首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An insect high density lipoprotein, lipophorin, can be rapidly isolated from larval Manduca sexta (tobacco hornworm) hemolymph by single vertical spin density gradient ultracentrifugation. The two apolipoproteins (Mr = 245,000 and 78,000; designated apoLp-I and apoLp-II, respectively) were readily dissociated and separated in 6 M guanidine HCl by gel permeation chromatography. ApoLp-I and apoLp-II showed no immunological cross-reactivity on electrophoretic blots of sodium dodecyl sulfate-polyacrylamide gels. ApoLp-I and apoLp-II from lipophorin of adult M. sexta behaved identically to their larval counterparts. Amino acid compositions of larval apoLp-I and apoLp-II were similar except with respect to tryptophan and cysteine; apoLp-I contained 32 residues/mol of tryptophan (1.5 mol%) and 22 residues/mol (1.1 mol%) of cysteine; apoLp-II contained 2 residues/mol of tryptophan (0.2 mol%) and 14 residues/mol of cysteine (2.1 mol%). In double immunodiffusion tests, antiserum against apoLp-I or whole lipophorin strongly precipitated lipophorin, while antiserum against apoLp-II caused only minor precipitation. This indicates relatively greater exposure of apoLp-I to the aqueous environment.  相似文献   

2.
Biosynthesis of high density lipophorin (HDLp) was studied in larvae and adults of the migratory locust, Locusta migratoria. In an in vitro system, fat bodies were incubated in a medium containing a mixture of tritiated amino acids. Using SDS-PAGE and immunoblotting, it was shown that larval and adult fat bodies secreted both HDLp apoproteins, apolipophorin I (apoLp-I) and apolipophorin II (apoLp-II). Radiolabel was recovered in both apoproteins, indicative of de novo synthesis. The density of the fractions containing the apoproteins synthesized and secreted by larval and adult fat bodies was determined by density gradient ultracentrifugation. A radiolabeled protein fraction was found at density 1.12 g/ml. Using an enzyme-linked immunosorbent assay for detecting apoLp-I and apoLp-II, it was demonstrated that both apoproteins were present in this fraction, which had a density identical to that of circulating HDLp in hemolymph. Lipid analysis revealed that it contained phospholipid, diacylglycerol, sterol, and hydrocarbons. From these results it is concluded that the fat body of the locust synthesizes both apoLp-I and apoLp-II, which are combined with lipids to a lipoprotein particle that is released into the medium as HDLp.  相似文献   

3.
《Insect Biochemistry》1990,20(8):793-799
Twenty monoclonal antibodies raised against locust native lipophorin were screened by testing their capacity to inhibit diacylglycerol (DG) uptake from fat body by lipophorin in vitro. One of the monoclonal antibodies clearly inhibits the loading of DG by lipophorin from the fat body. This antibody cross reacts only with apolipophorin-II(apoLp-II), one of the two apoproteins of lipophorin. By using proteolytic apoLp-II fragments, we have shown that the epitope for the antibody against apoLp-II contains lysine. Furthermore, both the apoproteins, apoLp-I and apoLp-II, were almost equally labeled with biotin when the native lipophorin was incubated with modified biotin-reagent. These observations strongly suggest that apoLp-II, at least in part, is localized on the outer surface of lipophorin and may contribute to the lipid loading process from fat body.  相似文献   

4.
1. Lipophorin was isolated from the haemolymph of adult tsetse fly, Glossina morsitans morsitans, by ultracentrifugation in a potassium bromide density gradient. 2. The tsetse fly lipophorin (Mr congruent to 600,000) has a density of congruent to 1.11 g/ml and consists of two apoproteins, apolipophorin-I (apoLp-I, Mr congruent to 250,000) and apolipophorin-II (apoLp-II, Mr congruent to 80,000), both of which are glycosylated as shown by staining with periodate-Schiff reagent. The protein complex is composed of 49% protein and 51% lipids. 3. The finding of lipophorin in tsetse fly haemolymph suggests that, although these flies primarily utilize proline for their energy needs, there is an active transport mechanism for the supply of lipid requirements.  相似文献   

5.
Three major hemolymph proteins of Papilio polyxenes larvae were isolated and characterized. Density gradient ultracentrifugation of hemolymph resulted in flotation of the major lipoprotein, lipophorin. P. polyxenes larval lipophorin is composed of two apoproteins, apolipophorin-I and apolipophorin-II, plus a mixture of lipids, to give a density of 1.13 g/ml. Immunoblotting experiments using antisera directed against Manduca sexta apolipophorin-I and apolipophorin-II, respectively, revealed cross-reactivity of apoLp-I with Manduca sexta apoLp-I, and apoLp-II with M. sexta apoLp-II. Gel permeation chromatography of the subnatant obtained following density gradient ultracentrifugation revealed the presence of a major protein peak which was shown to contain three major serum proteins, two of which were isolated and characterized. One of these proteins was purified by lectin affinity chromatography. Both proteins have native molecular weights in the range of 450,000 and appear to be hexamers of a single subunit type. Major serum protein-1 is nonglycosylated and has a subunit molecular weight of 75,000. Major serum protein-2 is glycosylated and has a subunit molecular weight of 74,000. Amino acid analysis of this protein revealed a tyrosine plus phenylalanine content of 20 mole percent, characteristic of the arylphorin class of insect storage proteins. Using antibodies against M. sexta larval hemolymph proteins, both the P. polyxenes major serum proteins were shown to be immunologically related to serum proteins of other lepidopteran species.  相似文献   

6.
The biosynthesis of neutral fat-transporting lipoproteins involves the lipidation of their nonexchangeable apolipoprotein. In contrast to its mammalian homolog apolipoprotein B, however, insect apolipophorin-II/I (apoLp-II/I) is cleaved posttranslationally at a consensus substrate sequence for furin, resulting in the appearance of two apolipoproteins in insect lipoprotein. To characterize the cleavage process, a truncated cDNA encoding the N-terminal 38% of Locusta migratoria apoLp-II/I, including the cleavage site, was expressed in insect Sf9 cells. This resulted in the secretion of correctly processed apoLp-II and truncated apoLp-I. The cleavage could be impaired by the furin inhibitor decanoyl-Arg-Val-Lys-Arg-chloromethyl ketone (decRVKRcmk) as well as by mutagenesis of the consensus substrate sequence for furin, as indicated by the secretion of uncleaved apoLp-II/I-38. Treatment of L. migratoria fat body, the physiological site of lipoprotein biosynthesis, with decRVKRcmk similarly resulted in the secretion of uncleaved apoLp-II/I, which was integrated in lipoprotein particles of buoyant density identical to wild-type high density lipophorin (HDLp). These results show that apoLp-II/I is posttranslationally cleaved by an insect furin and that biosynthesis and secretion of HDLp can occur independent of this processing step. Structure modeling indicates that the cleavage of apoLp-II/I represents a molecular adaptation in homologous apolipoprotein structures. We propose that cleavage enables specific features of insect lipoproteins, such as low density lipoprotein formation, endocytic recycling, and involvement in coagulation.  相似文献   

7.
We examined expression of the lipophorin (Lp) gene, lipophorin (Lp) synthesis and secretion in the mosquito fat body, as well as dynamic changes in levels of this lipoprotein in the hemolymph and ovaries, during the first vitellogenic cycle of females of the yellow fever mosquito, Aedes aegypti. Lipophorin was purified by potassium bromide (KBr) density gradient ultracentrifugation and sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE). Polyclonal antibodies were produced against individual Lp apoproteins, apolipoprotein-I (apoLp-I) and apolipoprotein-II (apoLp-II), with molecular weights of 240 and 75 kDa, respectively. We report here that in the mosquito A. aegypti, Lp was synthesized by the fat body, with a low level of the Lp gene expression and protein synthesis being maintained in pre- and postvitellogenic females. Following a blood meal, the Lp gene expression and protein synthesis were significantly upregulated. Our findings showed that the fat body levels of Lp mRNA and the rate of Lp secretion by this tissue reached their maximum at 18 h post-blood meal (PMB). 20-Hydroxyecdysone was responsible for an increase in the Lp gene expression and Lp protein synthesis in the mosquito fat body. Finally, the immunocytochemical localization of Lp showed that in vitellogenic female mosquitoes, this protein was accumulated by developing oocytes where it was deposited in yolk granules.  相似文献   

8.
We examined expression of the lipophorin (Lp) gene, lipophorin (Lp) synthesis and secretion in the mosquito fat body, as well as dynamic changes in levels of this lipoprotein in the hemolymph and ovaries, during the first vitellogenic cycle of females of the yellow fever mosquito, Aedes aegypti. Lipophorin was purified by potassium bromide (KBr) density gradient ultracentrifugation and sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE). Polyclonal antibodies were produced against individual Lp apoproteins, apolipoprotein-I (apoLp-I) and apolipoprotein-II (apoLp-II), with molecular weights of 240 and 75 kDa, respectively. We report here that in the mosquito A. aegypti, Lp was synthesized by the fat body, with a low level of the Lp gene expression and protein synthesis being maintained in pre- and postvitellogenic females. Following a blood meal, the Lp gene expression and protein synthesis were significantly upregulated. Our findings showed that the fat body levels of Lp mRNA and the rate of Lp secretion by this tissue reached their maximum at 18 h post-blood meal (PMB). 20-Hydroxyecdysone was responsible for an increase in the Lp gene expression and Lp protein synthesis in the mosquito fat body. Finally, the immunocytochemical localization of Lp showed that in vitellogenic female mosquitoes, this protein was accumulated by developing oocytes where it was deposited in yolk granules.  相似文献   

9.
Sustained flight in the moth, Manduca sexta, necessitates lipid mobilization and transport to flight muscle, a process mediated by the adipokinetic hormone. An adult specific high density lipophorin (lipoprotein, HDLp-A, Mr = 7.68 X 10(5)) accepts diacylglycerol from the fat body, increasing in size and decreasing in density, to give a low density lipophorin (lipoprotein, LDLp, Mr = 1.56 X 10(6)). During this process, several molecules of the small apolipoprotein, apolipophorin III (apoLp-III), are added to the two molecules originally present in HDLp-A. A study of the time course of adipokinetic hormone-induced loading of diacylglycerol onto HDLp-A, using the analytical ultracentrifuge and gel filtration, suggests that a lipoprotein of density intermediate between HDLp-A and LDLp was formed transiently. Analysis of lipoproteins separated by density gradient ultracentrifugation in the course of the loading process indicates that apoLp-III is added more rapidly than diacylglycerol and that it changes its conformation on the surface as more diacylglycerol is added. Taken together with the known properties of apoLp-III, a prolate ellipsoid with an axial ratio of 3, we suggest that initially apoLp-III adds to the expanded hydrophobic surface of the lipoprotein with its short axis parallel to the surface and that apoLp-III subsequently unfolds to cover a greater area of hydrophobic surface. Exchange experiments with labeled apoLp-III showed that the two apoLp-III molecules in HDLp-A do not exchange with free apoLp-III, even when the lipoprotein passed through a loading and unloading cycle, suggesting a structural role for apoLp-III in HDLp-A.  相似文献   

10.
Manduca sexta hemolymph lipid transfer particle (LTP) is a very high density lipoprotein (d = 1.23 g/ml) containing 14% lipid and 5% carbohydrate. Each of three apoprotein components, apoLTP-I (Mr approximately 320,000), apoLTP-II (Mr = 85,000), and apoLTP-III (Mr = 55,000), is glycosylated. Carbohydrate analysis revealed the presence of mannose and N-acetylglucosamine in a ratio of 4.5:1. A native Mr greater than 670,000 was determined by pore limiting gradient gel electrophoresis. Lipid analysis of LTP revealed the presence of phospholipid, diacylglycerol (DAG), free fatty acid, and triacylglycerol. Rabbit polyclonal antibodies directed against LTP were obtained. Anti-LTP serum was employed in experiments which indicated the presence of LTP in larval and adult animals and confirmed that LTP was unrelated to other M. sexta hemolymph proteins and lipoproteins. A quantitative lipid transfer assay measuring facilitated DAG exchange between isolated M. sexta lipoproteins was established. The level of LTP-catalyzed exchange of DAG increased linearly with increasing time and protein during the initial phase of the reaction. Inclusion of anti-LTP serum in the assay inhibited facilitated DAG exchange. Experiments designed to determine if the LTP holoprotein is required for transfer or if a component of LTP is the active principle were performed. Incubation of [3H]DAG labeled high density lipophorin with substrate amounts of LTP resulted in incorporation of labeled DAG into LTP. Subsequent incubation of [3H]DAG-labeled LTP with unlabeled lipophorin resulted in exchange of DAG and the appearance of labeled DAG in lipophorin. Nitrocellulose-bound LTP apoproteins did not facilitate DAG exchange, and pretreatment of LTP with detergents resulted in loss of transfer activity. Extraction of LTP lipids with ethanol/ether also resulted in loss of activity. The results suggest that the lipid component of LTP may be important in the transfer reaction.  相似文献   

11.
Spleen lymphocytes from mice immunized with locust native low-density lipophorin A+ (LDLp) were fused with nonproducing myeloma cells, strain Sp 2/0. Hybridomas that were isolated from the fused cells produced antibodies specific for LDLp and the high-density lipophorin Ayellow (HDLp). Monoclonal strains were generated through cloning by limiting dilution from those hybridomas synthesizing antibodies specific for apolipophorins (apoLp)-I, -II, and -III of LDLp. Additionally, a hybridoma strain that was obtained after fusion of lymphocytes from mice immunized with apoLp-III produced antibodies that bind to apoLp-III and native LDLp. Some features of LDLp and HDLp were studied using these antibodies. It could be demonstrated that apoLp-I and apoLp-II are not immunochemically identical and are exposed in the native particle of both LDLp and HDLp. It was also shown that in both lipophorins apoLp-II is less exposed than apoLp-I, whereas in LDLp apoLp-III is mainly exposed; some apoLp-III could also be detected in HDLp. Tween-20, a nonionic detergent, appears to affect the binding of anti-apoLp-I, -II, and -III to both LDLp and HDLp. The monoclonal antibodies specific for locust apolipophorins do not bind to the respective apoproteins of lipophorins from other insects.  相似文献   

12.
This work analyzed the process of lipid storage in fat body of larval Manduca sexta, focusing on the role of lipid transfer particle (LTP). Incubation of fat bodies with [(3)H]diacylglycerol-labeled lipophorin resulted in a significant accumulation of diacylglycerol (DAG) and triacylglycerol (TAG) in the tissue. Transfer of DAG to fat body and its storage as TAG was significantly inhibited (60%) by preincubating the tissue with anti-LTP antibody. Lipid transfer was restored to control values by adding LTP to fat body. Incubation of fat body with dual-labeled DAG lipophorin or its treatment with ammonium chloride showed that neither a membrane-bound lipoprotein lipase nor lipophorin endocytosis is a relevant pathway to transfer or to storage lipids into fat body, respectively. Treatment of fat body with suramin caused a 50% inhibition in [(3)H]DAG transfer from lipophorin. Treatment of [(3)H]DAG-labeled fat body with lipase significantly reduced the amount of [(3)H]DAG associated with the tissue, suggesting that the lipid is still on the external surface of the membrane. Whether this lipid represents irreversibly adsorbed lipophorin or a DAG lipase-sensitive pool is unknown. Nevertheless, these results indicate that the main pathway for DAG transfer from lipophorin to fat body is via LTP and receptor-mediated processes.  相似文献   

13.
A hemolymph lipid transfer protein (LTP) was isolated from the tobacco hornworm, Manduca sexta. LTP catalyzes net lipid transfer between isolated hemolymph lipoproteins in vitro. An isolation procedure employing density gradient ultracentrifugation and gel permeation chromatography produced a purified protein. LTP is a very high density lipoprotein with a particle Mr greater than 500,000. Sodium dodecyl sulfate polyacrylamide gel electrophoresis revealed that LTP is comprised of two apoproteins: apoLTP-I (Mr approximately 320,000) and apoLTP-II (Mr approximately 85,000). LTP may have a physiological role in altering the lipid content and composition of the major hemolymph lipoprotein, lipophorin.  相似文献   

14.
A new type of insect lipoprotein was isolated from the hemolymph of the female cochineal insect Dactylopius confusus. The lipoprotein from the cochineal insect hemolymph was found to have a relative molecular mass of 450 000. It contains 48% lipid, mostly diacylglycerol, phospholipids and hydrocarbons. The protein moiety of the lipoprotein consists of two apoproteins of approximately 25 and 22 kDa, both of which are glycosylated. Both apolipoproteins are also found free in the hemolymph, unassociated with any lipid. Purified cochineal apolipoproteins can combine with Manduca sexta lipophorin, if injected together with adipokinetic hormone into M. sexta. This could indicate that the cochineal lipoprotein can function as a lipid shuttle similar to lipophorins of other insects, and that the cochineal insect apolipoproteins have an overall structure similar to insect apolipophorin-III.  相似文献   

15.
Lipoprotein biosynthesis in larvae of the tobacco hornworm (Manduca sexta) was investigated. By immunoblotting, it was shown that the apoproteins are present in the fat body, but not in the midgut. Fat body incubated in vitro with [35S]methionine secreted labeled apoproteins. However, when the density of the secreted particle was determined, it was found at 1.24-1.28 g/ml instead of 1.15 g/ml, which is the density of the circulating lipoprotein. Lipid analysis of immunoprecipitated lipoprotein secreted by the fat body showed a phospholipid/diacylglycerol ratio of 8.3 rather than 0.9, the ratio found in the circulating lipoprotein. When labeled oleic acid or triolein was fed to larvae, it was found that greater than 98% of the label in the circulating lipoprotein was in diacylglycerol. In studies using animals raised on a fat-free diet, it was shown that the circulating lipoprotein has properties comparable to those of the material secreted in vitro by the fat body and that this diacylglycerol-poor particle can be converted to the normal lipoprotein by feeding a bolus of triolein. These data support the hypothesis that the fat body makes and secretes a "nascent" lipoprotein which contains apoproteins and phospholipid, but is devoid of diacylglycerol. The diacylglycerol is then picked up from the midgut to complete assembly of the mature circulating lipoprotein.  相似文献   

16.
Study on the composition-structure relationship of lipophorins   总被引:1,自引:0,他引:1  
High density lipophorin (HDLp is the main lipoprotein found in resting insect hemolymph. It has, in general, two molecules of apolipoproteins: apoLp-I (250 kDa) and apoLp-II (80 kDa) and a variable lipid content which ranges from 35% to 59% (w/w). Diacylglycerols (DG), phospholipids (PL), and hydrocarbons (HC) are the main lipid components, whereas cholesterol and triacylglycerols are minor components. DG content varies from 7 to 30%, PL from 11 to 24%, and HC from 0 to 15%. In order to determine the relationship between the lipid composition and the arrangement of lipid and protein components in the lipoprotein particle, a density-composition structural model was designed. The model was established by means of 12 sets of data on lipophorin density-composition relationships, and model validity was determined throughout lipoprotein space- and surface-filling conditions. Despite the differences among the lipid compositions of lipophorins, it is concluded that there are several unifying structural restrictions that govern the molecular organization of lipophorins. Quantitative treatment of the model indicates that lipophorin structure is consistent with the following. 1) Spherical particles with a protein-rich outer layer of approximately 20-21 A thickness, comprised of proteins, phospholipids, cholesterol, and small amounts of DG, and a lipid-rich core composed of HC, TG, and almost all the lipophorin DG. 2) Apolipophorins have a lipid-embedded localization within the lipoprotein particle. They might represent one of the few examples of proteins containing beta-shift structure, exerting strong hydrophobic interaction and having a lipid-embedded localization.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The egg of Manduca sexta contains a very high density lipophorin (VHDLp-E; Mr approximately equal to 4.14 x 10(5), rho = 1.238 g/ml) that is derived from the high density lipophorin (HDLp-A; Mr approximately equal to 7.63 x 10(5), rho = 1.076 g/ml) of the hemolymph. The selective uptake of HDLp-A into the egg and its subsequent conversion to VHDLp-E was studied both in vivo and in vitro. Upon entering the egg, an estimated 530 mol of lipid were stripped from each mol of HDLp-A, and 68% of the diacylglycerol fraction was converted to triacylglycerol. In addition, the two molecules of the low molecular weight apolipoprotein, apolipophorin-III, of HDLp-A were dissociated from the lipophorin particle. The VHDLp-E thus formed consisted of 80% protein and 20% lipid, 75% of which was phospholipid. HDLp-A labeled in vivo with [35S]methionine in its apoprotein moiety was injected into females at the onset of egg development, and its incorporation in a series of follicles at different stages of growth was measured. There was increased accumulation of [35S]HDLp-A in the follicles as they matured. The apoproteins of [35S]HDLp-A were not hydrolyzed when the particle was internalized by the follicle. In the accompanying paper we have presented the evidence that the apoproteins of HDLp-A are retained in the follicles (Kawooya, J.K., and Law, J.H. (1988) J. Biol. Chem. 263, 8748-8753).  相似文献   

18.
In insects, lipids are transported by a hemolymphatic lipoprotein, lipophorin. The binding of lipophorin to the fat body of the hematophagous insect Rhodnius prolixus was characterized in a fat body membrane preparation, obtained from adult females. For the binding assay, purified lipophorin was radiolabelled in the protein moiety (125I-HDLp), and it was shown that iodination did not affect the affinity of the membrane preparation for lipophorin. Under incubation conditions used, lipophorin binding to membranes achieved equilibrium after 40-60 min, but this time was longer when a low concentration of lipophorin was present in the medium. The capacity of the fat body membrane preparation to bind lipophorin was abolished when membranes were pre-treated with trypsin, and it was also affected by heat. When 125I-HDLp was incubated with increasing concentrations of membrane protein, corresponding increases in binding were observed. Lipophorin binding was sensitive to pH, and it was maximal between pH 6.0 and 7.0. The specific binding of lipophorin to the fat body membrane preparation was a saturable process, with a Kd of 2.1 +/- 0.4 x 10(-7)M and a maximal binding capacity of 289 +/- 88 ng lipophorin/microgram of membrane protein. Binding to the fat body membranes did not depend on calcium, but it was affected by ionic strength, being totally inhibited at high salt concentrations. Suramin also interfered with lipophorin binding and it was abolished in the presence of 2 mM suramin, but at concentrations of 0.05 and 0.1 mM it seemed to increase binding activity slightly. Fat body membrane preparation from Rhodnius prolixus was able to bind lipophorin from Manduca sexta larvae.  相似文献   

19.
Role of lipophorin in lipid transport to the insect egg   总被引:4,自引:0,他引:4  
Lipid accounts for 40% of the dry weight of a mature Manduca sexta egg. Less than 1% of the total egg lipid is derived from de novo synthesis by the follicles. The remaining egg lipid originates in the fat body and is transported to the ovary by lipoproteins. Vitellogenin, the major egg yolk lipoprotein, accounts for 5% of the total egg lipid. The remaining 95% lipid is attributable to the hemolymph lipophorins, adult high density lipophorin (HDLp-A) and low density lipophorin (LDLp). When HDLp-A that is dual labeled with 3H in the diacylglycerol fraction and 35S in the protein moiety is incubated with follicles in vitro, the ratio of 3H:35S in the incubation medium does not vary and is similar to the ratio of the labels that are associated with the follicles. In an accompanying paper (Kawooya, J. K., Osir, E. O., and Law, J. H. (1988) J. Biol. Chem. 263, 8740-8747), we show that HDLp-A is sequestered by the follicles without subsequent hydrolysis of its apoproteins. These results, together with those presented in this paper, support our conclusion that HDLp-A is not recycled back into the hemolymph after it is internalized by the follicles and, therefore, does not function as a reusable lipid shuttle between the fat body and the ovary. When follicles are incubated with dual labeled LDLp, the diacylglycerol component of the particle is internalized by the follicles without concomitant endocytosis of its associated apoproteins. This LDLp particle is the major vehicle by which lipid is delivered to the ovary.  相似文献   

20.
In the hawkmoth Manduca sexta high density lipophorin from adult insects (HDLp-A) delivers lipids to developing oocytes. During this lipid delivery HDLp-A is taken up by the oocyte and converted to a very high density lipophorin (VHDLp), which is stored in protein storage granules (yolk bodies). A membrane-free lysate of isolated M. sexta yolk bodies was demonstrated to contain lipoprotein lipase activity that hydrolyses the diacylglycerol of HDLp-A. With HDLp-A as a substrate yolk body lipophorin lipase (YBLpL) activity was shown to be maximal between pH 9 and pH 9.5. NaCl concentration was optimal between 0.7 M and 1 M. YBLpL activity required neither bovine serum albumin nor calcium ions but appeared to be stimulated by 5 mM EDTA. Diisopropyl fluorophosphate effectively inhibited YBLpL activity, indicating the presence of a serine in the active site of the enzyme. The identified lipase activity co-eluted with lipophorins and vitellins from the yolk in the void volume of a Sephadex G-75 gel filtration column. This observation suggests that the lipase has a Mr of more than 80,000, or that the enzyme is associated with the lipoproteins. Incubation of HDLp-A with yolk body lysate converted HDLp-A to two classes of higher density lipophorins. The highest density lipophorins produced during this incubation approached the density of VHDLp as it is isolated from mature eggs. The possible role of YBLpL activity in the delivery of lipids to developing oocytes is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号