首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recombinant eglin c is a potent reversible inhibitor of human pancreatic elastase. At pH 7.4 and 25 degrees C, kass. = 7.3 x 10(5) M-1.s-1, kdiss. = 2.7 x 10(-4) s-1 and Ki = 3.7 x 10(-10) M. Stopped-flow kinetic indicate that the formation of the stable enzyme-inhibitor complex is not preceded by a fast pre-equilibrium complex or that the latter has a dissociation constant greater than 0.3 microM. The elastase-eglin c complex is much less stable at pH 5.0 and 25 degrees C, where kdiss. = 1.1 x 10(-2) s-1 and Ki = 7.3 x 10(-8) M. At pH 7.4 the activation energy for kass. is 43.9 kJ.mol-1 (10.5 kcal.mol-1). The kass. increases between pH 5.0 and 8.0 and remains essentially constant up to pH 9.0. This pH-dependence could not be described by a simple ionization curve. Both alpha 2-macroglobulin and alpha 1-proteinase inhibitor are able to dissociate the elastase-eglin c complex, as evidenced by measurement of the enzymic activity of alpha 2-macroglobulin-bound elastase or by polyacrylamide-gel electrophoresis of mixtures of alpha 1-proteinase inhibitor and elastase-eglin c complex. The rough estimate of kdiss. obtained with the alpha 2-macroglobulin dissociation experiment (1.6 x 10(-4) s-1) was of the same order of magnitude as the constant measured with the progress curve method. Eglin c strongly inhibits the solubilization of human aorta elastin by human pancreatic elastase. The extent of inhibition is the same whether elastase is added to a suspension of elastin and eglin c or whether elastase is preincubated with elastin for 3 min before addition of eglin c. However, the efficiency of the inhibitor sharply decreases if elastase is reacted with elastin for more prolonged periods.  相似文献   

2.
Bronchial leukocyte proteinase inhibitor (BLPI) is an 11.7 kDa, acid-stable protein found in mucous secretions, which inhibits neutrophil elastase. The Stoke's radius of BLPI calculated from sedimentation equilibrium and sedimentation velocity centrifugation data was in good agreement with the value determined by gel filtration. These data indicate that BLPI exists in a compact globular conformation at both neutral and acidic pH. BLPI, due to its small compact size, can inhibit neutrophil elastase after the enzyme has been complexed with alpha 2-macroglobulin (A-2-M) but alpha 1-proteinase inhibitor failed to inactivate A-2-M-bound elastase. The apparent association rates of BLPI and Eglin C with A-2-M-bound elastase were found to be 6.3 X 10(2) M-1s-1 and 1.1 X 10(3) M-1s-1, respectively. These apparent association rates decreased 168-fold for BLPI and 909-fold for Eglin C, relative to the association rates of these inhibitors with free elastase. These changes probably result from a combination of effects, such as inhibitor accessibility to the enzyme and/or reaction rate, but regardless of the mechanism these data suggest that BLPI may function to control both free and A-2-M-bound elastase.  相似文献   

3.
The urinary trypsin inhibitor was recently shown to inhibit human leukocyte elastase. Complexes of human urinary trypsin inhibitor with human leukocyte elastase or human trypsin were produced and subjected to gel filtration. The complexes were found to be sufficiently stable up to 24 h incubation (at least 70% recovery). When human serum was added, elastase and trypsin dissociated from the urinary trypsin inhibitor and associated with alpha 1-proteinase inhibitor or alpha 2-macroglobulin. The addition of alpha 1-proteinase inhibitor to a complex of urinary trypsin inhibitor and leukocyte elastase caused a rapid dissociation of the complex (kdiss = 3.2 X 10(-2) s-1).  相似文献   

4.
Heparin depresses the second-order rate constant ka for the inhibition of neutrophil elastase by alpha 1-proteinase inhibitor. High molecular mass heparin decreases ka from 1.3 x 10(7) M-1 s-1 to a limit of 4.6 x 10(4) M-1 s-1. Low molecular mass heparin is about 7-fold less effective. Dermatan sulfate and chondroitin sulfate are less efficient. Heparin preparations used in clinical care also strongly depress ka when tested at concentrations corresponding to their clinical efficacy. Heparin also decreases the ka for the elastase/eglin c and the cathepsin G/alpha 1-proteinase inhibitor systems but not that for the alpha 1-proteinase inhibitor/pancreatic elastase or trypsin pairs. These results, together with Sepharose-heparin binding studies, indicate that the ka-depressing effect of the polymer is related to its ability to form a tight complex with elastase but not with alpha 1-proteinase inhibitor. One mol of high molecular mass heparin binds 3 mol of neutrophil elastase with a Kd of 3.3 nM. Low molecular mass heparin binds elastase with a 1:1 stoichiometry and a Kd of 89 nM. For both heparins ka is lowest when elastase is fully saturated with heparin. From this we conclude that heparin decreases ka, because the heparin-elastase complex is able to slowly react with alpha 1-proteinase inhibitor and not because the inhibitor slowly dissociates the heparin-elastase complex. These findings may have important pathophysiological bearing.  相似文献   

5.
This paper describes a non-oxidative impairment of the biological function of alpha 1-proteinase inhibitor by cigarette smoke. Aqueous solutions of cigarette smoke are able to decrease the rate constant kass for the inhibition of porcine pancreatic elastase by human plasma alpha 1-proteinase inhibitor. The value of kass decreases linearly with the concentration of smoke (from 2.2 X 10(5) M-1 s-1 to 0.6 X 10(5) M-1 s-1). This effect is not due to an oxidation of the inhibitor. When pancreatic elastase is reacted with elastin in the presence of alpha 1-proteinase inhibitor and cigarette smoke solution, elastolysis occurs at a rate nearly identical to that observed in the absence of inhibitor. This effect is due to a smoke-induced decrease in kass. These observations may serve as a model of biological regulation of proteolysis via a change in the rate constant for a proteinase-proteinase inhibitor association. The influence of cigarette smoke on the inhibition of human neutrophil elastase by alpha 1-proteinase inhibitor could not be studied in detail because the enzyme precipitates in the presence of concentrated smoke solution.  相似文献   

6.
Dog alpha 1-proteinase inhibitor (alpha 1-PI) was found to be an effective inhibitor of bovine chymotrypsin and also of porcine pancreatic elastase as in the case of human inhibitor. The dog inhibitor inactivated both proteinases at a molar ratio of 1:1. However, compared to the human inhibitor, dog alpha 1-PI was a relatively poor inhibitor of bovine trypsin. The association rate constants (kass) of the interactions of dog alpha 1-PI with bovine chymotrypsin and with porcine elastase were determined to be 6.9 +/- 0.3 X 10(6) M-1 s-1 and 6.4 +/- 0.1 X 10(5) M-1 s-1, respectively. These values are 1.3- and 2.7-fold higher than the corresponding values for the human inhibitor. On the other hand, kass for the dog inhibitor with bovine trypsin (2.6 +/- 0.3 X 10(4)M-1 s-1) was found to be about 5 times smaller than that of the human inhibitor.  相似文献   

7.
CBz-Ala-Ala-Pro-ambo-Val-CF3 (1) was synthesized. The compound inhibits human Leucocyte elastase with Ki = 1.0 x 10(-9) M. This inhibitor is reversible, slow, tight-binding inhibitor with k on = 2 x 10(4) M-1 s-1 k off = 1.9 x 10(-5) s-1. For the solubilization of elastin by HLE by 1 I.C. 50 = 110 nM. This inhibitor is the most effective aldehyde or ketone inhibitor of a serine proteinase yet described.  相似文献   

8.
At pH 8.0 and 25 degrees C alpha 1-proteinase inhibitor and alpha 2-macroglobulin bind human pancreatic elastase with rate constants of 4.7.10(5) M-1.s-1 and 6.4.10(6) M-1.s-1, respectively. The corresponding delay times of elastase inhibition in plasma are 0.4 s and 0.2 s, respectively, indicating that both inhibitors may act as physiological antielastases. Elastin impairs the elastase inhibitory capacity of alpha 1-proteinase inhibitor and alpha 2-macroglobulin. In presence of human elastin, the former behaves like a slow-binding elastase inhibitor, with a rate constant of about 260 M-1.s-1. In contrast, alpha 2-macroglobulin is a fast-binding inhibitor of elastin-bound elastase, but only one of its two sites is functioning in presence of elastin.  相似文献   

9.
An elastase-dependent pathway of plasminogen activation   总被引:1,自引:0,他引:1  
R Machovich  W G Owen 《Biochemistry》1989,28(10):4517-4522
In reaction mixtures containing Glu-plasminogen, alpha 2-antiplasmin, and tissue plasminogen activator or urokinase, either pancreatic or leukocyte elastase enhances the rate of plasminogen activation by 2 or more orders of magnitude. This effect is the consequence of several reactions. (a) In concentrations on the order of 100 nM, elastase degrades plasminogen within 10 min to yield des-kringle1-4-plasminogen (mini-plasminogen), which is 10-fold more efficient than Glu-plasminogen as a substrate for plasminogen activators. Des-kringle1-4-plasminogen is insensitive to cofactor activities of fibrin(ogen) fragments or an endothelial cell cofactor. (b) Des-kringle1-4-plasmin is one-tenth as sensitive as plasmin to inhibition by alpha 2-antiplasmin: k" = 10(6) M-1 s-1 versus 10(7) M-1 s-1. (c) alpha 2-Antiplasmin is disabled efficiently by elastase, with a k" of 20,000 M-1 s-1. The elastase-dependent reactions are not influenced by 6-aminohexanoate. In diluted (10-fold) blood plasma, the capacity of endogenous inhibitors to block plasmin expression is suppressed by 30 microM elastase. It is proposed that elastases provide an alternative pathway for Glu-plasminogen activation and a mechanism for controlling initiation of fibrinolysis by urokinase-type plasminogen activators.  相似文献   

10.
Various kinds of peptide fragments related to eglin c were prepared by the conventional solution method and their inhibitory effects on human leukocyte elastase, cathepsin G and alpha-chymotrypsin were examined. Peptide (31-40) inhibited cathepsin G (Ki = 2.3 x 10(-4) M), peptide (41-49) potently inhibited cathepsin G and alpha-chymotrypsin (Ki = 4.2 x 10(-5) M and 2.0 x 10(-5) M, respectively), and peptide (60-63) inhibited leukocyte elastase (Ki = 1.6 x 10(-4) M), whereas, peptide (31-35) weakly inhibited both elastase and cathepsin G (Ki = 2.1 x 10(-3) M and 7.3 x 10(-4) M, respectively).  相似文献   

11.
T Fox  E de Miguel  J S Mort  A C Storer 《Biochemistry》1992,31(50):12571-12576
A peptide (PCB1) corresponding to the proregion of the rat cysteine protease cathepsin B was synthesized and its ability to inhibit cathepsin B activity investigated. PCB1 was found to be a potent inhibitor of mature cathepsin B at pH 6.0, yielding a Ki = 0.4 nM. This inhibition obeyed slow-binding kinetics and occurred as a one-step process with a k1 = 5.2 x 10(5) M-1 s-1 and a k2 = 2.2 x 10(-4) s-1. On dropping from pH 6.0 to 4.7, Ki increased markedly, and whereas k1 remained essentially unchanged, k2 increased to 4.5 x 10(-3) s-1. Thus, the increase in Ki at lower pH is due primarily to an increased dissociation rate for the cathepsin B/PCB1 complex. At pH 4.0, the inhibition was 160-fold weaker (Ki = 64 nM) than at pH 6.0, and the propeptide appeared to behave as a classical competitive inhibitor rather than a slow-binding inhibitor. Incubation of cathepsin B with a 10-fold excess of PCB1 overnight at pH 4.0 resulted in extensive cleavage of the propetide whereas no cleavage occurred at pH 6.0, consistent with the formation of a tight complex between cathepsin B and PCB1 at the higher pH. The synthetic propeptide of cathepsin B was found to be a much weaker inhibitor of papain, a structurally similar cysteine protease, and no pH dependence was observed. Inhibition constants of 2.8 and 5.6 microM were obtained for papain inhibition by PCB1 at pH 4.0 and 6.0, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The rates of interaction of a number of serine proteinases with a mutant form of alpha 1-proteinase inhibitor (referred to as alpha 1-proteinase inhibitor (Pittsburgh)), in which a methionine-358 to arginine-358 mutation has occurred, have been determined. An approximately 6,000-fold increase in the second order association rate constant with human thrombin was observed (48 M-1 X s-1 for the normal protein to 3.1 X 10(5) M-1 X s-1 for the arginine mutant), confirming previously observed data using bovine thrombin (Owen, M.C., Brennan, S.O., Lewis, J.H. & Carrell, R.W. (1983) New England J. Med. 309, 694-698). However, substantial increases in the rates of association with other trypsin-like enzymes were also noted, indicating that the replacement of methionine by a basic residue affects all serine proteinases with this kind of specificity. There was a marked decrease in the rates of interaction of the Pittsburgh mutant with both human neutrophil elastase and porcine pancreatic elastase, the inhibitor being converted into lower molecular mass fragments after interaction with either enzyme. Butanedione caused a substantial loss in the inhibitory activity of the arginine mutant, while having no effect on the normal protein. These data, when compared to those previously reported for differences in reaction rates between normal and oxidized alpha 1-proteinase inhibitor (Beatty, K., Bieth, J. & Travis, J. (1980) J. Biol. Chem. 255, 3931-3934), are consistent with the interpretation that the amino acid in the P1-position at the reactive site of this protein has a marked effect on determining its primary specificity.  相似文献   

13.
Streptokinase reacts very rapidly with human plasmin (rate constant 5.4 S 10(7) M-1 s-1) forming a 1:1 stoichiometric complex which has a dissociation constant of 5 X 10(-11) M. This plasmin-streptokinase complex is 10(5) times less reactive towards alpha 2-antiplasmin than plasmin, the inhibition rate constant being 1.4 X 10(2) M-1 s-1. The loss of reactivity of the streptokinase-plasmin complex towards alpha 2-antiplasmin is independent of the lysine binding sites in plasmin since low-Mr plasmin, which lacks these sites, and plasmin in which the sites have been blocked by 6-aminohexanoic acid, are both equally unreactive towards alpha 2-antiplasmin on reaction with streptokinase. The plasmin-streptokinase complex binds to Sepharose-lysine and Sepharose-fibrin monomer in the same fashion as free plasmin, showing that the lysine binding sites are fully exposed in the complex. Bovine plasmin is rapidly inhibited by human alpha 2-antiplasmin (k1 = 1.6 X 10(6) M-1 s-1) and similarly loses reactivity towards the inhibitor on complex formation with streptokinase (50% binding at 0.4 microM streptokinase).  相似文献   

14.
A series of peptidyl alpha-keto esters, alpha-keto amides, alpha-keto acids, and alpha-diketones were synthesized which reversibly inhibit papain and cathepsin B. Methyl 3-(N-benzyloxycarbonyl-L-phenylalanyl)amino-2-oxopropionate (a dicarbonyl compound) inhibits papain with a Ki value of 1 microM, whereas the Ki of 3-(N-acetyl-L-phenylalanyl)aminopropanone (a monocarbonyl compound) is 1.5 mM (M. R. Bendall et al., 1979. Eur. J. Biochem. 79, 201-209). Both carbonyl groups are required for effective inhibition. Extension of these inhibitors by addition of P substituents (e.g., hexyl) does not affect the Ki for papain, but reduces Ki for cathepsin B 33-fold. For these two enzymes slow binding inhibition was observed with slow on rates (kappa on, 5.2 X 10(2) M-1 s-1 for papain, and 2.7 X 10(3) M- s-1 for cathepsin B). Addition of a P3 substituent (glycine) has no effect on Ki. We propose that the mechanism of inhibition involves the formation of a hemithioketal by addition of the active-site thiol to the carbonyl group of the inhibitor closer to the N-terminus. The hemithioketal intermediate is most likely stabilized by the electron withdrawing effect of the second carbonyl group.  相似文献   

15.
The interaction of Eglin c with human polymorphonuclear cells was investigated in order to explain the effect of this (and other) proteinase inhibitor(s) on the biological activities of neutrophils. We have identified binding sites on human neutrophils by using [3H]Eglin. Binding is rapid and reversible at 5 degrees C. There are approximately 100,000 binding sites per cell, with an equilibrium dissociation constant of 0.2microM. Eglin binding was not inhibited by other proteinase inhibitors (alpha 1-PI, PhCH2SO2F, Tos-Phe-CH2Cl), and was enhanced four-fold by the chemotactic peptide fMet-Leu-Phe. The results indicate that Eglin c, a peptide proteinase inhibitor, is able to bind to human PMN cells and that this initial interaction does not involve a known proteinase such as cathepsin G or elastase.  相似文献   

16.
We have synthesized a series of peptidyl fluoroketones that reversibly inhibit the serine proteases human leukocyte elastase (HLE) and alpha-lytic protease (alpha-LP). Ac-ambo-AlaCF3 (1) inhibits HLE and alpha-LP with Ki's of 2.4 and 15 mM, respectively. The effects of structural variations on this parent compound on Ki and the kinetics of inhibition were studied. The acetyl group was replaced by the tripeptide Z-L-Ala-L-Ala-L-Pro to yield the tetrapeptide trifluoroketone (TFK) Z-L-Ala-L-Ala-L-Pro-ambo-AlaCF3 (2). This extension reduced Ki 3500-fold for HLE and 3000-fold for alpha-LP. Removal of a fluorine atom from a TFK decreases Ki about 15- to 30-fold with both enzymes. Replacement of one fluorine atom of 2 by a residue (-CH2-CH2-COLeuOMe) (6) which can interact with the S'1 and S'2 subsites decreased Ki 30-fold for HLE and 150-fold for alpha-LP compared to Z-L-Ala-L-Ala-L-Pro-ambo-AlaCF2H (3). The Ki of 6 for HLE is approximately equal to that of trifluoroketone 2. For alpha-LP Ki of 6 is 10-fold lower than that for the trifluoroketone 2. Inhibitors with Ki values less than 10(-7) M exhibit slow binding kinetics. By analogy to cholinesterases and chymotrypsin, it is likely that these enzymes combine with the keto form of the inhibitor to form the enzyme-inhibitor complex. Therefore, kon and Ki were corrected for the ketone concentration. The corrected kon values for the slow binding inhibitors are in most cases less than diffusion controlled, ranging between 8.2 X 10(4) and 4.68 X 10(6) M-1 s-1. An exception is Z-L-Ala-L-Ala-L-Pro-ambo-ValCF3 (8) where kon = 9 X 10(7) M-1 s-1, which is nearly diffusion controlled.  相似文献   

17.
A single cysteine residue present in human plasma alpha 1-proteinase inhibitor was labeled with a fluorescent sulfhydryl reagent, N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine. The resulting fluorescent inhibitor retained nearly full inhibitory activity and formed complexes with bovine chymotrypsin, porcine pancreatic elastase, and bovine trypsin as revealed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Association rate constants for the interactions of the labeled inhibitor with the proteinases were determined to be 1.5 (+/- 0.4) X 10(6), 3.3 (+/- 0.3) X 10(5), and 1.4 (+/- 0.3) X 10(5) M-1 X s-1 for chymotrypsin, elastase, and trypsin, respectively. These values were found to be only slightly lower than those of the unlabeled inhibitor. Fluorescence emission spectra of the labeled inhibitor in the absence and presence of each proteinase were also examined, and little difference was observed between them.  相似文献   

18.
The rate constants for the inhibition of human leucocyte elastase by eglin from the leech Hirudo medicinalis were determined by using a pre-steady-state kinetic approach. kon and koff for complex-formation and dissociation were 1 X 10(6)M-1 X S-1 and 8 X 10(-4)S-1 respectively. Ki was calculated as the ratio koff/kon = 8 X 10(-10)M, the binding of eglin to elastase was reversible and the inhibition mechanism was of the fully competitive type. The mechanistic properties of the system and the biological significance of the rate constants are discussed.  相似文献   

19.
Proteinase 3 (PR-3) is a human polymorphonuclear leukocyte (PMNL) serine proteinase that degrades elastin in vitro and causes emphysema when administered by tracheal insufflation to hamsters (Kao, R. C., Wehner, N. G., Skubitz, K. M., Gray, B. H., and Hoidal, J. R. (1988) J. Clin. Invest. 82, 1963-1973). We have determined the primary structure of several PR-3 peptides and have analyzed catalytic properties of the enzyme. The enzyme has considerable amino acid sequence homology with two other well characterized PMNL neutral serine proteinases, elastase and cathepsin G. Furthermore, the NH2-terminal amino acid sequence of PR-3 is identical to that of the target antigen of the anti-neutrophil cytoplasmic autoantibodies associated with Wegener's granulomatosis. PR-3 degrades a variety of matrix proteins including fibronectin, laminin, vitronectin, and collagen type IV. It shows no or minimal activity against interstitial collagens types I and III, respectively. The analysis of peptides generated by PR-3 digestion of insulin chains and the activity profile against a panel of chromogenic synthetic peptide substrates show that PR-3 prefers small aliphatic amino acids (alanine, serine, and valine) at the P1 site. The elastase-like specificity of PR-3 is consistent with its striking sequence homology to elastase at substrate binding sites. PR-3 is inhibited by alpha 1-proteinase inhibitor (ka = 8.1 x 10(6) M-1 S-1; delay time = 25 ms) and alpha 2-macroglobulin (ka = 1.1 x 10(7) M-1 S-1; delay time = 114 ms) but not by alpha 1-anti-chymotrypsin. In contrast to elastase and cathepsin G, PR-3 is not inhibited by secretory leukoprotease inhibitor and is weakly inhibited by eglin c. Thus, PR-3 is distinct from the other PMNL proteinases.  相似文献   

20.
Bronchial leucocyte proteinase inhibitor (BLPI) is an 11 000 Mr protein found in human mucous secretions. This inhibitor apparently controls the serine proteinases elastase and cathepsin G, released from extravascular polymorphonuclear leucocytes. A simple, single-step chromatographic procedure for the isolation of BLPI based on its affinity for chymotrypsin was developed. The purified inhibitor was homogeneous by electrophoresis and gel filtration. Amino acid analyses were in close agreement with previous reports, and showed BLPI to be rich in proline and cystine, but lacking histidine. We have further characterized the role of BLPI with respect to human leucocyte elastase and cathepsin G by close examination of the kinetic parameters. Additionally, we have determined the kinetics of association (kon) and dissociation (koff) for BLPI with bovine trypsin and chymotrypsin. Equilibrium dissociation constants (Ki) of 1.87 X 10(-10) M, 4.18 X 10(-9) M, 8.28 X 10(-9) M and 2.63 X 10(-8) M were obtained for human leucocyte elastase, cathepsin G, bovine trypsin and chymotrypsin, respectively. These results are discussed with respect to BLPI's possible function in vivo and its role relative to other inhibitors in bronchial secretions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号