首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
2.
Recently, an unusual family of genes was identified with expression confined to the trophoblast of ruminant ungulate species. The members of this family (the trophoblast Kunitz domain proteins, or TKDPs) are characterized by the presence of one or more similar, approximately 80-residue repeat sequences placed ahead of a Kunitz serine proteinase-inhibitor domain. To examine the specificity of the Kunitz moiety, the Kunitz domains of selected TKDPs and a control Kunitz protein, bovine pancreatic trypsin inhibitor (BPTI), were produced as glutathione S-transferase fusions, and their abilities to inhibit six serine proteinases were examined. Circular dichroism spectroscopy confirmed that the Kunitz fold was intact. Three of the TKDPs had unusual residues at their P1 "warhead" (ovine TKDP-1, Asn; bovine TKDP-3, Thr; and bovine TKDP-5, Ile) and exhibited no measurable inhibitory activity toward any of the proteinases. Three (ovine TKDP-3, bovine TKDP-3, and bovine TKDP-4) lacked the conserved cysteines at residues 14 and 38 that form one of the highly conserved disulfide bonds that are structurally important in all known mammalian Kunitz proteins. Ovine TKDP-3 and bovine TKDP-4 had P1 lysines and inhibited trypsin and plasmin with K(i) values only approximately 10-fold higher than that of BPTI. Bovine TKDP-2 had a P1 lysine and the three conserved disulfides, but it possessed an unusual residue (Asp) at P2. It exhibited no inhibitory activity. These data suggest that the function of the TKDP, like certain Kunitz proteins found in snake venoms, may not be in proteinase inhibition.  相似文献   

3.
4.
The trophoblast Kunitz domain proteins (TKDPs) are products of the outer cells (trophoblasts) of the placenta of cattle, sheep, and related species. Most are expressed abundantly for only a few days during the time at which the ruminant conceptus is first establishing intimate contacts with the uterine lining. The TKDPs are secretory proteins that possess a carboxyl-terminal peptidase inhibitory domain related to the Kunitz family of serine peptidase inhibitors. On the amino-terminal end are one or more highly unusual regions that are unique to the TKDP genes and have no apparent similarity to any other known sequences. The TKDPs are a rather divergent family that exhibits a good deal of variation among the members. To better understand the reason for such variation, the rates of synonymous (dS) and nonsynonymous (dN), as well as radical (p NR ) and conservative (p NC ), substitutions were assessed. Phylogenetic trees revealed that the Kunitz domains represented three related groups, whereas the amino-terminal domains formed four groupings. Pairwise comparisons between Kunitz and amino-terminal domain groups demonstrated that dN was consistently greater than dS. In addition, nonsynonymous substitutions in the Kunitz domains tended to be radical (changing charge or polarity), while those in the amino-terminal domains exhibited neither a preponderance of conservative nor radical substitution rates. In summary, the rapid evolution of the TKDPs, coupled with their restricted temporal expression during development, likely reflects the establishment of protein-protein interactions that have evolved to serve the unusual synepitheliochorial placenta of ruminant ungulates. [Reviewing Editor: Dr. Martin Kreitman]  相似文献   

5.
Adaptive evolution in the snake venom Kunitz/BPTI protein family   总被引:4,自引:0,他引:4  
Zupunski V  Kordis D  Gubensek F 《FEBS letters》2003,547(1-3):131-136
Snake venoms are rich sources of serine proteinase inhibitors that are members of the Kunitz/BPTI (bovine pancreatic trypsin inhibitor) family. However, only a few of their gene sequences have been determined from snakes. We therefore cloned the cDNAs for the trypsin and chymotrypsin inhibitors from a Vipera ammodytes venom gland cDNA library. Phylogenetic analysis of these and other snake Kunitz/BPTI homologs shows the presence of three clusters, where sequences cluster by functional role. Analysis of the nucleotide sequences from the snake Kunitz/BPTI family shows that positive Darwinian selection was operating on the highly conserved BPTI fold, indicating that this family evolved by gene duplication and rapid diversification.  相似文献   

6.
Ra-KLP, a 75 amino acid protein secreted by the salivary gland of the brown ear tick Rhipicephalus appendiculatus has a sequence resembling those of Kunitz/BPTI proteins. We report the detection, purification and characterization of the function of Ra-KLP. In addition, determination of the three-dimensional crystal structure of Ra-KLP at 1.6 Å resolution using sulphur single-wavelength anomalous dispersion reveals that much of the loop structure of classical Kunitz domains, including the protruding protease-binding loop, has been replaced by β-strands. Even more unusually, the N-terminal portion of the polypeptide chain is pinned to the ”Kunitz head” by two disulphide bridges not found in classical Kunitz/BPTI proteins. The disulphide bond pattern has been further altered by the loss of the bridge that normally stabilizes the protease-binding loop. Consistent with the conversion of this loop into a β-strand, Ra-KLP shows no significant anti-protease activity; however, it activates maxiK channels in an in vitro system, suggesting a potential mechanism for regulating host blood supply during feeding.  相似文献   

7.
Norepinephrine-stimulated skin secretions of the tomato frog, Dyscophus guineti, contained a trypsin inhibitor whose primary structure was established as: SPAEVCF LPK(10) ESGLCRARAL(20) RYYYDRGDGK(30) CEEFIYGGCG(40) GNGNNY KSLL(50) TCKISCE. This amino acid sequence identifies the peptide as a member of the Kunitz/bovine pancreatic trypsin inhibitor (BPTI) family and demonstrates that selective evolutionary pressure has acted to conserve those domains in the molecule (corresponding to positions 12-18 and 34-39 in BPTI) that interact with trypsin. Extracellular proteases produced by pathogenic microorganisms play important roles in facilitating invasion of the host and broad spectrum antimicrobial activity of BPTI has been described. Cationic, amphipathic alpha-helical antimicrobial peptides of the magainin type, important in the defense strategy of several species of frog, were not detected in the skin secretions. We speculate, therefore, that synthesis of a proteinase inhibitor in the skin of the tomato frog may be a component of an alternative strategy of this animal to defend itself against microorganisms.  相似文献   

8.
Miraculin-like proteins (MLPs) belong to soybean Kunitz super-family and have been characterized from many plant families like Rutaceae, Solanaceae, Rubiaceae, etc. Many of them possess trypsin inhibitory activity and are involved in plant defense. MLPs exhibit significant sequence identity (~30-95%) to native miraculin protein, also belonging to Kunitz super-family compared with a typical Kunitz family member (~30%). The sequence and structure-function comparison of MLPs with that of a classical Kunitz inhibitor have demonstrated that MLPs have evolved to form a distinct group within Kunitz super-family. Sequence analysis of new genes along with available MLP sequences in the literature revealed three major groups for these proteins. A significant feature of Rutaceae MLP type 2 sequences is the presence of phosphorylation motif. Subtle changes are seen in putative reactive loop residues among different MLPs suggesting altered specificities to specific proteases. In phylogenetic analysis, Rutaceae MLP type 1 and type 2 proteins clustered together on separate branches, whereas native miraculin along with other MLPs formed distinct clusters. Site-specific positive Darwinian selection was observed at many sites in both the groups of Rutaceae MLP sequences with most of the residues undergoing positive selection located in loop regions. The results demonstrate the sequence and thereby the structure-function divergence of MLPs as a distinct group within soybean Kunitz super-family due to biotic and abiotic stresses of local environment.  相似文献   

9.
A tick protein with a modified Kunitz fold inhibits human tryptase   总被引:1,自引:0,他引:1  
TdPI, a tick salivary gland product related to Kunitz/BPTI proteins is a potent inhibitor of human beta-tryptase. Kinetic assays suggest that three of the four catalytic sites of tryptase are blocked by TdPI, and that the inhibition of one of these involves a peptide flanking the Kunitz head. In the course of the inhibition, tryptase cleaves TdPI at several positions. Crystal structures of the TdPI head, on its own and in complex with trypsin, reveal features that are not found in classical Kunitz/BPTI proteins and suggest the mode of interaction with tryptase. The loop of TdPI connecting the beta-sheet with the C-terminal alpha-helix is shortened, the disulphide-bridge pattern altered and N and C termini separated to produce a highly pointed molecule capable of penetrating the cramped active sites of tryptase. TdPI accumulates in the cytosolic granules of mast cells, presumably suppressing inflammation in the host animal's skin by tryptase inhibition.  相似文献   

10.
We investigated the structure, organization, and developmental regulation of soybean Kunitz trypsin inhibitor genes. The Kunitz trypsin inhibitor gene family contains at least 10 members, many of which are closely linked in tandem pairs. Three Kunitz trypsin inhibitor genes, designated as KTi1, KTi2, and KTi3, do not contain intervening sequences, and are expressed during embryogenesis and in the mature plant. The KTi1 and KTi2 genes have nearly identical nucleotide sequences, are expressed at different levels during embryogenesis, are represented in leaf, root, and stem mRNAs, and probably do not encode proteins with trypsin inhibitor activity. By contrast, the KTi3 gene has diverged 20% from the KTi1 and KTi2 genes, and encodes the prominent Kunitz trypsin inhibitor found in soybean seeds. The KTi3 gene has the highest expression level during embryogenesis, and is also represented in leaf mRNA. All three Kunitz trypsin inhibitor genes are regulated correctly in transformed tobacco plants. Our results suggest that Kunitz trypsin inhibitor genes contain different combinations of cis-control elements that program distinct qualitative and quantitative expression patterns during the soybean life cycle.  相似文献   

11.
A cDNA encoding chymotrypsin inhibitor was constructed from the cellular RNA isolated from the venom glands of Naja atra (Taiwan cobra). The resultant amino acid sequence showed that the mature protein is comprised of 57 amino acid residues with six cysteine residues. Cloned protein was expressed and isolated from the inclusion bodies of E. coli and refolded into a functional protein in vitro. Deleting the first three residues at its N-terminus caused a moderate increase in the inhibitory constant (K(i)) against chymotrypsin. The genomic DNA encoding the chymotrypsin inhibitor was amplified by PCR. The gene shares virtually an identical structural organization with the beta-bungarotoxin B1 chain (a snake Kunitz/BPTI neurotoxic homolog) gene. Moreover, the overall sequence identity of the N. atra chymotrypsin inhibitor and beta-bungarotoxin B1 chain genes was up to 83%. These findings strongly suggest that snake Kunitz/BPTI protease inhibitors and neurotoxic homologs may have originated from a common ancestor.  相似文献   

12.
He YY  Liu SB  Lee WH  Qian JQ  Zhang Y 《Peptides》2008,29(10):1692-1699
Snake venom Kunitz/BPTI members are good tools for understanding of structure-functional relationship between serine proteases and their inhibitors. A novel dual Kunitz/BPTI serine proteinase inhibitor named OH-TCI (trypsin- and chymotrypsin-dual inhibitor from Ophiophagus hannah) was isolated from king cobra venom by three chromatographic steps of gel filtration, trypsin affinity and reverse phase HPLC. OH-TCI is composed of 58 amino acid residues with a molecular mass of 6339Da. Successful expression of OH-TCI was performed as the maltose-binding fusion protein in E. coli DH5alpha. Much different from Oh11-1, the purified native and recombinant OH-TCI both had strong inhibitory activities against trypsin and chymotrypsin although the sequence identity (74.1%) between them is very high. The inhibitor constants (K(i)) of recombinant OH-TCI were 3.91 x 10(-7) and 8.46 x10(-8)M for trypsin and chymotrypsin, respectively. To our knowledge, it was the first report of Kunitz/BPTI serine proteinase inhibitor from snake venom that had equivalent trypsin and chymotrypsin inhibitory activities.  相似文献   

13.
14.
Hepatocyte growth factor activator inhibitor type 1 (HAI-1) is a Kunitz-type serine protease inhibitor identified as a strong inhibitor of hepatocyte growth factor (HGF) activator and matriptase. HAI-1 is first produced in a membrane-integrated form with two Kunitz domains in its extracellular region, and subsequent ectodomain shedding releases two major secreted forms, one with a single Kunitz domain and one with two Kunitz domains. To determine the roles of the Kunitz domains in the inhibitory activity of HAI-1 against serine proteases, we constructed various HAI-1 mutant proteins and examined their inhibitory activity against HGF activator and trypsin. The N-terminal Kunitz domain (Kunitz I) had potent inhibitory activity against both HGF activator and trypsin, whereas the C-terminal Kunitz domain (Kunitz II) had only very weak inhibitory activity against HGF activator, although its potency against trypsin was equivalent to that of Kunitz I. These results indicate that Kunitz I is the functional domain of HAI-1 for inhibiting the HGF-converting activity of HGF activator. Furthermore, the presence of two Kunitz domains affected the inhibitory activity of HAI-1 against HGF activator, and it showed a similar, but not additive, level of inhibitory activity against trypsin when compared with that of the individual Kunitz domains. These results suggest that serine protease binding sites of Kunitz I and Kunitz II are located close to each other and that proteolytic processing to generate HAI-1 with only one Kunitz domain regulates the activity of HAI-1.  相似文献   

15.
16.
17.
18.
Inga laurina is a tree that belongs to the Mimosoideae sub-family of the Leguminosae. A protein inhibitor of trypsin (ILTI) was isolated from its seeds by ammonium sulphate precipitation, ion-exchange chromatography and rechromatography on an HiTrap Q ion-exchange column. By SDS-PAGE, ILTI yielded a single band with a Mr of 20 kDa with or without reduction. ILTI was found to be a single polypeptide chain containing 180 amino acids, the sequence of which was clearly homologous to the Kunitz family of serine protease plant protein inhibitors, and it also showed significant similarity to the seed storage proteins, sporamin and miraculin. However, ILTI displayed major differences to most other Kunitz inhibitors in that it contained only one disulfide bridge, and did not have two polypeptide chains as for the majority of other Kunitz inhibitors purified from Mimosoideae species. ILTI inhibited bovine trypsin with an equilibrium dissociation constant (K(i)) of 6 x 10(-9)M, but did not inhibit chymotrypsin, papain and alpha-amylase. Its amino acid sequence contained a Lys residue at the putative reactive site (position 64). ILTI was stable over a wide range of temperature and pH and in the presence of DTT.  相似文献   

19.
The effect of pH and temperature on the association equilibrium constant (Ka) for the binding of the bovine basic pancreatic trypsin inhibitor (BPTI Kunitz inhibitor) to human Lys77-plasmin has been investigated. Ka values decrease with decreasing pH, reflecting the acid-pK and -midpoint shifts, upon BPTI binding, of a single ionizable group, between pH 5 and 9, and of a three-proton transition, between pH 3 and 5. At pH 8.0, values of thermodynamic parameters for BPTI binding to human Lys77-plasmin are: Ka = 1.2 X 10(9) M-1, delta G degree = -12.2 kcal/mol, and delta S degree = +49 entropy units (at 21 degrees C); and delta H degree = +2.3 kcal/mol (temperature independent between 5 degrees C and 45 degrees C; 1 kcal = 4184 J). BPTI binding properties of human Lys77-plasmin have been analysed in parallel with those of serine (pro)enzymes acting on cationic and non-cationic substrates. Considering the known molecular structures of homologous serine (pro)enzymes, or Kunitz and Kazal-type inhibitors and of their complexes, the observed binding behaviour of BPTI to human Lys77-plasmin was related to the inferred stereochemistry of the enzyme-inhibitor contact region.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号