首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fat‐free mass or lean tissue mass includes nonskeletal muscle components such as the fat‐free component of adipose tissue fat cells. This fat‐free component of adipose tissue may need to be taken into consideration when large changes in body fat occur following a weight loss intervention. It is not uncommon to see a loss of lean mass with interventions designed to promote the loss of large amounts of fat mass. However, after eliminating the influence of the fat‐free component of adipose tissue on dual‐energy x‐ray absorptiometry (DXA)‐derived lean mass, the original loss of lean mass is no longer observed or is markedly reduced. This suggests that the majority of the lean mass lost with dieting may be the fat‐free component of adipose tissue. To accurately estimate the change in lean tissue, eliminating the fat‐free adipose tissue from DXA‐derived lean mass is needed when large changes in body fat occur following an intervention.  相似文献   

2.
Objective : Although obesity is typically associated with increased cardiovascular risk, a subset of obese individuals display a normal metabolic profile (“metabolically healthy obese,” MHO) and conversely, a subset of nonobese subjects present with obesity‐associated cardiometabolic abnormalities (“metabolically obese nonobese,” MONO). The aim of this cross‐sectional study was to identify the most important body composition determinants of metabolic phenotypes of obesity in nonobese and obese healthy postmenopausal women. Design and Methods : We studied a total of 150 postmenopausal women (age 54 ± 7 years, mean ± 1 SD). Based on a cardiometabolic risk score, nonobese (body mass index [BMI] ≤ 27) and obese women (BMI > 27) were classified into “metabolically healthy” and “unhealthy” phenotypes. Total and regional body composition was assessed with dual‐energy X‐ray absorptiometry (DXA). Results : In both obese and nonobese groups, the “unhealthy” phenotypes were characterized by frequent bodyweight fluctuations, higher biochemical markers of insulin resistance, hepatic steatosis and inflammation, and higher anthropometric and DXA‐derived indices of central adiposity, compared with “healthy” phenotypes. Indices of total adiposity, peripheral fat distribution and lean body mass were not significantly different between “healthy” and “unhealthy” phenotypes. Despite having increased fat mass, MHO women exhibited comparable cardiometabolic parameters with healthy nonobese, and better glucose and lipid levels than MONO. Two DXA‐derived indices, trunk‐to‐legs and abdominal‐to‐gluteofemoral fat ratio were the major independent determinants of the “unhealthy” phenotypes in our cohort. Conclusions : The “metabolically obese phenotype” is associated with bodyweight variability, multiple cardiometabolic abnormalities and an excess of central relative to peripheral fat in postmenopausal women. DXA‐derived centrality ratios can discriminate effectively between metabolic subtypes of obesity in menopause.  相似文献   

3.
Physical activity promotes metabolic adaptations that improve body functionality and contribute to the prevention of some diseases. With respect to energy and fat balance, physical activity facilitates the equilibrium between energy intake and expenditure as well as between fat intake and fat oxidation. When combined with a healthy diet that favors satiety with a reduced energy intake, exercise can induce a substantial mass loss in obese individuals. However, even the impact of an exemplary lifestyle does not seem to have the potential to decrease body mass in obese individuals down to the mass range of lean people. Up to now, we have not been able to induce mass changes exceeding 12%-15% initial body mass in obese male subjects under tolerable exercise and dietary habits, and this moderate success was accompanied by modifications in appetite and energy expenditure susceptible to compromise subsequent mass stability. As described in this paper, many environmental factors can influence energy balance and the ability to lose body fat in response to a healthy diet and (or) physical activity program. Particular attention is given to preliminary data obtained in our laboratory that suggest that knowledge-based work does not favor the same potential mass reducing effects as physical work. In fact, the acute effects of knowledge-based work suggest that this work modality may be rather susceptible to promote a more pronounced positive energy balance compared with what we may expect from a sedentary relaxing activity. This is problematic for obesity prevention in the future since knowledge-based work now represents the main working modality in a context of modernity.  相似文献   

4.
Objective: Dual‐energy X‐ray absorptiometry (DXA) is often cited as a criterion method for body composition measurements. We have previously shown that a new DXA software version (Hologic Discovery V12.1) will affect whole‐body bone mineral results for subjects weighing <40 kg. We wished to reanalyze pediatric whole‐body scans in order to assess the impact of the new software on pediatric soft‐tissue body composition estimates. Methods and Procedures: We reanalyzed 1,384 pediatric scans (for ages 1.7–17.2 years) using Hologic software V12.1, previously analyzed using V11.2. Regression analysis and ANCOVA were used to compare body fat (total body fat (TBF), percentage fat (%BF)), and non‐bone lean body mass (LBM) for the two versions, adjusting for gender, age and weight. Results: Software V12.1 yielded values that were higher for TBF, lower for LBM, and unchanged for DXA‐derived weight in subjects weighing <40 kg. Body composition values for younger, smaller subjects were most affected, and girls were more affected than boys. Using the new software, 14% of the girls and 10% of the boys were reclassified from the “normal” %BF range to “at risk of obesity,” while 7 and 5%, respectively, were reclassified as obese. Discussion: Hologic's newest DXA software has a significant effect on soft‐tissue results for children weighing <40 kg. The effect is greater for girls than boys. Comparison of TBF estimates with previous studies that use older DXA instruments and software should be done with caution. DXA has not yet achieved sufficient reliability to be considered a “gold standard” for body composition assessment in pediatric studies.  相似文献   

5.
Understanding the density-dependent processes that drive population demography in a changing world is critical in ecology, yet measuring performance–density relationships in long-lived mammalian species demands long-term data, limiting scientists' ability to observe such mechanisms. We tested performance–density relationships for an opportunistic omnivore, grizzly bears (Ursus arctos, Linnaeus, 1758) in the Greater Yellowstone Ecosystem, with estimates of body composition (lean body mass and percent body fat) serving as indicators of individual performance over two decades (2000–2020) during which time pronounced environmental changes have occurred. Several high-calorie foods for grizzly bears have mostly declined in recent decades (e.g., whitebark pine [Pinus albicaulis, Engelm, 1863]), while increasing human impacts from recreation, development, and long-term shifts in temperatures and precipitation are altering the ecosystem. We hypothesized that individual lean body mass declines as population density increases (H1), and that this effect would be more pronounced among growing individuals (H2). We also hypothesized that omnivory helps grizzly bears buffer energy intake from changing foods, with body fat levels being independent from population density and environmental changes (H3). Our analyses showed that individual lean body mass was negatively related to population density, particularly among growing-age females, supporting H1 and partially H2. In contrast, population density or sex had little effect on body fat levels and rate of accumulation, indicating that sufficient food resources were available on the landscape to accommodate successful use of shifting food sources, supporting H3. Our results offer important insights into ecological feedback mechanisms driving individual performances within a population undergoing demographic and ecosystem-level changes. However, synergistic effects of continued climate change and increased human impacts could lead to more extreme changes in food availability and affect observed population resilience mechanisms. Our findings underscore the importance of long-term studies in protected areas when investigating complex ecological relationships in an increasingly anthropogenic world.  相似文献   

6.
Ong KK 《Hormone research》2006,65(Z3):65-69
Epidemiological studies over the last 15 years have shown that size at birth, early postnatal catch-up growth and excess childhood weight gain are associated with an increased risk of adult cardiovascular disease and type 2 diabetes. At the same time, rising rates of obesity and overweight in children, even at pre-school ages, have shifted efforts towards the identification of very early factors that predict risk of subsequent obesity, which may allow early targeted interventions. Overall, higher birth weight is positively associated with subsequent greater body mass index in childhood and later life; however, the relationship is complex. Higher birth weight is associated with greater subsequent lean mass, rather than fat mass. In contrast, lower birth weight is associated with a subsequent higher ratio of fat mass to lean mass, and greater central fat and insulin resistance. This paradoxical effect of lower birth weight is at least partly explained by the observation that infants who have been growth restrained in utero tend to gain weight more rapidly, or 'catch up', during the early postnatal period, which leads to increased central fat deposition. There is still debate as to whether there are critical early periods for obesity: does excess weight gain during infancy, childhood or even very early neonatal life have a greater impact on long-term fat deposition and insulin resistance? Early identification of childhood obesity risk will be aided by identification of maternal and fetal genes that regulate fetal nutrition and growth, and postnatal genes that regulate appetite, energy expenditure and the partitioning of energy intake into fat or lean tissue growth.  相似文献   

7.
Objective: Observational studies suggest that monounsaturated (MUFA) and trans fatty acids (TRANS) are more fattening than polyunsaturated fatty acids (PUFA). Therefore, the aim of this study was to investigate the acute effect of intake of PUFA, MUFA, or TRANS on appetite and energy expenditure (EE). Research Methods and Procedures: Three test meals were randomly given in a cross‐over design to 19 overweight (BMI: 26.8 ± 0.4 kg/m2), young (25.2 ± 0.7 years) men. The fat‐rich breakfasts (0.8 g fat/kg body weight, 60% energy from fat) varied only in the source of C:18‐fat. EE was measured continuously in a respiration chamber, and appetite sensations were rated by visual analog scales before and every 30 minutes, for 5 hours, after the meal. After 5 hours, an ad libitum meal was served, and energy intake was registered. Sensory evaluations of all meals were given using visual analog scales. Data were analyzed by two‐way ANOVA. Results: There were no differences in basal or postprandial values of appetite ratings and EE, in subsequent ad libitum energy intake, or in the sensory evaluation of the test meals among the 3 test days. Discussion: Giving acutely large amounts of MUFA, PUFA, or TRANS did not impose any differences in appetite and EE in overweight humans. However, studies with extended protocols and other subject groups are warranted to investigate the long‐term effect of dietary fat quality on the regulation of energy balance and body weight.  相似文献   

8.
Objective: The Protein‐Leverage Hypothesis proposes that humans regulate their intake of macronutrients and that protein intake is prioritized over fat and carbohydrate intake, causing excess energy ingestion when diets contain low %protein. Here we test in a model animal, the mouse: (i) the extent to which intakes of protein and carbohydrate are regulated; (ii) if protein intake has priority over carbohydrates so that unbalanced foods low in %protein leads to increased energy intake; and (iii) how such variations in energy intake are converted into growth and storage. Methods and Procedures: We fed mice one of five isocaloric foods having different protein to carbohydrate composition, or a combination of two of these foods (N = 15). Nutrient intake and corresponding growth in lean body mass and lipid mass were measured. Data were analyzed using a geometric approach for analyzing intake of multiple nutrients. Results: (i) Mice fed different combinations of complementary foods regulated their intake of protein and carbohydrate toward a relatively well‐defined intake target. (ii) When mice were offered diets with fixed protein to carbohydrate ratio, they regulated the intake of protein more strongly than carbohydrate. This protein‐leverage resulted in higher energy consumption when diets had lower %protein and led to increased lipid storage in mice fed the diet containing the lowest %protein. Discussion: Although the protein‐leverage in mice was less than what has been proposed for humans, energy intakes were clearly higher on diets containing low %protein. This result indicates that tight protein regulation can be responsible for excess energy ingestion and higher fat deposition when the diet contains low %protein.  相似文献   

9.
Adiposity-based chronic disease (ABCD) requires life-long treatment and follow up. Obesity protects obesity through altered regulation of caloric intake and set point mechanisms, which help maintain a high equilibrium body weight. Lifestyle interventions and obesity medications do not permanently alter the set point, which often makes weight loss achieved using lifestyle changes short-lived and operates to drive weight regain once medications are discontinued. Bariatric surgery procedures can alter appetite and lower the “set point” for the equilibrium body weight via unknown mechanisms. However, few patients attain an ideal body weight following surgery, many regain weight, and all require long-term follow up for the disease. The excess adiposity associated with ABCD gives rise to complications that impair health and confer morbidity and mortality; however, the genetic risks and potential interactions between genes and the environment that give rise to complications cannot be eliminated. The equilibrium body weight around which set point mechanisms operate can be modified by the environment, which underscores the importance of a less obesogenic environment for the prevention and treatment of ABCD on a population basis.Whether ABCD will eventually be curable will depend on a clear understanding of the molecular mechanisms that determine the set point regulation of body weight and the ability to permanently modulate the set point to oscillate around a lean body mass. However, the conceptualization of ABCD as a chronic disease does present us with opportunities for primary, secondary, and tertiary prevention to avert disease progression. For tertiary care, the advent of new, more effective second-generation obesity medications will allow clinicians to treat to target via active management of body weight into a target range that will ameliorate specific complications.  相似文献   

10.
Objective: To determine if overweight and obese women provide more accurate reports of their energy intake by 1) in‐person recall with an obese interviewer, 2) in‐person recall with a lean interviewer, or 3) telephone recall with an unknown interviewer. Research Methods and Procedures: Eighty‐eight overweight and obese women participated in this study. Subjects completed one telephone‐administered multiple‐pass 24‐hour recall (MP24R) with an unknown interviewer and were then randomly assigned to an in‐person MP24R with either a lean or obese interviewer to gather reported energy intake (rEI). Basal metabolic rate (BMR) was measured using a Deltrac monitor, and physical activity (EEPA) was estimated using a Caltrac accelerometer. Therefore, estimated energy expenditure was determined by: estTEE = (BMR + EEPA) × 1.10. Results: No significant differences were found between the two in‐person interview modes for subject age, weight, body mass index, percentage of body fat, total energy expenditure, rEI, and misreporting of energy intake. In‐person recall data were combined for comparison with the telephone recalls. No significant difference was found between the in‐person and telephone recalls for rEI and misreporting. Mean reported energy intake was significantly lower than estimated total energy expenditure for the telephone recalls and combined (lean and obese modes) in‐person recalls. Conclusions: This study found that interviewer body mass index had no impact on self‐reported energy intake during an in‐person MP24R, and that telephone recall data were comparable with in‐person recalls. Underreporting was a widespread problem (~26%) for all modes in this sample.  相似文献   

11.
The strongest BMI–associated GWAS locus in humans is the FTO gene. Rodent studies demonstrate a role for FTO in energy homeostasis and body composition. The phenotypes observed in loss of expression studies are complex with perinatal lethality, stunted growth from weaning, and significant alterations in body composition. Thus understanding how and where Fto regulates food intake, energy expenditure, and body composition is a challenge. To address this we generated a series of mice with distinct temporal and spatial loss of Fto expression. Global germline loss of Fto resulted in high perinatal lethality and a reduction in body length, fat mass, and lean mass. When ratio corrected for lean mass, mice had a significant increase in energy expenditure, but more appropriate multiple linear regression normalisation showed no difference in energy expenditure. Global deletion of Fto after the in utero and perinatal period, at 6 weeks of age, removed the high lethality of germline loss. However, there was a reduction in weight by 9 weeks, primarily as loss of lean mass. Over the subsequent 10 weeks, weight converged, driven by an increase in fat mass. There was a switch to a lower RER with no overall change in food intake or energy expenditure. To test if the phenotype can be explained by loss of Fto in the mediobasal hypothalamus, we sterotactically injected adeno-associated viral vectors encoding Cre recombinase to cause regional deletion. We observed a small reduction in food intake and weight gain with no effect on energy expenditure or body composition. Thus, although hypothalamic Fto can impact feeding, the effect of loss of Fto on body composition is brought about by its actions at sites elsewhere. Our data suggest that Fto may have a critical role in the control of lean mass, independent of its effect on food intake.  相似文献   

12.
Objective: Childhood obesity is an emerging health problem. This study assesses the effects of three levels of dietary fat (10%, 32%, and 45% measured by kilocalories) on weight gain, body composition, energy metabolism, and comorbidity factors in rats from weaning through maturation. Research Methods and Procedures: The role of dietary fat on the susceptibility to obesity was assessed by feeding diets containing three levels of dietary fat to rats from weaning through 7 months of age. Body composition was analyzed by DXA after 6 and 12 weeks of dietary treatment. Energy metabolism was measured by indirect calorimetry. Results: Energy intake, weight gain, fat mass, and plasma glucose, cholesterol, triglyceride, free fatty acid, leptin, and insulin levels increased dose‐dependently with increased dietary fat. No difference in absolute lean mass among the three groups was observed. Therefore, the differences in weight gain are accounted for primarily by increased fat accretion. Compared with rats that were relatively resistant to obesity when on a 45% fat diet, diet‐induced obesity‐prone rats were in positive energy balance and had an elevated respiratory quotient, indicating a switch in energy substrate use from fat to carbohydrate, which promotes body‐fat accretion. Discussion: Our data support the hypothesis that administration of increasing amount of dietary fat to very young rats enhances susceptibility to diet‐induced obesity and its comorbidities.  相似文献   

13.
This study investigated the effects of mild calorie restriction (CR) (5%) on body weight, body composition, energy expenditure, feeding behavior, and locomotor activity in female C57BL/6J mice. Mice were subjected to a 5% reduction of food intake relative to baseline intake of ad libitum (AL) mice for 3 or 4 weeks. In experiment 1, body weight was monitored weekly and body composition (fat and lean mass) was determined at weeks 0, 2, and 4 by dual energy X‐ray absorptiometry. In experiment 2, body weight was measured every 3 days and body composition was determined by quantitative magnetic resonance weekly, and energy expenditure, feeding behavior, and locomotor activity were determined over 3 weeks in a metabolic chamber. At the end of both experiments, CR mice had greater fat mass (P < 0.01) and less lean mass (P < 0.01) compared with AL mice. Total energy expenditure (P < 0.05) and resting energy expenditure (P < 0.05) were significantly decreased in CR mice compared with AL mice over 3 weeks. CR mice ate significantly more food than AL mice immediately following daily food provisioning at 1600 hours (P < 0.01). These findings showed that mild CR caused increased fat mass, decreased lean mass and energy expenditure, and altered feeding behavior in female C57BL/6J mice. Locomotor activity or brown adipose tissue (BAT) thermogenic capacity did not appear to contribute to the decrease in energy expenditure. The increase in fat mass and decrease in lean mass may be a stress response to the uncertainty of food availability.  相似文献   

14.
The apprehension of the factors that affect long term regulation of energy balance is indispensable to understand the rise in obesity prevalence as well as to delineate levers to prevent it. Accurate measurements of energy balance are however challenging during free‐living conditions. Recent studies proposed urinary C‐peptide, a metabolic byproduct of insulin synthesis, as reliable noninvasive assessment of energy balance. These studies were in fact essentially based on correlations between urinary C‐peptide and energy intake and only focused on nonhuman primates. During a bed‐rest study conducted in 16 healthy women in a controlled environment, we tested the existence of a relationship between 24 h‐urinary C‐peptide and energy balance in humans. Daily energy intake and body mass, body composition (dual‐energy X‐ray absorptiometry (DXA)) and total energy expenditure (doubly labeled water (DLW) method) was measured and energy balance was calculated as the difference between energy intake and expenditure. Urinary C‐peptide was positively correlated with bed‐rest‐induced changes in fat mass (r2 = 0.285; P = 0.03) and energy balance assessed at the end of the bed‐rest (r2 = 0.302; P = 0.027). However, in this tightly controlled environment, urinary C‐peptide only accounted for 30% of variations in energy balance. No relationship was noted between urinary C‐peptide and body or fat mass both at baseline and at the end of the bed‐rest. These results indicate that urinary C‐peptide cannot be used as an accurate biomarker of energy balance in the general human population in free‐living conditions.  相似文献   

15.
Objective: To reassess the relationship between body fat and fasting leptin concentrations comparing plasma vs. serum assessments of leptin; ratios vs. regression adjustment for body composition; fat and lean mass vs. percent body fat; and gender‐, ethnic‐, and age‐related variations. Research Methods and Procedures: Subjects included 766 adults from the nondiabetic cohort of the San Luis Valley Diabetes Study examined at follow up (1997 to 1998). Body composition was determined by dual energy X‐ray absorptiometry. Leptin concentrations were determined after an overnight fast. Results: Fasting serum and plasma assessments of leptin were correlated with percent body fat to the same degree. Women had significantly higher serum leptin concentrations than men when leptin concentrations were divided by body mass index, fat mass in kilograms or percent body fat. The methodological problem inherent in interpreting these ratio measures is pictorially demonstrated. In regression analysis, fat mass alone did not explain the gender difference. However, lean body mass was inversely related to leptin concentrations (p < 0.0001) and explained 71% of the gender difference at a given fat mass. Percent body fat explained all of the gender difference in leptin concentrations in both Hispanics and non‐Hispanic whites. Similar to findings about gender differences, ethnic‐ and age‐related variations in the leptin‐body fat association were minimized when percent body fat was employed as the body fat measure. Discussion: Regression analysis and percent body fat measured with dual energy X‐ray absorptiometry are recommended when assessing the relationship between leptin and body fat. Gender differences in leptin concentrations were accounted for by percent body fat in free living (no diet control), Hispanic and non‐Hispanic white adults.  相似文献   

16.
Obesity implies a failure of autoregulatory homeostatic responses to caloric excess. We studied the mechanisms, effectiveness, and limits of such responses in six lean (21.9 +/- 1.3 kg/m(2)), healthy men based in a metabolic suite for 17 wk of progressive intermittent overfeeding (OF) (3 wk, baseline; 3 wk, 20% OF; 1 wk, ad libitum; 3 wk, 40% OF; 1 wk, ad libitum; 3 wk, 60% OF; 3 wk, ad libitum). Body composition was assessed by a four-compartment model using dual X-ray absorptiometry, deuterium dilution, and plethysmography. Magnetic resonance imaging assessed subcutaneous/visceral fat at abdominal level at baseline and at the end of 60% OF. Energy intake was assessed throughout, energy expenditure (EE) and substrate oxidation rates were measured repeatedly by whole body calorimetry (calEE), and free-living EE (TEE) was measured by doubly labeled water at baseline and after 60% OF. At the end of 60% OF, calEE and TEE had increased by just 11.4% (P = 0.001) and 16.2% (P = 0.001), respectively. Weight and body fat (fat mass) had increased by 5.98 kg (8.8%, P = 0.001) and 3.31 kg (22.6%, P = 0.01), respectively. The relative increase in visceral fat (32.6%, P = 0.02) exceeded that of subcutaneous fat (13.3%, P = 0.002) in the abdominal region. The computed energy cost of tissue accretion differed from the excess ingested by only 13.1% (using calEE) and 11.6% (using TEE), indicating an absence of effective dissipative mechanisms. We conclude that elevations in EE provide very limited autoregulatory capacity in body weight regulation, and that regulation must be dominated by hypothalamic modulation of energy intake. This result supports present conclusions from genetic studies in which all known causes of human obesity are related to defects in the regulation of appetite.  相似文献   

17.
This is the first study to examine the effect of subchronic olanzapine (OLZ) on energy homeostasis in rats, covering all aspects of energy balance, including energy intake as metabolizable energy, storage, and expenditure. We further analyzed whether, and by which mechanism, the CB1‐antagonist AVE1625 might attenuate OLZ‐induced body weight gain. For this purpose, we selected juvenile female Hanover Wistar rats that robustly and reproducibly demonstrated weight gain on OLZ treatment, accepting limitations to model the aberrations on lipid and carbohydrate metabolism. Rats received 2 mg/kg OLZ orally twice daily for 12 days. Body weight and body composition were analyzed. Moreover daily food intake, energy expenditure, and substrate oxidation were determined in parallel to motility and body core temperature. OLZ treatment resulted in substantial body weight gain, in which lean and fat mass increased significantly. OLZ‐treated rats showed hyperphagia that manifested in increased carbohydrate oxidation and lowered fat oxidation (FO). Energy expenditure was increased, motility decreased, but there was no indication for hypothermia in OLZ‐treated rats. Coadministration of OLZ and AVE1625 (10 mg/kg orally once daily) attenuated body weight gain, diminishing the enhanced food intake while maintaining increased energy expenditure and decreased motility. Our data reveal that energy expenditure was enhanced in OLZ‐treated rats, an effect not critically influenced by motility. Energy uptake, however, exceeded energy expenditure and led to a positive energy balance, confirming hyperphagia as the major driving factor for OLZ‐induced weight gain. Combination of OLZ treatment with the CB1‐antagonist AVE1625 attenuated body weight gain in rats.  相似文献   

18.
Food intake rate has previously been derived from observation of eating behavior in laboratory settings or in public eating establishments. Although it has been suggested that obese individuals eat faster than lean individuals, observations of such an “obese eating style” have yielded mixed results. In the present study, the relationship between ad-libitum food intake rate and obesity was evaluated over 4 days on a metabolic ward in 28 healthy Pima Indian men (Mean ± SD; 29 ± 7 y, 100.4 ± 27.1 kg, 33 ± 10% body fat) using an automated food selection system containing a large variety of foods . Total energy intake averaged 18829 ± 3299 kJ/d consisting of 47 ± 4,40 ± 3, and 13 ± 1 percent of carbohydrate, fat and protein, respectively. The average meal duration was 25 ± 7 min. Food intake rate was 68 ± 21 g/min while carbohydrate, fat and protein intake rates were 23 ± 6, 9 ± 3 and 6 ± 2 g/min, respectively. Food intake rate correlated negatively with %body fat (1=0.61, P<0.01). Similar relationships were found between the intake rates of carbohydrate, fat and protein and body fatness. Only prospective studies will indicate whether a slow food intake rate may contribute to the etiology of obesity by possibly reducing satiety .  相似文献   

19.
Changes in the ambient force environment alter the regulation of adiposity, food intake and energy expenditure (i.e., energy balance). Lean (Fa/Fa) and obese (fa/fa) male Zucker rats were exposed to 2G (twice Earth's normal gravity) for eight weeks via centrifugation to test the hypothesis that the Fa/Fa rats recover to a greater degree from the effects of an increased ambient force environment on body mass and food intake, than do the fa/fa rats which have a dysfunctional leptin regulatory system. The rats (lean and obese exposed to either 1G or 2G) were individually housed in standard vivarium cages with food and water provided ad libitum. The acute response to 2G included a transient hypophagia accompanied by decreased body mass, followed by recovery of feeding to new steady-states. In the lean rats, body mass-independent food intake had returned to 1G control levels six weeks after the onset of centrifugation, and body mass increased towards that of the 1G rats. In contrast, food intake and body mass of the 2G obese rats plateaued at a level lower than that of the 1G controls. Although percent carcass fat was reduced more in the 2G leans vs. 2G obese rats, the latter lost significantly more grams of fat than did the leans. Our data suggest that with respect to food intake and body mass, the lean rats recover from the initial effects of 2G exposure to a greater degree than do the fatty rats, a difference that likely reflects the functionality of the leptin regulatory system in the leans.  相似文献   

20.
To assess regression models for lipid and lean body mass in small birds, we recorded live body mass ±0.1 g, total body electrical conductivity (TOBEC; from “third generation” TOBEC machine EM‐SCAN® SA‐3000) or E‐Value, visual fat score (VisFat), and seven body measurements for 52 migratory passerine birds of 13 species (5–40 g). We determined lipid and lean mass of each bird after petroleum‐ether extraction of lipids. We obtained “netE‐Value (NEV) for each scanned bird by subtracting the E‐Value of the empty bird‐restraining tube, because these showed an inverse temperature dependence (P<0.005). Leave‐one‐out cross validation was used to assess model selection and construct 95% confidence intervals. Although precision of TOBEC increased with bird size (CV of NEV vs. live mass: r=−0.276, P=0.002) and it explained an increasing proportion of variation in lean mass moving from small‐ to medium‐ to large‐bird classes of our data, it did no better than head length in single‐variable prediction of lean or lipid mass and was included in five of the 14 multivariate models we developed. The best multiple regression to predict lean mass included live weight, VisFat, bill length, tarsus and lnNEV (adjusted R2=99.0%); however, the same model lacking only lnNEV yielded aR2=98.9%. A parallel to the above pair of models, but predicting lipid mass, yielded aR2=90.3% and 90.0%, respectively. Subdividing the data by three size classes and three taxa (American redstart Setophaga ruticilla, ovenbird Seiurus aurocapilla, warblers), best‐subset multiple‐regression models predicted lean mass with aR2 from 94.7 to 99.6% and lipid mass with aR2 from 85.4 to 98.3%. Best models for the size‐ and species‐groups included VisFat and zero to five body measurements, and most included live weight. lnNEV was included only in the models for ovenbird (lipid), warblers (lipid), all birds (both), and large birds (both). Actual lipid mass of all birds was more highly correlated with multiple‐regression‐predicted lipid mass (r=0.955) than with visual subcutaneous fat‐scoring (r=0.683). These multiple‐regression models predicting lipid content using live‐bird measurements and visual fat score as independent variables represent more accurate and precise estimates of actual lipid content in small passerines than any previously published. They are particularly accurate for placing birds into percentage body‐fat classes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号