首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
These studies were undertaken to examine the effect of aging on low density lipoprotein (LDL) metabolism in the male hamster. When the hamsters were maintained on a low-cholesterol, low-triglyceride diet, rates of LDL transport in the various tissues of the body and plasma LDL-cholesterol concentrations remained constant over the entire life span (1-24 months) of the hamster. In contrast, rates of de novo cholesterol synthesis fell 50-97% in the various tissues of the body during the transition from rapid body growth in the young animal to the stable adult size. Thus, changes in tissue requirements for cholesterol over the life span of these animals were met by an appropriate adjustment in the rate of de novo synthesis rather than by alterations in LDL transport. When animals were fed a diet enriched in cholesterol and saturated triglycerides, rates of LDL production increased, total body LDL receptor activity was suppressed, and plasma LDL-cholesterol levels rose. Older animals, however, were not more susceptible than young animals to the detrimental effects of these dietary fats. These studies support the view that aging per se has not effect on LDL transport by the liver or other tissues. Rather, the progressive rise in plasma LDL-cholesterol levels seen in Western man is likely due to the consumption of a diet enriched in cholesterol and saturated triglyceride which increases the LDL-cholesterol production rate and suppresses receptor-dependent LDL transport.  相似文献   

2.
Whole body sterol balance, hepatic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity, hepatic low-density lipoprotein (LDL) receptor levels and net tissue cholesterol concentrations were determined in guinea pigs fed either a corn oil- or lard-based purified diet for 6-7 weeks. In comparison to the saturated lard diet, the polyunsaturated corn oil diet resulted in a 34% reduction in plasma total cholesterol levels (P less than 0.02) and a 40% lower triacylglycerol level (P less than 0.02). Feeding the corn oil diet altered very-low-density lipoprotein (VLDL) and LDL composition; the percent cholesterol ester in both particles was decreased and the relative percentages of VLDL triacylglycerol and LDL phospholipid increased. The ratio of surface to core components of LDL from corn oil-fed guinea pigs was significantly higher compared to LDL from animals fed lard. Dietary fat quality had no effect on fecal neutral or acidic steroid excretion, net tissue accumulation of cholesterol, whole body cholesterol synthesis or gallbladder bile composition. Consistent with these results was the finding that fat quality did not alter either expressed (non-phosphorylated) or total hepatic HMG-CoA reductase activities. The hepatic concentrations of free and esterified cholesterol were significantly increased in corn oil-fed animals, as were cholesterol concentrations in intestine, adipose tissue, muscle and total carcass. Analysis of receptor-mediated LDL binding to isolated hepatic membranes demonstrated that the polyunsaturated corn-oil based diet caused a 1.9-fold increase in receptor levels (P less than 0.02). The data indicate that the hypocholesterolemic effects of dietary polyunsaturated fat in the guinea pig are not attributable to changes in endogenous cholesterol synthesis or catabolism but rather may result from a redistribution of plasma cholesterol to body tissue due to an increase in tissue LDL receptors.  相似文献   

3.
The effects of dietary cholesterol and fatty acids on the plasma cholesterol level and rates of very low density lipoprotein (VLDL) cholesterol secretion and low density lipoprotein (LDL) transport through LDL receptors in the liver of the hamster were investigated. Increases of plasma VLDL- and LDL-cholesterol levels and VLDL-cholesterol secretion from hepatocytes were observed in animals fed a diet enriched with 0.1% cholesterol for 2 weeks in comparison with animals fed a control diet. The addition of dietary palmitic acid accelerated the effect of dietary cholesterol on plasma VLDL- and LDL-cholesterol levels and VLDL-cholesterol secretion from hepatocytes. Dietary linoleic acid accelerated the effect of dietary cholesterol on VLDL-cholesterol secretion from hepatocytes and diminished the effect on the plasma LDL-cholesterol level. Hepatic LDL receptor activity was considerably suppressed by a control diet containing 0.05% cholesterol and a further small suppression was induced by a diet enriched with 0.1% cholesterol with or without 5% palmitic acid. However, dietary linoleic acid diminished the effect of dietary cholesterol on the suppression of hepatic LDL receptor activity. These results suggest that dietary palmitic acid augments the effect of dietary cholesterol in elevating the plasma LDL-cholesterol level through acceleration of VLDL-cholesterol secretion from the liver, and that dietary linoleic acid diminishes the effect of dietary cholesterol in elevating the plasma LDL-cholesterol level by preventing the suppression of hepatic LDL receptor activity induced by cholesterol.  相似文献   

4.
African green monkeys were fed diets containing low and moderate cholesterol concentrations with either polyunsaturated or unsaturated fat as 40% of calories. Plasma total cholesterol, low density lipoprotein (LDL) cholesterol, and apoB concentrations generally were higher in animals fed (a) the higher dietary cholesterol concentration and (b) saturated fat. At necropsy, liver and intestine were removed, and measurement of mRNAs for LDL receptors (liver) and for apolipoprotein B (liver and intestine) was done. Monkey small intestine mucosa made exclusively apoB48 while the liver made only apoB100, although apoB mRNA in both tissues was the same size (14 kilobases). No dietary cholesterol or fat effects were found for apoB mRNA abundance in the liver, while the animals fed the higher dietary cholesterol level had 50% lower levels of hepatic LDL receptor mRNA. In a separate group of animals, livers were perfused and the rate of apoB secretion was measured. No dietary fat effect on apoB secretion rate was found, and no relationship between plasma LDL cholesterol concentration and the rate of hepatic apoB production existed. These findings support the idea that the dietary factors that increase LDL concentrations act by reducing clearance of apoB-containing particles rather than by increasing production of these lipoproteins. Hepatic LDL receptor mRNA was similar in abundance in polyunsaturated fat and saturated fat-fed animals, suggesting that the difference in plasma cholesterol concentration between these groups is not mediated via effects on LDL receptor mRNA abundance. The level of intestinal apoB mRNA was about 30% higher in animals fed the moderate dietary cholesterol concentration. Earlier studies have shown that more cholesterol is transported in chylomicrons from the intestine when dietary cholesterol levels are higher, and the increased intestinal apoB mRNA abundance may reflect increased intestinal cholesterol transport and chylomicron apoB48 production.  相似文献   

5.
Nine normal women, 22 to 37 years old, consumed controlled quantities of natural foods to test their responses to dietary cholesterol and saturated fat. All diets contained, as percentage of calories, 14% protein, 31% fat, and 55% carbohydrate. The main sources of polyunsaturated and saturated fats were corn oil and lard, respectively, and egg yolk was used for cholesterol supplementation. All subjects participated in four diet protocols of 15 days duration, and each diet period was separated by 3 weeks without diet control. The first diet (corn) was based on corn oil, had a polyunsaturated to saturated fat ratio (P/S) of 2.14, and contained 130 mg of cholesterol. The second diet (corn+) was identical to the first but contained a total of 875 mg of cholesterol. The third diet (lard) was based on lard, had a P/S ratio of 0.64, and contained 130 mg of cholesterol. The fourth diet (lard+) was identical to the third, but contained 875 mg of cholesterol per day. Changes of the plasma lipid, lipoprotein and apoprotein parameters relative to the corn diet were as follows: the corn+ diet significantly increased total plasma cholesterol, HDL-cholesterol, LDL-cholesterol, and apoB levels; the lard diet significantly increased total cholesterol, HDL-cholesterol, and apoB; and the lard+ diet significantly increased the total cholesterol, HDL-cholesterol, LDL-cholesterol, and apoA-I and apoB levels. There were no significant variations in VLDL-cholesterol, triglyceride, or apoE levels with these diets. The diets affected both the number of lipoprotein particles as well as the composition of LDL and HDL. Compared to the corn diet, cholesterol and saturated fat each increased the number of LDL particles by 17% and 9%, respectively, and the cholesterol per particle by 9%. The combination of saturated fat and cholesterol increased particle number by 18% and particle size by 24%. Switching from lard+ to lard, corn+, or corn diets reduced LDL-cholesterol of the group by 18%, 11%, and 28%, respectively, while a large inter-individual variability was noted. In summary, dietary fat and cholesterol affect lipid and lipoprotein levels as well as the particle number and chemical composition of both LDL and HDL. There is, however, considerable inter-individual heterogeneity in response to diet.  相似文献   

6.
PURPOSE OF REVIEW: The purpose is to evaluate recent findings concerning dietary fats and the risk of coronary heart disease. Monounsaturated fatty acids are often regarded as healthy, and many have recommended their consumption instead of saturated fatty acids and polyunsaturated fatty acids. Support for the benefits of monounsaturated fatty acids comes largely from epidemiological data, but they have not been an isolated, single variable in such studies. Beneficial effects on the plasma lipid profile and LDL oxidation rates have also been identified. More recent findings have questioned the impact of suspected beneficial effects on coronary heart disease, indicating that studies with more conclusive endpoints are needed. RECENT FINDINGS: Human dietary studies often produce conflicting results regarding the effects of monounsaturated and polyunsaturated fatty acids on the plasma lipid profile. Monounsaturated and polyunsaturated fatty acids both appear to reduce total and LDL-cholesterol compared with saturated fatty acids; however, the effect on HDL is less clear. Lowered HDL levels in response to low-fat or polyunsaturated fatty acid diets and the decreased protection from oxidation of polyunsaturated fatty acid-enriched LDL may not indicate increased coronary heart disease risk. Several lines of evidence also suggest that polyunsaturated fatty acids may protect against atherosclerosis. SUMMARY: Recommendations to substitute monounsaturated fatty acids for polyunsaturated fatty acids or a low-fat carbohydrate diet seem premature without more research into the effects on the development of atherosclerosis. Current opinions favoring monounsaturated fatty acids are based on epidemiological data and risk factor analysis, but are questioned by the demonstrated detrimental effects on atherosclerosis in animal models.  相似文献   

7.
These studies were undertaken to determine how polyunsaturated (n-3 and n-6) and saturated triglycerides interact to regulate rates of low density lipoprotein (LDL) production and rates of receptor-dependent and receptor-independent LDL transport. Animals were fed diets containing 20% (by wt) hydrogenated coconut oil or diets in which the coconut oil was progressively removed and replaced with safflower oil or fish oil concentrate. Plasma LDL concentrations fell when either of the polyunsaturated triglycerides was substituted for saturated triglycleride in the diet; however, the reduction in LDL concentrations was greater with fish oil than with safflower oil at all ratios of polyunsaturated to saturated triglyceride that were examined. The lower plasma LDL concentrations when coconut oil was replaced with fish oil could be attributed almost entirely to a much greater increase in hepatic LDL receptor activity when fish oil was used as the substitute than when safflower oil was used as the substitute. To examine the effect of polyunsaturated triglycerides when used to supplement a high saturated fat diet rather than to replace saturated fat in the diet, animals were fed a diet containing 15% coconut oil (by wt) with or without an additional supplement of 5% fish oil or safflower oil. The addition of 15% coconut oil to low fat control diet increased the rate of LDL production causing circulating LDL levels to rise by 40%. The further supplementation of this high saturated fat diet with fish oil concentrate markedly increased hepatic LDL receptor activity causing plasma LDL concentrations to return to control values whereas supplementation with safflower oil had little effect. Thus, at least in the rat, supplementation of a high saturated fat diet with a fish oil concentrate lowers plasma LDL concentrations as effectively as removing the saturated fat from the diet, although in the former case, both the production and the receptor-dependent uptake of LDL are greatly increased.  相似文献   

8.
Diets rich in polyunsaturated fatty acids lower plasma HDL cholesterol concentrations when compared to diets rich in saturated fatty acids. We investigated the mechanistic basis for this effect in the hamster and sought to determine whether reduced plasma HDL cholesterol concentrations resulting from a high polyunsaturated fat diet are associated with a decrease in reverse cholesterol transport. Animals were fed semisynthetic diets enriched with polyunsaturated or saturated fatty acids for 6 weeks. We then determined the effect of these diets on the following parameters: 1) hepatic scavenger receptor B1 (SR-BI) mRNA and protein levels, 2) the rate of hepatic HDL cholesteryl ester uptake, and 3) the rate of cholesterol acquisition by the extrahepatic tissues (from de novo synthesis, LDL and HDL) as a measure of the rate of reverse cholesterol transport. Compared to saturated fatty acids, dietary polyunsaturated fatty acids up-regulated hepatic SR-BI expression by approximately 50% and increased HDL cholesteryl ester transport to the liver; as a consequence, plasma HDL cholesteryl ester concentrations were reduced. Although dietary polyunsaturated fatty acids increased hepatic HDL cholesteryl ester uptake and lowered plasma HDL cholesterol concentrations, there was no change in the cholesterol content or in the rate of cholesterol acquisition (via de novo synthesis and lipoprotein uptake) by the extrahepatic tissues.These studies indicate that substitution of polyunsaturated for saturated fatty acids in the diet increases SR-BI expression and lowers plasma HDL cholesteryl ester concentrations but does not affect reverse cholesterol transport.  相似文献   

9.
The level of circulating triacylglycerols is determined by the balance between their delivery into the plasma and their removal from it. Plasma triacylglycerols are derived either from dietary fat as chylomicrons or from endogenous hepatic synthesis as very low density lipoproteins. Their removal occurs through the action of lipoprotein lipase after which the fatty acids are either stored in adipose tissue or oxidized, primarily in skeletal muscle and heart. The composition of the diet has been shown to influence many of these processes. Hepatic fatty acid synthesis and triacylglycerol secretion are affected by the quantity and composition of dietary fat, carbohydrate, and protein. Polyunsaturated but not saturated fats reduce hepatic fatty acid synthesis by decreasing the amount of the lipogenic enzymes needed for de novo fatty acid synthesis. Dietary fish oils are particularly effective at reducing both fatty acid synthesis and triacylglycerol secretion and as a result are hypotriacylglycerolemic, particularly in hypertriacylglycerolemic individuals. In addition, dietary fish oils can increase the oxidation of fatty acids and lead to increased activity of lipoprotein lipase in skeletal muscle and heart. It appears that the hypotriacylglycerolemic effect of dietary fish oils is mediated by effects on both synthesis and removal of circulating triacylglycerols.  相似文献   

10.
Work by other investigators has shown that an increase in dietary content of monounsaturated fatty acids can result in a decreased plasma low density lipoprotein (LDL) cholesterol concentration. This observation, combined with the epidemiologic evidence that monounsaturated fat-rich diets are associated with decreased rates of death from coronary heart disease, suggests that inclusion of increased amounts of mono-unsaturated fat in the diet may be beneficial. The present study was carried out in a primate model, the African green monkey, to evaluate the effects of dietary monounsaturated fat on plasma lipoprotein cholesterol endpoints. Two study periods were carried out in which the fatty acid compositions of the experimental diets were varied. All diets contained 35% of calories as fat. In the first experimental period, a mixture of fats was used to set the dietary fatty acid composition to be approximately 50-60% of the desired fatty acid, either saturated, monounsaturated, or polyunsaturated (n-6). In the second experimental period, pure fats were used (palm oil, oleic acid-rich safflower oil, and linoleic acid-rich safflower oil) to maximize the difference in fatty acid composition. The effects of the more exaggerated dietary fatty acid differences of period 2 were similar to those that have been reported in humans. For the group fed the diet enriched in monounsaturated fat compared to saturated fat, whole plasma and LDL cholesterol concentrations were significantly lower while high density lipoprotein (HDL) cholesterol concentrations were not affected. For the group fed the diet enriched in polyunsaturated fat compared to saturated fat, both LDL and HDL cholesterol concentrations were significantly lower than in the group fed saturated fat. LDL cholesterol concentrations were comparable in the monounsaturated and polyunsaturated fat groups and the percentage of cholesterol in LDL was lowest in the monounsaturated fat fed group. Trends were similar for the mixed fat diets, although no statistically significant differences in plasma lipoprotein endpoints could be attributed to monounsaturated fatty acids in this dietary comparison. Since effects on plasma lipoproteins similar to those seen in humans were identified in this primate model, relevant mechanisms for the effects of dietary fatty acids on lipoprotein endpoints related to coronary artery atherosclerosis, per se, can subsequently be examined.  相似文献   

11.
Rat serum VLDL, unlike human, contains significant proportions of triacylglycerols with polyunsaturated C20 and C22 fatty acids. Hypothyroidism in this species is characterized by low levels of serum VLDL, the accumulation of LDL, elevated levels of lipoprotein lipase and depressed hepatic lipase activity. The hypothyroid rat thus represents an interesting model in which to study hepatic VLDL metabolism and the substrate specificity of lipoprotein lipase. This report shows that serum IDL and LDL in both euthyroid and hypothyroid rats contain progressively enhanced proportions of triacylglycerols with polyunsaturated C20 and C22 fatty acids when compared to VLDL. Hypothyroidism resulted in a decrease in the proportion of 22:6 fatty acid within the serum VLDL triacylglycerols when compared to euthyroid VLDL. Lipolysis of VLDL from euthyroid rats in vitro using the perfused rat heart system resulted in increases or sequestration of triacylglycerols containing long-chain polyunsaturated fatty acids within the IDL fraction similar to those seen in vivo. It is concluded that lipoprotein lipase-mediated hydrolysis of VLDL triacylglycerols and the conversion of VLDL to IDL and LDL in the rat results in a progressive sequestration of the longer-chain polyunsaturated triacylglycerol molecular species with the IDL and LDL.  相似文献   

12.
These studies were undertaken to determine the role of receptor-independent low density lipoprotein (LDL) transport in cholesterol balance across individual tissues and the whole animal. Homologous LDL, which measures total LDL transport, and methylated heterologous LDL, which measures receptor-independent LDL uptake, were cleared from the plasma at very different rates in the NZ control rabbit (3,900 and 1,010 microliter/hr per kg, respectively) whereas in the WHHL rabbit both preparations were cleared at essentially the same rate (approximately 1,070 microliter/hr per kg). Receptor-independent LDL clearance was detected in all tissues of the NZ control rabbit and these varied from 32 (spleen) to less than 0.5 (skeletal muscle) microliter/hr per g. In contrast, receptor-dependent LDL uptake was found in only about half of these same organs. In the WHHL rabbit, the rates of receptor-independent LDL transport were the same as in the NZ control rabbit, but no receptor-dependent uptake was detected. Using these clearance values it was calculated that in the control rabbit nearly 70% of LDL-cholesterol was removed from the plasma by the liver and 89% of this was receptor-mediated. With loss of receptor activity, however, the burden of LDL degradation was shifted away from the liver so that approximately 70% of LDL-cholesterol uptake took place in the extra-hepatic tissues of the WHHL rabbit. Thus, in the normal animal, the primary function of receptor-dependent LDL transport is to promote the rapid uptake and disposal of plasma LDL by the liver. In the absence of such receptor activity, cholesterol balance across most individual organs and the whole animal remains essentially normal and is mediated by the receptor-independent process. Because of the much lower absolute clearance rates manifested by this transport mechanism, however, substantial and predictable elevations in the circulating plasma LDL-cholesterol levels are required to maintain this balance.  相似文献   

13.
A 24 h pretreatment of human cultured fibroblasts with PAF-acether (PAF) induced a decrease in LDL degradation and a correlative accumulation of undegraded LDL. LDL binding was not significantly affected. Sterol and triacylglycerol synthesis from sodium acetate was enhanced whereas phospholipid synthesis decreased. Oleic acid incorporation into cholesteryl ester was markedly inhibited, whereas incorporation into triacylglycerols was increased. A decrease in the percentage of phosphatidylcholine and an increase in the percentage of phosphatidylethanolamine were found using sodium [32P]orthophosphate as precursor. These effects of PAF on LDL and lipid metabolism could be related to perturbations in membrane structure characteristics, leading to a delay in LDL delivery to lysosomes, and to modification of the activity of some key enzymes of lipid metabolism.  相似文献   

14.
Early radiokinetic studies revealed that the classical metabolic defect in patients with familial hypercholesterolemia (FH) is hypocatabolism of LDL due to decreased LDL receptor activity. However, recent studies have suggested that hepatic oversecretion of apolipoprotein B-100 (apoB-100)-containing lipoproteins could also contribute to the markedly elevated plasma concentrations of LDL-cholesterol found in FH. The aim of this study was to examine the kinetics of apoB-100 labeled with a stable isotope (l-[5,5,5-D(3)] leucine) in five normolipidemic controls and in seven well-characterized FH subjects that included six FH heterozygotes and one FH homozygote carrying the same null LDL receptor gene mutation. As compared with controls, the VLDL apoB-100 production rate was increased by 50% in the FH heterozygotes and by 109% in the FH homozygote. Furthermore, FH subjects had significantly higher LDL apoB-100 pool size and lower LDL apoB-100 fractional catabolic rate than controls. These results indicate that the elevation of plasma LDL-cholesterol found in FH is attributable to both decreased clearance of LDL and increased hepatic production of apoB-100-containing lipoproteins.  相似文献   

15.
N-3 polyunsaturated fatty acids and estrogens are recognized as protective factors of atherosclerosis, however their interactions on cholesterol metabolism remain unclear. Male and female hamsters were fed for 9 weeks diets containing 12.5% lipids and rich in either alpha-linolenic acid ("linseed" diet) or saturated fatty acids ("butter" diet). Hamsters fed the "linseed" diet exhibited lower plasma concentrations of cholesterol (-29%), total LDL (-35%) and HDL (-17%), glucose (-20%), insulin (-40%) and of the LDL-cholesterol/HDL-cholesterol ratio (-27%) than those fed the "butter" diet. In the liver, cholesterol content was 2.7-fold lower in response to the "linseed" diet, whereas the concentration of HDL receptor (SR-BI) and the activities of HMGCoA reductase and cholesterol 7alpha-hydroxylase were 30 to 50% higher than with the "butter" diet. By contrast, the LDL receptor concentration did not vary with the diet. Females exhibited higher concentration of LDL (+24%), lower concentration of plasma triglycerides (-34%), total VLDL (-46%) and VLDL-cholesterol (-37%) and of biliary phospholipids (-19%). Besides, there was also an interaction between gender and diet: in males fed the "butter" diet, plasma triglycerides and VLDL concentration, were 2 to 4 fold higher than in the other groups. These data suggest that gene and/or metabolic regulations by fatty acids could interact with that of sex hormones and explain why males are more sensitive to dietary fatty acids.  相似文献   

16.
17.
The effect of dietary eicosapentaenoic acid (EPA, 20:5(n-3), as the ethyl ester) on plasma lipid levels and the incorporation of EPA into erythrocyte and plasma lipids were investigated in the marmoset monkey. Marmosets were fed high mixed-fat diets (14.5% total fat) supplemented with or without 0.8% EPA for 30 weeks. Markedly elevated plasma cholesterol (16.4 mmol/l) was induced by an atherogenic-type diet but with EPA supplementation, plasma cholesterol increased to only 6.6 mmol/l. Plasma triacylglycerol levels were not elevated with an atherogenic type diet. Substantial EPA incorporation was evident for plasma phospholipid, triacylglycerol and cholesterol ester fractions. The proportion of docosapentaenoic acid (22:5(n-3)) but not docosahexaenoic acid (22:6(n-3)) was also elevated in these plasma lipid fractions. Greatest incorporation of EPA occurred when it was administered with an atherogenic type diet having a P:M:S (polyunsaturated:monounsaturated:saturated) fatty acid ratio of about 0.2:0.6:1.0 in comparison to the control diet of 1.0:1.0:1.0. Incorporation of EPA and 22:5(n-3)) into erythrocyte phospholipids was also apparent and this was at the expense of linoleic acid (18:2(n-6)). These results in the marmoset highlight both the cholesterol-lowering properties of EPA and the extent of its incorporation into plasma lipids and erythrocyte membrane phospholipids with far greater incorporation occurring when the level of dietary linoleic acid was reduced.  相似文献   

18.
Consumption of a Western diet rich in saturated fats is associated with obesity and insulin resistance. In some insulin-resistant phenotypes this is associated with accumulation of skeletal muscle fatty acids. We examined the effects of diets high in saturated fatty acids (Sat) or n-6 polyunsaturated fatty acids (PUFA) on skeletal muscle fatty acid metabolite accumulation and whole-body insulin sensitivity. Male Sprague-Dawley rats were fed a chow diet (16% calories from fat, Con) or a diet high (53%) in Sat or PUFA for 8 wk. Insulin sensitivity was assessed by fasting plasma glucose and insulin and glucose tolerance via an oral glucose tolerance test. Muscle ceramide and diacylglycerol (DAG) levels and triacylglycerol (TAG) fatty acids were also measured. Both high-fat diets increased plasma free fatty acid levels by 30%. Compared with Con, Sat-fed rats were insulin resistant, whereas PUFA-treated rats showed improved insulin sensitivity. Sat caused a 125% increase in muscle DAG and a small increase in TAG. Although PUFA also resulted in a small increase in DAG, the excess fatty acids were primarily directed toward TAG storage (105% above Con). Ceramide content was unaffected by either high-fat diet. To examine the effects of fatty acids on cellular lipid storage and glucose uptake in vitro, rat L6 myotubes were incubated for 5 h with saturated and polyunsaturated fatty acids. After treatment of L6 myotubes with palmitate (C16:0), the ceramide and DAG content were increased by two- and fivefold, respectively, concomitant with reduced insulin-stimulated glucose uptake. In contrast, treatment of these cells with linoleate (C18:2) did not alter DAG, ceramide levels, and glucose uptake compared with controls (no added fatty acids). Both 16:0 and 18:2 treatments increased myotube TAG levels (C18:2 vs. C16:0, P < 0.05). These results indicate that increasing dietary Sat induces insulin resistance with concomitant increases in muscle DAG. Diets rich in n-6 PUFA appear to prevent insulin resistance by directing fat into TAG, rather than other lipid metabolites.  相似文献   

19.
CETP activity, measured as transfer of cholesteryl ester from exogenous HDL to exogenous VLDL and LDL, reflecting CETP mass as determined by ELISA, was documented in three groups of St. Kitts vervet monkeys fed diets enriched in saturated (Sat), monounsaturated (Mono), or n-6 polyunsaturated (Poly) fatty acids. CETP activity was not different when comparing the three dietary fats. However, CETP activity was significantly higher when cholesterol was added to each of the diets. Significant positive associations between CETP activity and VLDL and LDL cholesterol concentrations were found whereas significant negative associations were seen between CETP activity and HDL cholesterol in each of the diet groups. The strength of these associations was highest in the Sat group. Cholesteryl ester (CE) fatty acid composition of lipoproteins varied widely among diet groups, with the more polyunsaturated CE of the Poly group being associated with a higher rate of CE transfer to endogenous acceptor apolipoprotein B-containing lipoproteins. Finally, only the Sat diet group showed significant positive correlations of CETP activity with LDL particle diameter (r = 0.76), cholesteryl ester percentage (r = 0.67), and a strong negative correlation (r = -0.86) with LDL receptor function, estimated as the difference between native and methylated LDL turnover rates. We speculate that strong associations between CETP and LDL metabolism may explain, at least in part, the increased atherogenicity of dietary saturated fat.  相似文献   

20.
The relationship between plasma levels of Lp[a] and LDL was examined using dietary regimens. In 81 normolipidemic male outpatients, dietary cholesterol was increased by consuming six eggs per day from a mean (SD) level of 311 (162) to 1430 (198) mg per day. Mean (SD) LDL-cholesterol levels increased from 102 (26) mg/dl to 120 (33) mg/dl (P less than 0.001), while mean (SD) Lp[a] levels were 5.5 (6.1) mg/dl on the basal diet and 5.6 (6.4) mg/dl on the cholesterol-rich diet. No significant correlation was observed between increases in either LDL-cholesterol or apolipoprotein B to Lp[a], nor was there any relationship between individual baseline levels of Lp[a] and dietary-induced changes of Lp[a]. Fourteen of the 81 participants were reexamined under strict nutritional control. Four diets with 40% of calories as fat, but differing in the type of fat and the amount of cholesterol, were administered sequentially to all subjects. As expected, mean (SD) LDL-cholesterol and apolipoprotein B levels were highest on the saturated fat, high cholesterol diet (112 (32) mg/dl and 79 (22) mg/dl) and lowest on the polyunsaturated fat, low cholesterol diet (77 (27) mg/dl and 53 (18) mg/dl). In contrast, mean Lp[a] levels did not significantly change among the four diets (range 4.2-4.9 mg/dl). No correlation of Lp[a] responses with changes in plasma lipids, apolipoproteins, or lipoproteins was observed on any diet. These data suggest that determinants of plasma Lp[a] levels are distinctly different from the determinants of plasma LDL levels in normolipidemic males.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号