首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The most prominent functional property of cortical neurons in sensory areas are their tuned receptive fields which provide specific responses of the neurons to external stimuli. Tuned neural firing indeed reflects the most basic and best worked out level of cognitive representations. Tuning properties can be dynamic on a short time-scale of fractions of a second. Such dynamic effects have been modeled by localised solutions (also called “bumps” or “peaks”) in dynamic neural fields. In the present work we develop an approximation method to reduce the dynamics of localised activation peaks in systems of n coupled nonlinear d-dimensional neural fields with transmission delays to a small set of delay differential equations for the peak amplitudes and widths only. The method considerably simplifies the analysis of peaked solutions as demonstrated for a two-dimensional example model of neural feature selectivity in the brain. The reduced equations describe the effective interaction between pools of local neurons of several (n) classes that participate in shaping the dynamic receptive field responses. To lowest order they resemble neural mass models as they often form the base of EEG-models. Thereby they provide a link between functional small-scale receptive field models and more coarse-grained EEG-models. More specifically, they connect the dynamics in feature-selective cortical microcircuits to the more abstract local elements used in coarse-grained models. However, beside amplitudes the reduced equations also reflect the sharpness of tuning of the activity in a d-dimensional feature space in response to localised stimuli.  相似文献   

2.
Neural field models of firing rate activity have had a major impact in helping to develop an understanding of the dynamics seen in brain slice preparations. These models typically take the form of integro-differential equations. Their non-local nature has led to the development of a set of analytical and numerical tools for the study of waves, bumps and patterns, based around natural extensions of those used for local differential equation models. In this paper we present a review of such techniques and show how recent advances have opened the way for future studies of neural fields in both one and two dimensions that can incorporate realistic forms of axo-dendritic interactions and the slow intrinsic currents that underlie bursting behaviour in single neurons.  相似文献   

3.
Computational models of primary visual cortex have demonstrated that principles of efficient coding and neuronal sparseness can explain the emergence of neurones with localised oriented receptive fields. Yet, existing models have failed to predict the diverse shapes of receptive fields that occur in nature. The existing models used a particular "soft" form of sparseness that limits average neuronal activity. Here we study models of efficient coding in a broader context by comparing soft and "bard" forms of neuronal sparseness. As a result of our analyses, we propose a novel network model for visual cortex. The model forms efficient visual representations in which the number of active neurones, rather than mean neuronal activity, is limited. This form of hard sparseness also economises cortical resources like synaptic memory and metabolic energy. Furthermore, our model accurately predicts the distribution of receptive field shapes found in the primary visual cortex of cat and monkey.  相似文献   

4.
Experimental observations of simultaneous activity in large cortical areas have seemed to justify a large network approach in early studies of neural information codes and memory capacity. This approach has overlooked, however, the segregated nature of cortical structure and functionality. Employing graph-theoretic results, we show that, given the estimated number of neurons in the human brain, there are only a few primal sizes that can be attributed to neural circuits under probabilistically sparse connectivity. The significance of this finding is that neural circuits of relatively small primal sizes in cyclic interaction, implied by inhibitory interneuron potentiation and excitatory inter-circuit potentiation, generate relatively long non-repetitious sequences of asynchronous primal-length periods. The meta-periodic nature of such circuit interaction translates into meta-periodic firing-rate dynamics, representing cortical information. It is finally shown that interacting neural circuits of primal sizes 7 or less exhaust most of the capacity of the human brain, with relatively little room to spare for circuits of larger primal sizes. This also appears to ratify experimental findings on the human working memory capacity.  相似文献   

5.
The study of functional brain connectivity alterations induced by neurological disorders and their analysis from resting state functional Magnetic Resonance Imaging (rfMRI) is generally considered to be a challenging task. The main challenge lies in determining and interpreting the large-scale connectivity of brain regions when studying neurological disorders such as epilepsy. We tackle this challenging task by studying the cortical region connectivity using a novel approach for clustering the rfMRI time series signals and by identifying discriminant functional connections using a novel difference statistic measure. The proposed approach is then used in conjunction with the difference statistic to conduct automatic classification experiments for epileptic and healthy subjects using the rfMRI data. Our results show that the proposed difference statistic measure has the potential to extract promising discriminant neuroimaging markers. The extracted neuroimaging markers yield 93.08% classification accuracy on unseen data as compared to 80.20% accuracy on the same dataset by a recent state-of-the-art algorithm. The results demonstrate that for epilepsy the proposed approach confirms known functional connectivity alterations between cortical regions, reveals some new connectivity alterations, suggests potential neuroimaging markers, and predicts epilepsy with high accuracy from rfMRI scans.  相似文献   

6.
The concept of macro scale synthetic jets has been applied to the low Reynolds number (Re=10), two-dimensional channel flows which may be found in biosensor microfluidic systems. The current numerical investigation utilizes a hybrid approach of the lattice Boltzmann (LB) method for flow field computations and a finite-difference, convection-diffusion equation for passive scalar transport. The study presents the modified main channel flow results for various wall jet geometries (derived from synthetic jets), jet inlet conditions, scaling issues and Reynolds numbers. The results indicate limited effects due to jet cavity-slot geometry, and that the forced jet imparts momentum to the channel flow thus enhancing fluid mixing.  相似文献   

7.
The rapid growth of the literature on neuroimaging in humans has led to major advances in our understanding of human brain function but has also made it increasingly difficult to aggregate and synthesize neuroimaging findings. Here we describe and validate an automated brain-mapping framework that uses text-mining, meta-analysis and machine-learning techniques to generate a large database of mappings between neural and cognitive states. We show that our approach can be used to automatically conduct large-scale, high-quality neuroimaging meta-analyses, address long-standing inferential problems in the neuroimaging literature and support accurate 'decoding' of broad cognitive states from brain activity in both entire studies and individual human subjects. Collectively, our results have validated a powerful and generative framework for synthesizing human neuroimaging data on an unprecedented scale.  相似文献   

8.
A numerical model of the coupled motion of a flexing surface in a high Reynolds number flow is presented for the simulation of flexible polyurethane heart valves in the aortic position. This is achieved by matching a Lagrangian dynamic leaflet model with a panel method based flow solver. The two models are coupled via the time-dependent pressure field using the unsteady Bernoulli equation. Incorporation of sub-cycling in the dynamic model equations and fast pre conditioning techniques in the panel method solver yields efficient convergence and near real-time simulations of valve motion. The generality of dynamic model allows different material properties and/or geometries to be studied easily and interactively. This interactivity is realized by embedding the models within a design environment created using the software IRIS Explorer. Two flow domains are developed, an infinite domain and an internal domain using conformal mapping theory. In addition bending stress on the valve is computed using a simple stress model based on spline and circle equation techniques.  相似文献   

9.
Utilizing advances in functional neuroimaging and computational neural modeling, neuroscientists have increasingly sought to investigate how distributed networks, composed of functionally defined subregions, combine to produce cognition. Large-scale, biologically realistic neural models, which integrate data from cellular, regional, whole brain, and behavioral sources, delineate specific hypotheses about how these interacting neural populations might carry out high-level cognitive tasks. In this review, we discuss neuroimaging, neural modeling, and the utility of large-scale biologically realistic models using modeling of short-term memory as an example. We present a sketch of the data regarding the neural basis of short-term memory from non-human electrophysiological, computational and neuroimaging perspectives, highlighting the multiple interacting brain regions believed to be involved. Through a review of several efforts, including our own, to combine neural modeling and neuroimaging data, we argue that large scale neural models provide specific advantages in understanding the distributed networks underlying cognition and behavior.  相似文献   

10.
Dynamic Causal Modelling (DCM) and the theory of autopoietic systems are two important conceptual frameworks. In this review, we suggest that they can be combined to answer important questions about self-organising systems like the brain. DCM has been developed recently by the neuroimaging community to explain, using biophysical models, the non-invasive brain imaging data are caused by neural processes. It allows one to ask mechanistic questions about the implementation of cerebral processes. In DCM the parameters of biophysical models are estimated from measured data and the evidence for each model is evaluated. This enables one to test different functional hypotheses (i.e., models) for a given data set. Autopoiesis and related formal theories of biological systems as autonomous machines represent a body of concepts with many successful applications. However, autopoiesis has remained largely theoretical and has not penetrated the empiricism of cognitive neuroscience. In this review, we try to show the connections that exist between DCM and autopoiesis. In particular, we propose a simple modification to standard formulations of DCM that includes autonomous processes. The idea is to exploit the machinery of the system identification of DCMs in neuroimaging to test the face validity of the autopoietic theory applied to neural subsystems. We illustrate the theoretical concepts and their implications for interpreting electroencephalographic signals acquired during amygdala stimulation in an epileptic patient. The results suggest that DCM represents a relevant biophysical approach to brain functional organisation, with a potential that is yet to be fully evaluated.  相似文献   

11.
This study presents a comparison of semi-analytical and numerical solution techniques for solving the passive bidomain equation in simple tissue geometries containing a region of subendocardial ischaemia. When the semi-analytical solution is based on Fourier transforms, recovering the solution from the frequency domain via fast Fourier transforms imposes a periodic boundary condition on the solution of the partial differential equation. On the other hand, the numerical solution uses an insulation boundary condition. When these techniques are applied to calculate the epicardial surface potentials, both yield a three well potential distribution which is identical if fibre rotation within the tissue is ignored. However, when fibre rotation is included, the resulting three-well distribution rotates, but through different angles, depending on the solution method. A quantitative comparison between the semi-analytical and numerical solutiontechniques is presented in terms of the effect fibre rotation has on the rotation of the epicardial potential distribution. It turns out that the Fourier transform approach predicts a larger rotation of the epicardial potential distribution than the numerical solution. The conclusion from this study is that it is not always possible to use analytical or semi-analytical solutions to check the accuracy of numerical solution procedures. For the problem considered here, this checking is only possible when it is assumed that there is no fibre rotation through the tissue.  相似文献   

12.
This paper presents an inverse scattering procedure based on a statistical cooling algorithm to predict the electromagnetic field inside a biological body. By knowing only the scattered electric field distribution in a set of observation points external to the biological model, this method seems to be able to predict the electromagnetic field distributions in the investigation domain, minimizing a suitable cost function. To this end, a numerical statistical procedure is used, which allows to treat functions with a large number of unknowns in an efficient manner and to exploit the so called a priori knowledge in the reconstruction process. Some preliminary results are reported, concerning simplified biological geometries, which clearly show the capabilities and effectiveness, and also the current limitations of the proposed approach. Finally, further advances for the proposed imaging technique are indicated and discussed.  相似文献   

13.
The development of neuroimaging methods such as PET, has provided a new impulse to the study of the neural basis of cognitive functions, and has extended the field of inquiry from the analysis of the consequences of brain lesions to the functional investigations of brain activity, either in patients with selective neuropsychological deficits or in normal subjects engaged in cognitive tasks. Specific patterns of hypometabolism in neurological patients are associated with different profiles of memory deficits. [18F]FDG PET studies have confirmed the association of episodic memory with the structures of Papez's circuit and have shown correlations between short-term and semantic memory and the language areas. The identification of anatomo-functional networks involved in specific components of memory function in normal subjects is the aim of several PET activation studies. The results are in agreement with ‘neural network’ models of the neural basis of memory, as complex functions subserved by multiple interconnected cortical and subcortical structures.  相似文献   

14.
Both physiological and behavioral studies have suggested that stimulus-driven neural activity in the sensory pathways can be modulated in amplitude during selective attention. Recordings of event-related brain potentials indicate that such sensory gain control or amplification processes play an important role in visual-spatial attention. Combined event-related brain potential and neuroimaging experiments provide strong evidence that attentional gain control operates at an early stage of visual processing in extrastriate cortical areas. These data support early selection theories of attention and provide a basis for distinguishing between separate mechanisms of attentional suppression (of unattended inputs) and attentional facilitation (of attended inputs).  相似文献   

15.
In order to accelerate translational neuroscience with the goal of improving clinical care it has become important to support rapid accumulation and analysis of large, heterogeneous neuroimaging samples and their metadata from both normal control and patient groups. We propose a multi-centre, multinational approach to accelerate the data mining of large samples and facilitate data-led clinical translation of neuroimaging results in stroke. Such data-driven approaches are likely to have an early impact on clinically relevant brain recovery while we simultaneously pursue the much more challenging model-based approaches that depend on a deep understanding of the complex neural circuitry and physiological processes that support brain function and recovery. We present a brief overview of three (potentially converging) approaches to neuroimaging data warehousing and processing that aim to support these diverse methods for facilitating prediction of cognitive and behavioral recovery after stroke, or other types of brain injury or disease.  相似文献   

16.
We introduce a grid cell microcircuit hypothesis. We propose the ‘grid in the world’ (evident in grid cell discharges) is generated by a ‘grid in the cortex’. This cortical grid is formed by patches of calbindin-positive pyramidal neurons in layer 2 of medial entorhinal cortex (MEC). Our isomorphic mapping hypothesis assumes three types of isomorphism: (i) metric correspondence of neural space (the two-dimensional cortical sheet) and the external two-dimensional space within patches; (ii) isomorphism between cellular connectivity matrix and firing field; (iii) isomorphism between single cell and population activity. Each patch is a grid cell lattice arranged in a two-dimensional map of space with a neural : external scale of approximately 1 : 2000 in the dorsal part of rat MEC. The lattice behaves like an excitable medium with neighbouring grid cells exciting each other. Spatial scale is implemented as an intrinsic scaling factor for neural propagation speed. This factor varies along the dorsoventral cortical axis. A connectivity scheme of the grid system is described. Head direction input specifies the direction of activity propagation. We extend the theory to neurons between grid patches and predict a rare discharge pattern (inverted grid cells) and the relative location and proportion of grid cells and spatial band cells.  相似文献   

17.
The cognitive neuroscience of memory distortion   总被引:10,自引:0,他引:10  
Schacter DL  Slotnick SD 《Neuron》2004,44(1):149-160
Memory distortion occurs in the laboratory and in everyday life. This article focuses on false recognition, a common type of memory distortion in which individuals incorrectly claim to have encountered a novel object or event. By considering evidence from neuropsychology, neuroimaging, and electrophysiology, we address three questions. (1) Are there patterns of neural activity that can distinguish between true and false recognition? (2) Which brain regions contribute to false recognition? (3) Which brain regions play a role in monitoring or reducing false recognition? Neuroimaging and electrophysiological studies suggest that sensory activity is greater for true recognition compared to false recognition. Neuropsychological and neuroimaging results indicate that the hippocampus and several cortical regions contribute to false recognition. Evidence from neuropsychology, neuroimaging, and electrophysiology implicates the prefrontal cortex in retrieval monitoring that can limit the rate of false recognition.  相似文献   

18.
Abstract

A numerical model of the coupled motion of a flexing surface in a high Reynolds number flow is presented for the simulation of flexible polyurethane heart valves in the aortic position. This is achieved by matching a Lagrangian dynamic leaflet model with a panel method based flow solver. The two models are coupled via the time-dependent pressure field using the unsteady Bernoulli equation.

Incorporation of sub-cycling in the dynamic model equations and fast pre conditioning techniques in the panel method solver yields efficient convergence and near real-time simulations of valve motion. The generality of dynamic model allows different material properties and/or geometries to be studied easily and interactively. This interactivity is realized by embedding the models within a design environment created using the software IRIS Explorer TM.

Two flow domains are developed, an infinite domain and an internal domain using conformal mapping theory. In addition bending stress on the valve is computed using a simple stress model based on spline and circle equation techniques.  相似文献   

19.
Reading requires the interaction of a distributed set of cortical areas whose distinct patterns give rise to a wide range of individual skill. However, the nature of these neural interactions and their relation to reading performance are still poorly understood. Functional connectivity analyses of fMRI data can be used to characterize the nature of interactivity of distributed brain networks, yet most previous studies have focused on connectivity during task-free (i.e., “resting state”) conditions. Here, we report new methods for assessing task-related functional connectivity using data-driven graph theoretical methods and describe how large-scale patterns of connectivity relate to individual variability in reading performance among children. We found that connectivity patterns of subjects performing a reading task could be decomposed hierarchically into multiple sub-networks, and we observed stronger long-range interaction between sub-networks in subjects with higher task accuracy. Additionally, we found a network of hub regions known to be critical to reading that displays increased short-range synchronization in higher accuracy subjects. These individual differences in task-related functional connectivity reveal that increased interaction between distant regions, coupled with selective local integration within key regions, is associated with better reading performance. Importantly, we show that task-related neuroimaging data contains far more information than usually extracted via standard univariate analyses – information that can meaningfully relate neural connectivity patterns to cognition and task.  相似文献   

20.

Background

Various neuroimaging studies, both structural and functional, have provided support for the proposal that a distributed brain network is likely to be the neural basis of intelligence. The theory of Distributed Intelligent Processing Systems (DIPS), first developed in the field of Artificial Intelligence, was proposed to adequately model distributed neural intelligent processing. In addition, the neural efficiency hypothesis suggests that individuals with higher intelligence display more focused cortical activation during cognitive performance, resulting in lower total brain activation when compared with individuals who have lower intelligence. This may be understood as a property of the DIPS.

Methodology and Principal Findings

In our study, a new EEG brain mapping technique, based on the neural efficiency hypothesis and the notion of the brain as a Distributed Intelligence Processing System, was used to investigate the correlations between IQ evaluated with WAIS (Whechsler Adult Intelligence Scale) and WISC (Wechsler Intelligence Scale for Children), and the brain activity associated with visual and verbal processing, in order to test the validity of a distributed neural basis for intelligence.

Conclusion

The present results support these claims and the neural efficiency hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号