-chain fatty acid. In contrast to a previous study [Jennemann, R., Bauer, B.L., Bertalanffy, H., Geyer, R., Gschwind, R.M., Selmer, T. & Wiegandt, H. (1999) Eur. J. Biochem. 259, 331--338], the glycoside anomery of the hexose (mannose) connected to the inositol of all investigated basidiomycete glycolipids, including the basidiolipids of Agaricus bisporus, was determined unequivocally to be alpha. Therefore, the root structure of all basidiolipids consists of alpha-DManp-2Ins1-[PO(4)]-Cer. In addition, for some mushroom species, the occurrence of an inositol substitution position variant, alpha-Manp-4Ins1-[PO(40]-Cer, is shown. The carbohydrate of chanterelle basidiolipids consists solely of mannose, i.e. Cc1, Man alpha-3 or -6Man alpha; Cc2, Man alpha-3(Man alpha-6)Man alpha-. All other species investigated show extension of the alpha-mannoside in the 6-position by beta-galactoside, which, in some instances, is alpha-fucosylated in 2-position (Fuc alpha-2)Gal beta-6Man alpha-. Further sugar chain elongation at the beta-galactoside may be in 3- and/or 6-position by alpha-galactoside, e.g. Ce4, Po2, Gal alpha-3-(Gal alpha-6)(Fuc alpha-2)Gal beta-6Man alpha-, whereas A. virosa, Av-3, has a more complex, highly alpha-fucosylated terminus, Gal alpha-3 (Fuc alpha-2)(Fuc alpha-6)Gal alpha-2(Gal alpha-3)Gal beta-6Man alpha-. L. edodes basidiolipids show further elongation by alpha-mannoside, e.g. Le3, Man alpha-2Man alpha-6Gal alpha-3(Fuc alpha-2)Gal beta-6Man alpha-, C. exipuliformis glycolipid by alpha-glucoside, i.e. Ce3, Glc alpha-6Gal beta-6Man alpha-. Basidiolipid Ls1 from L. scabrum, notably, has a 3-alpha-mannosylated alpha-fucose, i.e. Gal alpha-6(Man alpha-3Fuc alpha-2)Gal alpha-6Gal beta-6Man alpha-. In conclusion, basidiolipids, though identical in their ceramide constitution, display wide and systematic mushroom species dependent variabilities of their chemical structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号