首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacteriophage and bacteriophage resistance in lactic acid bacteria   总被引:8,自引:0,他引:8  
Abstract: The study of bacteriophage-host interactions has been instrumental in the development of genetic systems in many genera, and laid many of the foundations of modern molecular genetics. Research into bacteriophage and bacteriophage resistance in the lactic acid bacteria has moved into a new and exciting dimension in recent years. Mechanisms such as adsorption inhibition, restriction and modification, and abortive infection which have been detected and described phenotypically over the past decade are now being subjected to molecular analysis, and this has led to a better understanding of the nature and variety of resistance systems employed by lactic acid bacteria to combat phage attack. In addition, analysis of different bacteriophage has increased our knowledge of these ubiquitous particles to the point where it is possible to construct novel phage resistances based on the phage genome itself. This review outlines the recent progress in the molecular analysis of bacteriophage, bacteriophage resistance and counter resistance, and the construction of novel resistance mechanisms.  相似文献   

2.
Phage resistance in lactic acid bacteria   总被引:16,自引:0,他引:16  
M E Sanders 《Biochimie》1988,70(3):411-422
The interactions between lactic acid bacteria and their phages are commercially significant. Current research has focused on the elucidation of the mechanisms and genetics of phage resistance. Phage resistance genes have been linked to plasmid DNA for Streptococcus lactis and Streptococcus cremoris, and preliminary studies suggest the operation of mechanisms such as the prevention of phage adsorption, restriction/modification, and abortive infection. Some phage resistance plasmids can be conjugally transferred, providing a means of dissemination among phage-sensitive strains for the construction of phage-resistant starter cultures.  相似文献   

3.
噬菌体展示技术系统发展进展   总被引:3,自引:0,他引:3  
Meng FM  Zhang CH  Ai YC 《遗传》2011,33(10):1113-1120
噬菌体展示技术(Phage display technology,PDT)是一种特殊的基因工程重组表达技术,噬菌体展示技术系统(Phage display system,PDS)是指包括经过遗传改造后的系列噬菌体、辅助噬菌体、宿主细菌等集成平台(含试剂盒)。文章从噬菌体分子遗传学及其基因(基因组)遗传工程改良角度,基于噬菌体M13、λ、T4和T7等4大类典型噬菌体展示技术系统的发展进展进行了综述。重点强调不同展示系统中的核心部件及其基因工程改造的分子遗传学原理、不同展示锚定位点的技术特征、相关试剂盒的研制状况及选择依据。  相似文献   

4.
Phages are the main source of within-species bacterial diversity and drivers of horizontal gene transfer, but we know little about the mechanisms that drive genetic diversity of these mobile genetic elements (MGEs). Recently, we showed that a sporulation selection regime promotes evolutionary changes within SPβ prophage of Bacillus subtilis, leading to direct antagonistic interactions within the population. Herein, we reveal that under a sporulation selection regime, SPβ recombines with low copy number phi3Ts phage DNA present within the B. subtilis population. Recombination results in a new prophage occupying a different integration site, as well as the spontaneous release of virulent phage hybrids. Analysis of Bacillus sp. strains suggests that SPβ and phi3T belong to a distinct cluster of unusually large phages inserted into sporulation-related genes that are equipped with a spore-related genetic arsenal. Comparison of Bacillus sp. genomes indicates that similar diversification of SPβ-like phages takes place in nature. Our work is a stepping stone toward empirical studies on phage evolution, and understanding the eco-evolutionary relationships between bacteria and their phages. By capturing the first steps of new phage evolution, we reveal striking relationship between survival strategy of bacteria and evolution of their phages.Subject terms: Bacterial genetics, Evolution  相似文献   

5.
Krylov VN 《Genetika》2001,37(7):869-887
The appearance and spreading of multidrug-resistant bacterial pathogens is a consequence of the large-scale use of antibiotics in medicine. In view of this, claims for the phage therapy were renewed: in recent studies, the natural phages and their products neutralizing various proteins, as well as the bacterial products often controlled by defective prophages (bacteriocins) were applied for treatment of bacterial infections. Constructs obtained by gene engineering are increasingly used to change some bacteriophage: properties to expand the spectrum of their lytic activity and to eliminate therapeutic drawbacks of some natural phages. In this review, the problem of phage therapy is discussed in general with respect to bacteriophage properties, their genetics, structure, evolution, taking into account long-term experience of the author in the field of bacteriophage genetics. Note that the general concept of phage therapy should be developed to ensure long-term, efficient and harmless phage therapy.  相似文献   

6.
The discovery of (bacterio)phages revolutionised microbiology and genetics, while phage research has been integral to answering some of the most fundamental biological questions of the twentieth century. The susceptibility of bacteria to bacteriophage attack can be undesirable in some cases, especially in the dairy industry, but can be desirable in others, for example, the use of bacteriophage therapy to eliminate pathogenic bacteria. The relative ease with which entire bacteriophage genome sequences can now be elucidated has had a profound impact on the study of these bacterial parasites.  相似文献   

7.
1. The increase in bacteria, phage concentration, and gelatinase concentration in cultures of B. megatherium has been determined. 2. With lysogenic cultures the phage concentration, gelatinase concentration, and bacteria concentration increase logarithmically at first. The phage and gelatinase concentration then decrease while the bacteria concentration increases to a maximum. 3. The results are the same with sensitive cultures if the ratio of phage to bacteria is small. If the ratio of phage to bacteria is large phage, gelatinase, and bacteria concentration all increase at first and then decrease. The maximum rate of increase coincides approximately with the maximum rate of oxygen consumption of the culture. 4. 60–90 per cent of the phage is free from the cells. 5. The amount of phage produced is determined by the combined phage and not by the total phage. 6. Phage is produced during growth of the cells and not during lysis. 7. In a very narrow range of pH near 5.55 no increase in bacteria occurs but large increases in phage may be obtained.  相似文献   

8.
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), together with associated genes (cas), form the CRISPR–cas adaptive immune system, which can provide resistance to viruses and plasmids in bacteria and archaea. Here, we use mathematical models, population dynamic experiments, and DNA sequence analyses to investigate the host–phage interactions in a model CRISPR–cas system, Streptococcus thermophilus DGCC7710 and its virulent phage 2972. At the molecular level, the bacteriophage-immune mutant bacteria (BIMs) and CRISPR–escape mutant phage (CEMs) obtained in this study are consistent with those anticipated from an iterative model of this adaptive immune system: resistance by the addition of novel spacers and phage evasion of resistance by mutation in matching sequences or flanking motifs. While CRISPR BIMs were readily isolated and CEMs generated at high rates (frequencies in excess of 10−6), our population studies indicate that there is more to the dynamics of phage–host interactions and the establishment of a BIM–CEM arms race than predicted from existing assumptions about phage infection and CRISPR–cas immunity. Among the unanticipated observations are: (i) the invasion of phage into populations of BIMs resistant by the acquisition of one (but not two) spacers, (ii) the survival of sensitive bacteria despite the presence of high densities of phage, and (iii) the maintenance of phage-limited communities due to the failure of even two-spacer BIMs to become established in populations with wild-type bacteria and phage. We attribute (i) to incomplete resistance of single-spacer BIMs. Based on the results of additional modeling and experiments, we postulate that (ii) and (iii) can be attributed to the phage infection-associated production of enzymes or other compounds that induce phenotypic phage resistance in sensitive bacteria and kill resistant BIMs. We present evidence in support of these hypotheses and discuss the implications of these results for the ecology and (co)evolution of bacteria and phage.  相似文献   

9.
AIMS: To evaluate differences in biofilm or planktonic bacteria susceptibility to be killed by the polyvalent antistaphylococcus bacteriophage K. METHODS AND RESULTS: In this study, the ability of phage K to infect and kill several clinical isolates of Staphylococcus epidermidis was tested. Strains were grown in suspension or as biofilms to compare the susceptibility of both phenotypes to the phage lytic action. Most strains (10/11) were susceptible to phage K, and phage K was also effective in reducing biofilm biomass after 24 h of challenging. Biofilm cells were killed at a lower rate than the log-phase planktonic bacteria but at similar rate as stationary phase planktonic bacteria. CONCLUSIONS: Staphylococcus epidermidis biofilms and stationary growth phase planktonic bacteria are more resistant to phage K lysis than the exponential phase planktonic bacteria. SIGNIFICANCE OF STUDY: This study shows the differences in Staph. epidermidis susceptibility to be killed by bacteriophage K, when grown in biofilm or planktonic phenotypes.  相似文献   

10.
Some Improved Methods in P22 Transduction   总被引:30,自引:1,他引:29       下载免费PDF全文
Recent refinements simplify methods for P22 transduction in Salmonella and allow improved recovery of phage-free transductional clones. The methods include use of: integration- and lysis-defective phage mutants, heat-killed bacteria to eliminate free phage, direct plating of phage and bacteria, replica-plating for detection of phage content of individual clones, improved broth for phage growth, and procurement of high titer phage from P22 lysogens.  相似文献   

11.
Bacteriophage defence systems in lactic acid bacteria   总被引:14,自引:0,他引:14  
The study of the interactions between lactic acid bacteria and their bacteriophages has been a vibrant and rewarding research activity for a considerable number of years. In the more recent past, the application of molecular genetics for the analysis of phage-host relationships has contributed enormously to the unravelling of specific events which dictate insensitivity to bacteriophage infection and has revealed that while they are complex and intricate in nature, they are also extremely effective. In addition, the strategy has laid solid foundations for the construction of phage resistant strains for use in commercial applications and has provided a sound basis for continued investigations into existing, naturally-derived and novel, genetically-engineered defence systems. Of course, it has also become clear that phage particles are highly dynamic in their response to those defence systems which they do encounter and that they can readily adapt to them as a consequence of their genetic flexibility and plasticity. This paper reviews the exciting developments that have been described in the literature regarding the study of phage-host interactions in lactic acid bacteria and the innovative approaches that can be taken to exploit this basic information for curtailing phage infection.  相似文献   

12.
Resource availability, dispersal and infection genetics all have the potential to fundamentally alter the coevolutionary dynamics of bacteria–bacteriophage interactions. However, it remains unclear how these factors synergise to shape diversity within bacterial populations. We used a combination of laboratory experiments and mathematical modeling to test how the structure of a dispersal network affects host phenotypic diversity in a coevolving bacteria-phage system in communities of differential resource input. Unidirectional dispersal of bacteria and phage from high to low resources consistently increased host diversity compared with a no dispersal regime. Bidirectional dispersal, on the other hand, led to a marked decrease in host diversity. Our mathematical model predicted these opposing outcomes when we incorporated modified gene-for-gene infection genetics. To further test how host diversity depended on the genetic underpinnings of the bacteria-phage interaction, we expanded our mathematical model to include different infection mechanisms. We found that the direction of dispersal had very little impact on bacterial diversity when the bacteria-phage interaction was mediated by matching alleles, gene-for-gene or related infection mechanisms. Our experimental and theoretical results demonstrate that the effects of dispersal on diversity in coevolving host–parasite systems depend on an intricate interplay of the structure of the underlying dispersal network and the specifics of the host–parasite interaction.  相似文献   

13.
The appearance and spreading of multidrug-resistant bacterial pathogens is a consequence of the large-scale use of antibiotics in medicine. In view of this, claims for the phage therapy were renewed: in recent studies, the natural phages and their products neutralizing various proteins, as well as the bacterial products often controlled by defective prophages (bacteriocins) were applied for treatment of bacterial infections. Constructs obtained by gene engineering are increasingly used to change bacteriophage properties to expand the spectrum of their lytic activity and to eliminate therapeutic drawbacks of some natural phages. In this review, the problem of phage therapy is discussed in general with respect to bacteriophage properties, their genetics, structure, evolution, taking into account long-term experience of the author in the field of bacteriophage genetics. Note that the general concept of phage therapy should be developed to ensure long-term, efficient and harmless phage therapy.  相似文献   

14.
Levin BR 《PLoS genetics》2010,6(10):e1001171
Clustered, Regularly Interspaced Short Palindromic Repeats (CRISPR) abound in the genomes of almost all archaebacteria and nearly half the eubacteria sequenced. Through a genetic interference mechanism, bacteria with CRISPR regions carrying copies of the DNA of previously encountered phage and plasmids abort the replication of phage and plasmids with these sequences. Thus it would seem that protection against infecting phage and plasmids is the selection pressure responsible for establishing and maintaining CRISPR in bacterial populations. But is it? To address this question and provide a framework and hypotheses for the experimental study of the ecology and evolution of CRISPR, I use mathematical models of the population dynamics of CRISPR-encoding bacteria with lytic phage and conjugative plasmids. The results of the numerical (computer simulation) analysis of the properties of these models with parameters in the ranges estimated for Escherichia coli and its phage and conjugative plasmids indicate: (1) In the presence of lytic phage there are broad conditions where bacteria with CRISPR-mediated immunity will have an advantage in competition with non-CRISPR bacteria with otherwise higher Malthusian fitness. (2) These conditions for the existence of CRISPR are narrower when there is envelope resistance to the phage. (3) While there are situations where CRISPR-mediated immunity can provide bacteria an advantage in competition with higher Malthusian fitness bacteria bearing deleterious conjugative plasmids, the conditions for this to obtain are relatively narrow and the intensity of selection favoring CRISPR weak. The parameters of these models can be independently estimated, the assumption behind their construction validated, and the hypotheses generated from the analysis of their properties tested in experimental populations of bacteria with lytic phage and conjugative plasmids. I suggest protocols for estimating these parameters and outline the design of experiments to evaluate the validity of these models and test these hypotheses.  相似文献   

15.
Bacteriophages are the natural predators of bacteria and are available abundantly everywhere in nature. Lytic phages can specifically infect their bacterial host (through attachment to the receptor) and use their host replication machinery to replicate rapidly, a feature that enables them to kill a disease-causing bacteria. Hence, phage attachment to the host bacteria is the first important step of the infection process. It is reported in this study that the receptor could be an LPS which is responsible for the attachment of the Sfk20 phage to its host (Shigella flexneri 2a). Phage Sfk20 bacteriolytic activity was examined for preliminary optimization of phage titer. The phage Sfk20 viability at different saline conditions was conducted. The LC–MS/MS technique used here for detecting and identifying 40 Sfk20 phage proteins helped us to get an initial understanding of the structural landscape of phage Sfk20. From the identified proteins, six structurally significant proteins were selected for structure prediction using two neural network systems: AlphaFold2 and ESMFold, and one homology modeling software: Phyre2. Later the performance of these modeling systems was compared using various metrics. We conclude from the available and generated information that AlphaFold2 and Phyre2 perform better than ESMFold for predicting Sfk20 phage protein structures.  相似文献   

16.
1. An anti-Escherichia coli phage has been isolated and its behavior studied. 2. A plaque counting method for this phage is described, and shown to give a number of plaques which is proportional to the phage concentration. The number of plaques is shown to be independent of agar concentration, temperature of plate incubation, and concentration of the suspension of plating bacteria. 3. The efficiency of plating, i.e. the probability of plaque formation by a phage particle, depends somewhat on the culture of bacteria used for plating, and averages around 0.4. 4. Methods are described to avoid the inactivation of phage by substances in the fresh lysates. 5. The growth of phage can be divided into three periods: adsorption of the phage on the bacterium, growth upon or within the bacterium (latent period), and the release of the phage (burst). 6. The rate of adsorption of phage was found to be proportional to the concentration of phage and to the concentration of bacteria. The rate constant ka is 1.2 x 10–9 cm.8/min. at 15°C. and 1.9 x 10–9 cm.8/min. at 25°. 7. The average latent period varies with the temperature in the same way as the division period of the bacteria. 8. The latent period before a burst of individual infected bacteria varies under constant conditions between a minimal value and about twice this value. 9. The average latent period and the average burst size are neither increased nor decreased by a fourfold infection of the bacteria with phage. 10. The average burst size is independent of the temperature, and is about 60 phage particles per bacterium. 11. The individual bursts vary in size from a few particles to about 200. The same variability is found when the early bursts are measured separately, and when all the bursts are measured at a late time.  相似文献   

17.
This paper describes a novel approach, termed the 'phage amplification assay', for the rapid detection and identification of specific bacteria. The technique is based on the phage lytic cycle with plaque formation as the assay end-point. It is highly sensitive, quantitative and gives results typically within 4 h. The assay comprises four main stages : (1) phage infection of target bacterium ; (2) destruction of exogenous phage ; (3) amplification of phage within infected host and (4) plaque formation from infected host with the aid of helper bacteria. A key component of this assay is a potent virucidal agent derived from natural plant extracts, pomegranate rind extract (PRE). In combination with ferrous sulphate PRE can bring about an 11 log-cycle reduction in phage titre within 3 min. This is achieved without any injury to the infected target bacteria. Subsequently, any resulting plaques are derived only from infected target organisms. Data are presented for a range of bacterial hosts including Pseudomonas aeruginosa, Salmonella typhimurium and Staphylococcus aureus. The detection limit for Ps. aeruginosa was 40 bacteria ml−1 in a time of 4 h and 600 bacteria m−1 for Salm. typhimurium. Application of the principles of this technology to other bacterial genera is discussed.  相似文献   

18.
噬菌体是地球上数量最丰富的有机体,其在自然生态系统的塑造和细菌进化驱动中发挥着至关重要的作用。在与宿主的相互斗争中,噬菌体可以选择以下2种方式决定其与宿主的命运:(1)裂解:通过裂解宿主细胞最终大量释放噬菌体颗粒;(2)溶源:将其染色体整合到宿主细胞基因组中,与宿主建立一种潜在的互存关系。对于一些温和的噬菌体,这种倾向进一步受到感染多样性的调节,其中单一感染主要是裂解性的,而多重感染则多是溶源性的。溶源性的噬菌体不仅可以根据外界环境的理化因子,还可以通过细菌自身的群体感应系统来启动裂解-溶源开关,进而决定其宿主菌的命运。与此同时,宿主细菌在与噬菌体长时间的斗争中也进化出了针对噬菌体的手段。总而言之,噬菌体深刻影响着细菌的群落动态、基因组进化和生态系统等,而这一切都取决于噬菌体与宿主间的斗争模式(裂解/溶源性感染)。本文探讨了导致温和噬菌体对宿主菌进行裂解-溶源命运抉择的影响因素并系统性总结了细菌在面对噬菌体侵染时的应对策略的最新研究进展,以期能为噬菌体与宿主的研究提供建议和帮助。  相似文献   

19.
When bacteriophage are added to laboratory bacteria populations, bacteria mutants that are resistant to the phage quickly dominate the population. The phage will only persist in the long‐term if there are sufficient bacteria in the population that show susceptibility to the phage. We investigated the mechanisms allowing for coexistence by adding the virulent bacteriophage φ6 to cultures of the bacterium Pseudomonas syringae pv. phaseolicola in a spatially homogeneous environment. We saw large differences between replicate cultures, in particular when one or both of the species persisted. These differences can be explained by variation in the timing of the appearance of various resistant phenotypes in the bacteria populations before the phage were added, which determines their relative frequencies within the populations. Although these resistant phenotypes have similar fitnesses in the presence and in the absence of the phage, they have a profound effect on the persistence of the phage. Our results give a clearer understanding of the ecological mechanisms that lead to the coexistence of bacteria and virulent phage in environments where there are no spatial refuges available to the bacteria population.  相似文献   

20.
Phage therapy is the use of bacteriophages as antimicrobial agents for the control of pathogenic and other problem bacteria. It has previously been argued that successful application of phage therapy requires a good understanding of the non-linear kinetics of phage–bacteria interactions. Here we combine experimental and modelling approaches to make a detailed examination of such kinetics for the important food-borne pathogen Campylobacter jejuni and a suitable virulent phage in an in vitro system. Phage-insensitive populations of C. jejuni arise readily, and as far as we are aware this is the first phage therapy study to test, against in vitro data, models for phage–bacteria interactions incorporating phage-insensitive or resistant bacteria. We find that even an apparently simplistic model fits the data surprisingly well, and we confirm that the so-called inundation and proliferation thresholds are likely to be of considerable practical importance to phage therapy. We fit the model to time series data in order to estimate thresholds and rate constants directly. A comparison of the fit for each culture reveals density-dependent features of phage infectivity that are worthy of further investigation. Our results illustrate how insight from empirical studies can be greatly enhanced by the use of kinetic models: such combined studies of in vitro systems are likely to be an essential precursor to building a meaningful picture of the kinetic properties of in vivo phage therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号