共查询到20条相似文献,搜索用时 31 毫秒
1.
Dopamine inhibits and serotonin stimulates adenylate cyclase activity in a neuroblastoma X Chinese hamster brain explant cell line (NCB-20). The inhibition of cyclic AMP accumulation by dopamine was blocked by pretreatment of the cells with pertussis toxin. Carbachol and bradykinin stimulated the accumulation of water-soluble inositol phosphates whereas thyrotropin-releasing hormone, vasopressin, neurotensin, and phenylephrine were without effect. Dopamine and serotonin had no significant effect on carbachol-induced phosphoinositide hydrolysis or the levels of the parent lipids within the membrane. Forskolin induced a much larger stimulation of cyclic AMP than did serotonin, and caused an increase in the levels of phosphatidylinositol-4-phosphate and phosphatidyl inositol-4,5-bisphosphate in the cell membrane. 相似文献
2.
Richard S. Jope 《Journal of neurochemistry》1988,51(6):1731-1736
NaF stimulated phosphoinositide hydrolysis in rat cortical slices. The production of [3H]inositol monophosphate was rapid for the first 15 min of incubation with NaF, followed by a plateau. The major product detected was [3H]inositol monophosphate, although significant amounts of [3H]inositol bisphosphate and [3H]inositol trisphosphate were also produced. The stimulation of [3H]inositol monophosphate production by NaF was concentration dependent between 2 and 20 mM NaF. Addition of 10 or 100 microM AlCl3 or aluminum maltol did not alter the effect of NaF, whereas at 500 microM, these aluminum preparations resulted in significant inhibition. Increasing the concentration of K+ from 5 to 20 mM potentiated [3H]inositol monophosphate production induced by carbachol but not by NaF. Incubation with 1 microM phorbol 12-myristate 13-acetate, a phorbol ester, inhibited carbachol-induced, but not NaF-induced, [3H]inositol monophosphate production. These results further support the hypothesis that a guanine nucleotide binding protein that can be activated by NaF is involved in phosphoinositide hydrolysis in brain. The use of NaF provides a means to bypass receptors to study intracellular regulatory sites of phosphoinositide metabolism without disrupting cells. 相似文献
3.
Abstract: An acid-hydrolyzable conjugate of 3,4-dihydroxyphenylethylamine (dopamine, DA) was detected in superfusates from slices from rat striatum. The concentrations of endogenous free and conjugated DA, and of the acid metabolites (3,4-dihydroxyphenylacetic acid [DOPAC] and homovanillic acid [HVA]) in superfusates were measured using HPLC with electrochemical detection. Conjugated DA in superfusates represented 10–20% of the free DA under basal conditions and during release evoked by p -tyramine (5 × 10−6 M to 5 × 10−4 M ); much smaller amounts of conjugated DA overflowed into superfusate when DA was released by equimolar concentrations of β-phenylethyl-amine. Surprisingly, inhibition of monoamine oxidase by the inhibitors N -methyl- N -propargyl-3-(2,4-dichlorophenoxy)propylamine hydrochlo-ride (clorgyline) or N -methyl- N -2-propynylbenylamine (pargyline) had little effect on the amounts of conjugated DA present in superfusate. Under basal conditions, the amounts of conjugated DA in superfusate were always less than the amounts of DOPAC but quite similar to the amounts of HVA. However, during release of DA evoked by p -tyramine the concentrations of conjugated DA in superfusate showed much more pronounced increases than those of the acidic metabolites. 相似文献
4.
Inhibition of Dopamine Agonist-Induced Phosphoinositide Hydrolysis by Concomitant Stimulation of Cyclic AMP Formation in Brain Slices 总被引:4,自引:0,他引:4
Abstract: We examined the effects of cyclic AMP on dopamine receptor-coupled activation of phosphoinositide hydrolysis in rat striatal slices. Forskolin, dibutyryl cyclic AMP, and the protein kinase A activator Sp -cyclic adenosine monophosphothioate ( Sp -cAMPS) significantly inhibited inositol phosphate formation stimulated by the dopamine D1 receptor agonist SKF 38393. Conversely, the protein kinase A antagonist Rp -cyclic adenosine monophosphothioate ( Rp -cAMPS) dose-dependently potentiated the SKF 38393 effect. In the presence of 200 µ M Rp -cAMPS, the dose-response curves of the dopamine D1 receptor agonists SKF 38393 and fenoldopam were shifted to the left and maximal agonist responses were markedly increased. The agonist EC50 values, however, were not significantly altered by protein kinase A inhibition. Neither Sp -cAMPS nor Rp -cAMPS significantly affected basal inositol phosphate accumulation. These findings demonstrate that dopaminergic stimulation of phosphoinositide hydrolysis is inhibited by elevations in intracellular cyclic AMP. Dopamine receptor agonists that stimulate adenylyl cyclase could suppress their activation of phosphoinositide hydrolysis by concomitantly stimulating the formation of cyclic AMP in striatal tissue. The interaction between dopamine D1 receptor-stimulated elevations in cyclic AMP and dopaminergic stimulation of inositol phosphate formation suggests a cellular colocalization of these dopamine-coupled transduction pathways in at least some cells of the rat striatum. 相似文献
5.
Inositol Phospholipid Hydrolysis in Rat Cerebral Cortical Slices: I. Receptor Characterisation 总被引:18,自引:17,他引:18
Characterisation of receptor-mediated breakdown of inositol phospholipids in rat cortical slices has been performed using a direct assay which involves prelabelling with [3H]inositol. When slices were preincubated with [3H]inositol, lithium was found to greatly amplify the capacity of receptor agonists such as carbachol, noradrenaline, and 5-hydroxytryptamine to increase the amount of radioactivity appearing in the inositol phosphates. Using a large variety of agonists and antagonists it could be shown that cholinergic muscarinic, alpha 1-adrenoceptor, and histamine H1 receptors appear to be linked to inositol phospholipid breakdown in cortex. The large responses produced by receptor agonists allowed a clear discrimination between full and partial agonists as well as quantitative analysis of competitive antagonists for each receptor. Whereas carbachol and acetylcholine (in the presence of a cholinesterase inhibitor) were full agonists, oxotremorine and arecoline were only partial agonists. Very low concentrations of atropine shifted the carbachol dose-response curve to the right and allowed inhibition constants for the antagonist to be easily calculated. The nicotinic antagonist, mecamylamine, was ineffective. Noradrenaline adrenaline were full agonists at alpha 1-adrenoceptors, but phenylephrine and probably methoxamine were partial agonists. Prazosin, but not yohimbine, potently and competitively antagonised the noradrenaline inositol phospholipid response. Mepyramine but not cimetidine competitively antagonised the histamine response. These data provide strong confirmation for the potentiating effect of lithium on neurotransmitter inositol phospholipid breakdown and emphasise the ease with which functional responses at a number of cortical receptors can be characterised. 相似文献
6.
Abstract: Muscarinic cholinergic and α1 -adrenoceptor-mediated stimulation of phosphoinositide hydrolysis in rat cerebral cortex were compared by measuring carbachol- and noradrenaline-induced accumulation of various intermediates of the phosphoinositide cycle. Unlike carbachol, noradrenaline in the presence of guanosine 5'- O -(3-thiotriphosphate) did not stimulate phospholipase C activity in brain cortical membranes. In cortical slices, the efficacy of noradrenaline to stimulate accumulation of 3 H-inositol phosphates and [32 P]phosphatidic acid was 2.5 to threefold that of carbachol. However, noradrenaline was less effective than carbachol in stimulating accumulation of [3 H]CDP-diacylglycerol and resynthesis of phosphatidylinositol. This was not due to calcium inhibition of CTP:phosphatidate cytidyltransferase or to different lithium requirements for carbachol- and noradrenaline-stimulated accumulation of [3 H]CDP-diacylglycerol. The noradrenaline-induced unbalance of the phosphoinositide cycle, which was most apparent at relatively high concentrations of calcium (2.5 m M ) in the incubation buffer, was qualitatively reproduced with ionomycin. The use of the α1a -subtype-selective adrenoceptor antagonists WB4101 and 5-methylurapidil revealed a single α1a -like component mediating the effects of noradrenaline. Our results suggest that the primary mechanism for phospholipase C activation by brain α1 adrenoceptors involves an increase in intracellular calcium concentration. 相似文献
7.
Enhanced Coupling of Neonatal Muscarinic Receptors in Rat Brain to Phosphoinositide Turnover 总被引:2,自引:7,他引:2
Anne M. Heacock Stephen K. Fisher Bernard W. Agranoff 《Journal of neurochemistry》1987,48(6):1904-1911
The relationship between the density of the muscarinic receptor in developing rat cerebral cortex and its coupling to phosphoinositide turnover is examined. Tissue slices from rats of various ages were incubated with myo-[2-3H]inositol, and the effect of carbamoylcholine on the release of total inositol phosphates was determined. Binding of [3H]quinuclidinyl benzilate was determined in the same tissue. Although muscarinic receptor density in day-18 embryonic cortex was only 5% of that in the adult, the maximal response of stimulated phosphoinositide turnover to carbamoylcholine (1-10 mM) was at the adult level (i.e., three-fold increase). Comparison of the dependence of the turnover on carbamoylcholine concentration revealed that in neonates, the dose-response curve was shifted to the left, giving a half-maximal effect at concentrations approximately tenfold lower than that in the adult. In addition, the partial muscarinic agonists oxotremorine-2 and bethanechol were both more efficacious in young rats than in adults. The differences could not be accounted for either by alterations in agonist affinity for the receptor or by the presence of "spare" muscarinic receptors. These results indicate that muscarinic receptors in fetal and newborn rat cerebral cortex are more efficiently coupled to stimulation of phosphoinositide turnover than in the adult. 相似文献
8.
Pushpa Tandon Syed F. Ali Meta Bonner Hugh A. Tilson 《Journal of neurochemistry》1989,53(4):1117-1125
Lesions produced by intradentate hippocampal administration of colchicine have been reported to produce several time-dependent behavioral and neurochemical changes, including a possible change in the signal transduction process for the cholinergic muscarinic receptor. To characterize further the effects of colchicine on receptor-coupled hydrolysis of phosphoinositides, colchicine was injected stereotaxically into the dentate gyrus of rats at a dose of 2.5 micrograms/site. The animals were killed 1, 3, or 12 weeks after injection and the hippocampi removed and sliced. [3H]Inositol was incorporated into slices, and various receptor agonists known to stimulate inositol phosphate (IP) metabolism were studied. Colchicine administration altered agonist-stimulated turnover in the hippocampus in a time-dependent manner. This hyperstimulation was receptor-mediated, because it was blocked by pirenzepine. The hyperstimulation of turnover was observed also with norepinephrine and serotonin. Colchicine had no effect on IP turnover in vitro. The effect of the colchicine lesion was observed only in the hippocampus, because no change in cholinergic muscarinic receptor-stimulated phosphatidylinositol turnover was observed in the cortex. These studies indicate that intradentate administration of colchicine produces a compensatory change in the signal transduction process in the hippocampus detectable 12 weeks after the lesion. 相似文献
9.
The development of dopamine D1 receptors in rat striatum during the early postnatal period is described, using [3H]piflutixol as ligand. Dopamine D1 receptors increase in number from day of birth until about 21 days of age, when they reach adult levels. This increase in number parallels the increase in several other dopamine markers in striatum during the same time period. The increase is reflected in an increase in Bmax of ligand binding to D1 receptors. All other properties of D1 receptors that were examined do not change throughout this developmental period and are essentially the same as those found in adult tissue. These include association and dissociation rates, affinity for piflutixol as determined by kinetic and saturation studies, and pharmacology. These studies provide a biochemical and pharmacological basis for further studies on the ontogeny of dopamine receptors and of striatum and on factors regulating development of this region. 相似文献
10.
M. S. Seren C. Aldinio R. Zanoni A. Leon F. Nicoletti 《Journal of neurochemistry》1989,53(6):1700-1705
Stimulation of inositol phospholipid hydrolysis by transmitter receptor agonists was measured in slices from hippocampus, cerebral cortex, and corpus striatum at various intervals after transient global ischemia in rats. Ischemia was induced through the four-vessel occlusion model. Stimulation of [3H]inositol monophosphate formation by excitatory amino acids was greatly enhanced in hippocampal slices prepared from ischemic rats at 24 h or 7 days after reperfusion. This potentiation was more evident using ibotenic acid and was also observed in cerebral cortex, but not in corpus striatum. This regional profile correlated with the pattern of ischemia-induced neuronal damage observed under our experimental conditions. The enhanced responsiveness to excitatory amino acids was always accompanied by an increase in both basal and norepinephrine-stimulated [3H]inositol monophosphate formation. In contrast, stimulation of [3H]inositol monophosphate formation by carbamylcholine was not modified in hippocampal or cortical slices from ischemic animals. 相似文献
11.
5-Hydroxytryptamine (serotonin or 5-HT) stimulated the incorporation of 32Pi into phosphatidylinositol (PI) but not into polyphosphoinositides in C6 glioma cells with an EC50 of 1.2 X 10(-7) M. The phosphoinositide response was blocked by the 5-HT2 antagonists ketanserin and spiperone but inhibited only partly by methysergide and mianserin. Atropine, prazosin, and yohimbine did not block the response, whereas fluphenazine and haloperidol did so partially but also inhibited basal incorporation by approximately 30%. The 5-HT1A agonist 8-hydroxy-2(di-n-propylamino)tetralin did not cause stimulation. Incubation with 5-HT (1 microM) for 1 h increased the incorporation of [2-3H]myoinositol into all phosphoinositides but not into inositol phosphates (IPs). Li+ alone at 10 mM increased labeling in inositol bisphosphate (IP2) and trisphosphate (IP3), whereas labeling in IP and phosphoinositides remained unaltered. Addition of 5-HT had no effect on this increase. Mn2+ at 1 mM enhanced labeling in PI, PI-4-phosphate, lyso-PI, glycerophosphoinositol, and IP, but the presence of 5-HT again did not cause further stimulation. 5-HT also stimulated the release of IPs in cells prelabeled with [2-3H]myo-inositol, incubated with LiCl (10 mM) and inositol (10 mM), and then exposed to 5-HT (1 microM). Radioactivity in IP2 and IP3 was very low, was stimulated approximately 50% as early as 30 s, and remained elevated for at least 20 min. Radioactivity in IP was at least 10 times as high as in IP3 but was increased only from 3 min on with a peak at 20 min, when the elevation was approximately 40 times that in IP3.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
12.
Electrical stimulation of the medial forebrain bundle, in a manner that augmented the release of dopamine in the forebrain, rapidly increased the striatal content of preproenkephalin (but not preprotachykinin) mRNA. This effect was mimicked by administration of either the indirect (dopamine-releasing) agonist methamphetamine or by the D-2 dopamine receptor agonist quinpirole, but not by the D-1 agonist SKF 38393. These data suggest that D-2 receptors, which mediate a stimulatory effect on enkephalin gene expression, may be subsaturated under basal conditions and, therefore, responsive to increases in synaptic dopamine. 相似文献
13.
Excitatory Amino Acids Stimulate Inositol Phospholipid Hydrolysis and Reduce Proliferation in Cultured Astrocytes 总被引:1,自引:5,他引:1
F. Nicoletti G. Magrì F. Ingrao V. Bruno M. V. Catania P. Dell'Albani D. F. Condorelli R. Avola 《Journal of neurochemistry》1990,54(3):771-777
Excitatory amino acids stimulated inositol phospholipid hydrolysis in primary cultures of astrocytes, as reflected by an increased formation of [3H]inositol monophosphate [( 3H]InsP) in the presence of 10 mM Li+. Quisqualate was the most potent activator of inositol phospholipid hydrolysis, followed by glutamate and ibotenate. Kainate exhibited low activity, whereas N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methylisoxazolepropionate (AMPA) were inactive. The increase in [3H]InsP formation induced by glutamate was potentiated after 12-h exposure to the proliferative agent epidermal growth factor (EGF), suggesting that activation of the mitotic cycle leads to an enhanced coupling of glutamate recognition sites with phospholipase C. To study how glutamate receptors are involved in regulating cell proliferation, we have measured [methyl-3H]thymidine incorporation in cultured astrocytes. Excitatory amino acids reduced thymidine incorporation with a pharmacological profile similar to that observed for the stimulation of inositol phospholipid hydrolysis. Quisqualate acted as a potent antiproliferative agent, both under basal conditions and in cells stimulated to proliferate by addition of EGF or phorbol 12-tetradecanoate 13-acetate. Glutamate and ibotenate reduced [methyl-3H]thymidine incorporation at high concentrations, whereas kainate, AMPA, and NMDA were virtually inactive. The action of quisqualate on both inositol phospholipid hydrolysis and thymidine incorporation was attenuated by 2-amino-4-phosphonobutyrate, which acted as a weak agonist/competitive antagonist. Other excitatory amino acid receptor antagonists were not effective.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
14.
The effect of chronic neuroleptic treatment on the relationship between the blockade of dopamine (DA) receptors by the neuroleptic drug spiperone and the decline in acetylcholine (ACh) levels was determined in the rat striatum in vivo. In rats, a unilateral lesion of the nigrostriatal pathway was produced with 6-hydroxydopamine. The rats were treated for 6 weeks with haloperidol (twice a day at 1 mg kg-1). Partial and complete receptor occupation was determined with radioactive spiperone (a D2 antagonist), given in various doses of different specific activity 2 h before death. ACh, choline, and radioactivity contents were measured in the same striatum. Following long-term haloperidol treatment, an increase in the maximal number of binding sites for spiperone was found. Virtually identical negative (linear) correlations between striatal ACh content and the number of receptors occupied by spiperone were found in saline- or subchronic haloperidol-treated rats when DA innervation was intact. The slope of the line describing the decrease in ACh content per occupied receptor, however, was much lower in haloperidol-treated rats than in saline-treated animals. After lesioning of the dopaminergic pathway, there was no longer a correlation between the receptor occupation and ACh levels in the striatum. These results show that receptor occupation by a neuroleptic correlates highly with function only when dopaminergic innervation is intact. Also, it appears that there is no fixed number of striatal ACh molecules per DA receptor, and, finally, that in vivo receptor detection methods distinguish differences in receptor density (as do in vitro techniques). 相似文献
15.
Differential Effects of Lithium on Muscarinic Receptor Stimulation of Inositol Phosphates in Rat Cerebral Cortex Slices 总被引:5,自引:13,他引:5
The accumulation of labelled inositol mono-, bis-, and trisphosphate in rat cerebral cortex slices was examined following preincubation with [3H]inositol. The muscarinic receptor agonist carbachol produced a rapid and sustained increased accumulation of each labelled inositol phosphate both in the presence and absence of 5 mM lithium. Lithium potentiated carbachol-stimulated accumulation of inositol monophosphate (EC50 0.5 mM) and inositol bisphosphate (EC50 4 mM) in a concentration-dependent manner. However, exposure to lithium in the presence of the muscarinic agonist produced a concentration- and time-dependent inhibition of inositol trisphosphate accumulation that was not related to receptor desensitisation. Although the present data do suggest that polyphosphoinositides are substrates for agonist-stimulated phospholipase C in brain, these results may not be entirely consistent with the production of inositol mono- and bisphosphate through inositol trisphosphate dephosphorylation. Furthermore, these data suggest site(s) additional to inositol monophosphatase that are affected by lithium. 相似文献
16.
Calcium- Versus G Protein-Mediated Phosphoinositide Hydrolysis in Rat Cerebral Cortical Synaptoneurosomes 总被引:2,自引:4,他引:2
The role of calcium and sodium in stimulating phosphoinositide hydrolysis in brain was investigated in rat cerebral cortical synaptoneurosomes. In buffer containing 136 mM sodium and various concentrations of added calcium (0-1.0 mM), basal, potassium-stimulated, and norepinephrine-stimulated formation of 3H-inositol phosphates decreased with decreasing extracellular calcium. Potassium- and norepinephrine-stimulated formation of 3H-inositol phosphates was reduced to basal levels by addition of EGTA. Isosmotically replacing sodium with choline chloride or N-methyl-D-glucamine to disrupt Na+/Ca2+ exchange resulted in a large increase in the formation of 3H-inositol phosphates. Measurement of cytosolic calcium with fura-2 revealed that the cytosolic calcium concentration was sensitive to changes in the extracellular calcium concentration and increased on resuspension of synaptoneurosomes in sodium-free rather than sodium-containing medium. In the absence of sodium, potassium-stimulated formation of 3H-inositol phosphates was reduced or eliminated, depending on the extracellular calcium concentration. Subtraction of basal formation of 3H-inositol phosphates from that in the presence of 1 mM carbachol or 100 microM norepinephrine revealed that the carbachol-stimulated component was the same in the presence and absence of sodium, whereas the norepinephrine-stimulated component was reduced in the absence of sodium. Addition of the protein kinase C activator 12-O-tetradecanoylphorbol 13-acetate inhibited norepinephrine- and, to a lesser extent, carbachol but not basal or aluminum fluoride-stimulated formation of 3H-inositol phosphates in sodium-free medium. These results suggest that an increase in intracellular calcium, via disruption of Na+/Ca2+ exchange or depolarization-induced calcium influx, may explain previous demonstrations that agents that stimulate Na+ influx can also stimulate phosphoinositide hydrolysis.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
17.
The excitatory amino acid agonists kainate, N-methyl-D-aspartate (NMDA), and quisqualate inhibited ligand-stimulated phosphoinositide hydrolysis in rat cortical slices. The NMDA channel blocker MK-801 antagonized the inhibition by NMDA but had no effect on the inhibition due to kainate or quisqualate. The antagonist 6-cyano-7-nitroquinoxaline-2,3-dione blocked the effects of quisqualate and kainate but not the effect of NMDA. These data indicate that activation of the NMDA, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid, and kainate types of ionotropic receptors has the same effect. In membranes prepared from cortical slices, there was no inhibition of carbachol-stimulated phosphoinositidase C activity by excitatory amino acids, suggesting that excitatory amino acids indirectly affect carbachol-stimulated phosphoinositide hydrolysis. The inhibition by excitatory amino acids of carbachol-stimulated phosphoinositide breakdown was dependent on extracellular Mg2+ and was abolished by procedures that increase intracellular Ca2+. Veratridine inhibition of carbachol-stimulated phosphoinositide hydrolysis was reversed by ouabain but not by other procedures that increase intracellular Ca2+. In contrast to excitatory amino acids, veratridine potentiated carbachol-stimulated phosphoinositide breakdown in the presence of 10 mM extracellular Mg2+. These data suggest that excitatory amino acids inhibit carbachol-stimulated phosphoinositide breakdown in rat cortex by lowering intracellular Ca2+ through a mechanism dependent on extracellular Mg2+. 相似文献
18.
Glycine potentiates stimulation of inositol phospholipid hydrolysis by glutamate and N-methyl-D-aspartate, but not by quisqualate or carbamylcholine, in primary cultures of cerebellar granule cells. This potentiation occurs in the absence of extracellular Mg2+, but is more evident when stimulation of inositol phospholipid hydrolysis by N-methyl-D-aspartate is measured in the presence of 1 mM Mg2+. The action of glycine is not antagonized by strychnine. These results suggest that glycine acts as a positive modulator of signal transduction at a specific class of N-methyl-D-aspartate-sensitive glutamate receptors coupled to inositol phospholipid hydrolysis in cerebellar granule cells. 相似文献
19.
The in vitro and ex vivo effects of lithium on muscarinic cholinergic inositol phospholipid hydrolysis and muscarinic cholinergic inhibition of dopamine D1-receptor-stimulated cyclic AMP formation were examined in rat brain slices. Following chronic lithium feeding, carbachol-stimulated inositol phosphate accumulation was reduced ex vivo in slices of cerebral cortex but not in striatal slices. Lithium (1 mM) in vitro had no direct effect on dopamine D1-receptor-stimulated cyclic AMP formation, but enhanced the inhibitory effect of carbachol on the D1 response, in striatal slices, and this was not significantly altered by prior lithium feeding. Lithium therefore has effects on two discrete muscarinic responses in rat brain which are apparently maintained after chronic exposure to the ion and might be relevant to its antimanic actions. 相似文献
20.
The ability of different receptors to mediate inhibition of cyclic AMP accumulation due to a variety of agonists was examined in rat striatal slices. In the presence of 1 mM 3-isobutyl-1-methylxanthine, dopamine D-2, muscarinic cholinergic, and opiate receptor stimulation by RU 24926, carbachol, and morphine (all at 10(-8)-10(-5) M), respectively, inhibited the increase in cyclic AMP accumulation in slices of rat striatum due to dopamine D-1 receptor stimulation by 1 microM SKF 38393. In contrast, these inhibitory agents were unable to reduce the ability of a number of other agonists, including isoprenaline, prostaglandin E1, 2-chloroadenosine, vasoactive intestinal polypeptide, and cholera toxin, to increase cyclic AMP levels in striatal slices. These results suggest that in rat striatum either dopamine D-2, muscarinic cholinergic, and opiate receptors are only functionally linked to dopamine D-1 receptors or that the D-1 and D-2 receptors linked to adenylate cyclase lie on the cells, distinct from other receptors capable of elevating striatal cyclic AMP levels. 相似文献