首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Constant generation of Reactive oxygen species (ROS) during normal cellular metabolism of an organism is generally balanced by similar rate of consumption by antioxidants. Imbalance between ROS production and antioxidant defense results in increased level of ROS causing oxidative stress which leads to promotion of malignancy. Queuine is a hyper modified base analogue of guanine, found at first anti-codon position of Q- family of tRNAs. These tRNAs are completely modified with respect to queuosine in terminally differentiated somatic cells, however hypomodification of Q-tRNAs is close association with cell proliferation. Q-tRNA modification is essential for normal development, differentiation and cellular functions. Queuine is a nutrient factor to eukaryotes. It is found to promote cellular antioxidant defense system and inhibit tumorigenesis. The activities of antioxidant enzymes like catalase, SOD, glutathione peroxidase and glutathione reductase are found to be low in Dalton's lymphoma ascites transplanted (DLAT) mouse liver compared to normal. However, exogenous administration of queuine to DLAT mouse improves the activities of antioxidant enzymes. The results suggest that queuine promotes antioxidant defense system by increasing antioxidant enzyme activities and in turn inhibits oxidative stress and tumorigenesis.  相似文献   

2.
Can a queuine-specific tRNA function normally without replacement of G by Q in its structure? To answer this, kinetics of aspartate queuine-containing tRNA (Q-tRNA) is compared with its queuine-deficient counterpart (G-tRNA). The results indicate that Asp Q-tRNA is a more effective substrate than the Asp G-tRNA. The Asp Q-tRNA exhibits a higher reaction velocity (Vmax greater than 30%) and a higher reaction rate (Km less than 55%) than its counterpart. The Asp tRNAs derived from human tumor lines and grown in athymic mice contain a full complement of queuine. This tumor tRNA exhibits aminoacylation kinetics similar to a normal liver tRNA. Reasons for observing the lack of a G-to-Q modification in cancer tRNAs by others are hypothesized. Two purified Asp isoacceptors from liver are compared for the aminoacylation reaction; small differences are noted in the Vmax, but none in the Km values.  相似文献   

3.
Studies of the chromatographic behavior of mammalian tRNAs, from several sources, on acylated DBAE-cellulose indicate that species of tRNA Asn , tRNA Asp and tRNA His can be retained on this matrix, while species of tRNA Tyr, tRNA Asn and tRNA Asp are not retained. Treatment of total rat liver tRNA with cyanogen bromide and subsequent chromatography on Aminex A-28 columns demonstrated that these tRNA species might contain Q (or Q*) nucleoside. However, comparable studies of the tRNA isolated from Walker 256 rat mammary tumor tissue demonstrated that this tumor tRNA almost totally lacks the hypermodified nucleosides Q and Q*. In addition, we have found that at least the major species of rat liver tRNA Asn contains the Q nucleoside. These studies indicate that chromatography on the acylated DBAE-cellulose matrix, couple with the analytical ion-exchange chromatography of cyanogen bromide treated and untreated amino-acyl-tRNA can be a valuable technique for the determination of alterations in the Q (or Q*) nucleoside content of the tRNAs isolated from normal and tumor tissues.  相似文献   

4.
An increase in cell number is one of the most prominent characteristics of cancer cells. This may be caused by an increase in cell proliferation or decrease in cell death. Queuine is one of the modified base which is found at first anticodon position of specific tRNAs. It is ubiquitously present throughout the living system except mycoplasma and yeast. The tRNAs of Q-family are completely modified to Q-tRNAs in terminally differentiated somatic cells, however hypomodification of Q-tRNA is closely associated with cell proliferation and malignancy. Queuine participates at various cellular functions such as regulation of cell proliferation, cell signaling and alteration in the expression of growth associated proto-oncogenes. Like other proto-oncogenes bcl2 is known to involve in cell survival by inhibiting apoptosis. Queuine or Q-tRNA is suggested to inhibit cell proliferation but the mechanism of regulation of cell proliferation by queuine or Q-tRNA is not well understood. Therefore, in the present study regulation in cell proliferation by queuine in vivo and in vitro as well as the expression of cell death regulatory protein Bcl2 are investigated. For this DLAT cancerous mouse, U87 cell line and HepG2 cell line are treated with different concentrations of queuine and the effect of queuine on cell proliferation and apoptosis are studied. The results indicate that queuine down regulates cell proliferation and expression of Bcl2 protein, suggesting that queuine promotes cell death and participates in the regulation of cell proliferation.  相似文献   

5.
6.
7.
8.
1. The sites within the tRNA sequence of nucleosides methylated by the action of enzymes from mouse colon, rat kidney and tumours of these tissues acting on tRNA(Asp) from yeast and on tRNA(Glu) (2), tRNA(fMet) and tRNA(Val) (1) from Escherichia coli were determined. 2. The same sites in a particular tRNA were methylated by all of these extracts. Thus tRNA(Glu) (2) was methylated at the cytidine residue at position 48 and the adenosine residue at position 58 from the 5'-end of the molecule; tRNA(Asp) was methylated at the guanosine residue at position 26 from the 5'-end of the molecule; tRNA(fMet) was methylated at the guanosine residues 9 and 27, the cytidine residue 49 and the adenosine residue 59 from the 5'-end; tRNA(Val) (1) was methylated at the guanosine residue 10, the cytidine residue 48 and the adenosine residue 58 from the 5'-end. 3. All of these sites within the clover leaf structure of the tRNA sequence are occupied by a methylated nucleoside in some tRNA species of known sequence. It is concluded that methylation of tRNA from micro-organisms by enzymes from mammalian tissues in vitro probably does accurately represent the specificity of these enzymes in vivo. However, there was no evidence that the tumour extracts, which had considerably greater tRNA methylase activity than the normal tissues, had methylases with altered specificity capable of methylating sites not methylated in the normal tissues.  相似文献   

9.
In this study, we compare the efficiency of Asn tRNA from mammalian sources with and without the highly modified queuosine (Q) base in the wobble position of its anticodon and Asn tRNA from yeast, which naturally lacks Q base, to promote frameshifting. Interestingly, no differences in the ability of the two mammalian Asn tRNAs to promote frameshifting were observed, while yeast tRNAAsn–Q promoted frameshifting more efficiently than its mammalian counterparts in both rabbit reticulocyte lysates and wheat germ extracts. The shiftability of yeast Asn tRNA is therefore not due, or at least not completely, to the lack of Q base and most likely the shiftiness resides in structural differences elsewhere in the molecule. However, we cannot absolutely rule out a role of Q base in frameshifting as wheat germ extracts and a lysate depleted of most of its tRNA and supplemented with calf liver tRNA contain both Asn tRNA with or without Q base.  相似文献   

10.
In almost all known tRNAs that are specific for Asp, Asn, His or Tyr the wobble position of the anticodon is occupied by the hypermodified tRNA nucleoside queuosine. This unusual deazaguanine derivative is synthesised only in eubacteria. The biosynthesis, as investigated in Escherichia coli, is accomplished in four steps involving many unprecedented enzymatic reactions.  相似文献   

11.
Bacterial tRNA-guanine transglycosylase (TGT) replaces the G in position 34 of tRNA with preQ(1), the precursor to the modified nucleoside queuosine. Archaeal TGT, in contrast, substitutes preQ(0) for the G in position 15 of tRNA as the first step in archaeosine formation. The archaeal enzyme is about 60% larger than the bacterial protein; a carboxyl-terminal extension of 230 amino acids contains the PUA domain known to contact the four 3'-terminal nucleotides of tRNA. Here we show that the C-terminal extension of the enzyme is not required for the selection of G15 as the site of base exchange; truncated forms of Pyrococcus furiosus TGT retain their specificity for guanine exchange at position 15. Deletion of the PUA domain causes a 4-fold drop in the observed k(cat) (2.8 x 10(-3) s(-1)) and results in a 75-fold increased K(m) for tRNA(Asp)(1.2 x 10(-5) m) compared with full-length TGT. Mutations in tRNA(Asp) altering or abolishing interactions with the PUA domain can compete with wild-type tRNA(Asp) for binding to full-length and truncated TGT enzymes. Whereas the C-terminal domains do not appear to play a role in selection of the modification site, their relevance for enzyme function and their role in vivo remains to be discovered.  相似文献   

12.
The degree of modification of guanine to queuine in the four queuine-containing tRNAs (Q-tRNAs) has been studied from rats of various age groups, and bacterial cells in different growth phases by measuring the amount of G-tRNA present in these tRNA preparations by tRNA-guanine transferase. In very young (one-week old) animals, only a small amount of G to Q modification was observed. However, this modification was essentially complete in the tRNAs of nine-month old animals, thereafter, the amount of Q decreased steadily. Studies of tRNAs from leukemic lymphocytes and bacterial cells indicated that the degree of G to Q modification was related to the metabolic state of the cell. The possible role of the Q-deficient isoacceptors in translation control is discussed.  相似文献   

13.
Identifying inhibitors of queuine modification of tRNA in cultured cells   总被引:1,自引:0,他引:1  
Altered queuine modification of tRNA has been associated with cellular development, differentiation, and neoplastic transformation. Present methods of evaluating agents for their ability to induce queuine hypomodification of tRNA are tedious, time-consuming, and not readily amenable to examining cell-type or tissue specificity. Therefore, a rapid, small-scale assay was developed to identify agents that alter queuine modification of tRNA in cultured cells. Monolayer cultures (2cm2) of Chinese hamster embryo cells depleted of queuine for 24 h were evaluated for their ability to incorporate [3H]dihydroqueuine into acid precipitable material (tRNA) in the presence and absence of potential inhibitors. Known inhibitors of the queuine modification enzyme tRNA-guanine ribosyltransferase (e.g., 7-methylguanine, 6-thio-guanine, and 8-azaguanine) were very effective in blocking incorporation of the radiolabel, and the dose-dependent results exhibited small standard deviations in independent experiments. The data indicate that the method is rapid, reliable, and potentially useful with a variety of cell types.  相似文献   

14.
In eubacterial and eukaryotic tRNAs specific for Asn, Asp, His and Tyr the modified deazaguanosinederivative queuosine occurs in position 34, the first position of the anticodon. Analysis of unfractionated tRNAs from wheat and from tobacco leaves shows that these tRNAs contain high amounts of guanosine (G) in place of queuosine (Q). This was measured by the exchange of G34 for [3H]guanine catalysed by the specific tRNA guanine transglycosylase from E. coli. Upon gel electrophoretic separation of the labeled tRNAs, seven Q-deficient tRNA species including isoacceptors are detectable. Two are identified as cytoplasmic tRNAsTyr and tRNAAsp and two represent chloroplast tRNATyr isoacceptors. In contrast to leaf cytoplasm and chloroplasts, wheat germ has low amounts of tRNAs with G34 in place of Q.A new enzymatic assay is described for quantitation of free queuine in cells and tissues. Analysis of queuine in plant tissues shows that wheat germ contains about 200 ng queuine per g wet weight. In wheat and tobacco leaves queuine is present, if at all, in amounts lower than 10 ng/g wet weight. The absence of Q in tRNAs from plant leaves is therefore caused by a deficiency of queuine. Tobacco cells cultivated in a synthetic medium without added queuine do not contain Q in tRNA, indicating that these rapidly growing cells do not synthesize queuine de novo.  相似文献   

15.
Global protein translation as well as translation at the codon level can be regulated by tRNA modifications. In eukaryotes, levels of tRNA queuosinylation reflect the bioavailability of the precursor queuine, which is salvaged from the diet and gut microbiota. We show here that nutritionally determined Q‐tRNA levels promote Dnmt2‐mediated methylation of tRNA Asp and control translational speed of Q‐decoded codons as well as at near‐cognate codons. Deregulation of translation upon queuine depletion results in unfolded proteins that trigger endoplasmic reticulum stress and activation of the unfolded protein response, both in cultured human cell lines and in germ‐free mice fed with a queuosine‐deficient diet. Taken together, our findings comprehensively resolve the role of this anticodon tRNA modification in the context of native protein translation and describe a novel mechanism that links nutritionally determined modification levels to effective polypeptide synthesis and cellular homeostasis.  相似文献   

16.
A procedure for the large scale isolation of mammalian tRNA has been applied to the isolation of several grams of human liver, human placenta, rabbit liver and rat liver tRNA. This procedure entails an initial grinding of the tissue in phenol-sodium acetate at acidic pH, followed by DEAE cellulose chromatography. Procedures are also described for analysis of the purified tRNA on the basis of size, using controlled pore glass bean columns. In addition, the acceptor activity of isolated tRNAs has been determined using both the heterologous and homologous synthetases. The chromatographic profile of individual isoaccepting species using BD cellulose chromatography is shown and the 3' terminal nucleoside content was also determined. The methods described now make it feasible for large scale studies of mammalian tRNA enabling us to better understand the relationships between the structure of mammalian tRNA and its many diversified functions.  相似文献   

17.
The tRNA from Ehrlich ascites tumor cells is deficient in the modified nucleoside Q (queuosine). Continuous infusion of Q base (queuine) to tumor-bearing mice reverses the deficiency of Q in Ehrlich ascites tRNA, and coincidently, causes an inhibition of tumor growth.  相似文献   

18.
The incorporation of queuine into tRNA and its fate upon tRNA turnover has been studied in the Vero and L-M cell lines. An assay was developed using [3H]dihydroqueuine to detect the queuine acceptance and, thus, the queuine content of tRNA in intact cells. While L-M cells can use only queuine, Vero cells can use either queuine or its nucleoside, queuosine, to form queunine-containing tRNA. Since queuosine is not a substrate for the enzyme which incorporates queuine into tRNA, Vero cells must generate queuine from its nucleoside. When Vero cells are labelled with [3H]dihydroqueuine, the half life of acid insoluble radioactivity is 52 days in queuine-free medium and 3.1 days in queuine-containing medium, indicating that [3H]dihydroqueuine is salvaged from tRNA and reused by Vero cells, but that exogenous queuine can compete with the salvaged [3H]dihydroqueuine. When L-M cells are labelled with [3H]dihydroqueuine, the half life of the acid insoluble radioactivity is 1.2 days in the presence or absence of queuine, indicating the absence of queuine salvage in L-M cells.  相似文献   

19.
The activation and charging of amino acids onto the acceptor stems of their cognate tRNAs are the housekeeping functions of aminoacyl-tRNA synthetases. The availability of whole genome sequences has revealed the existence of synthetase-like proteins that have other functions linked to different aspects of cell metabolism and physiology. In eubacteria, a paralog of glutamyl-tRNA synthetase, which lacks the tRNA-binding domain, was found to aminoacylate tRNA(Asp) not on the 3'-hydroxyl group of the acceptor stem but on a cyclopentene diol of the modified nucleoside queuosine present at the wobble position of anticodon loop. This modified nucleoside might be a relic of an ancient code.  相似文献   

20.
This report describes a novel RNA-binding protein, SECp43, that associates specifically with mammalian selenocysteine tRNA (tRNA(Sec)). SECp43, identified from a degenerate PCR screen, is a highly conserved protein with two ribonucleoprotein-binding domains and a polar/acidic carboxy terminus. The protein and corresponding mRNA are generally expressed in rat tissues and mammalian cell lines. To gain insight into the biological role of SECp43, affinity-purified antibody was employed to identify its molecular partners. Surprisingly, the application of native HeLa cell extracts to a SECp43 antibody column results in the purification of a 90-nt RNA species identified by direct sequencing and Northern blot analysis as tRNA(Sec). The purification of tRNA(Sec) by the antibody column is striking, based on the low abundance of this tRNA species. Using recombinant SECp43 as a probe for interacting protein partners, we also identify a 48-kDa interacting protein, which is a possible component of the mammalian selenocysteine insertion (SECIS) pathway. To our knowledge, SECp43 is the first cloned protein demonstrated to associate specifically with eukaryotic tRNA(Sec).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号