首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
Plasma membrane ingression during cytokinesis involves both actin remodeling and vesicle-mediated membrane addition. Vesicle-based membrane delivery from the recycling endosome (RE) has an essential but ill-defined involvement in cytokinesis. In the Drosophila melanogaster early embryo, Nuf (Nuclear fallout), a Rab11 effector which is essential for RE function, is required for F-actin and membrane integrity during furrow ingression. We find that in nuf mutant embryos, an initial loss of F-actin at the furrow is followed by loss of the associated furrow membrane. Wild-type embryos treated with Latrunculin A or Rho inhibitor display similar defects. Drug- or Rho-GTP-induced increase of actin polymerization or genetically mediated decrease of actin depolymerization suppresses the nuf mutant F-actin and membrane defects. We also find that RhoGEF2 does not properly localize at the furrow in nuf mutant embryos and that RhoGEF2-Rho1 pathway components show strong specific genetic interactions with Nuf. We propose a model in which RE-derived vesicles promote furrow integrity by regulating the rate of actin polymerization through the RhoGEF2-Rho1 pathway.  相似文献   

3.
In Drosophila oogenesis, the development of a mature oocyte depends on having properly developed ring canals that allow cytoplasm transport from the nurse cells to the oocyte. Ring canal assembly is a step-wise process that transforms an arrested cleavage furrow into a stable intercellular bridge by the addition of several proteins. Here we describe a new gene we named cheerio that provides a critical function for ring canal assembly. Mutants in cheerio fail to localize ring canal inner rim proteins including filamentous actin, the ring canal-associated products from the hu-li tai shao (hts) gene, and kelch. Since hts and kelch are present but unlocalized in cheerio mutant cells, cheerio is likely to function upstream from each of them. Examination of mutants in cheerio places it in the pathway of ring canal assembly between cleavage furrow arrest and localization of hts and actin filaments. Furthermore, this mutant reveals that the inner rim cytoskeleton is required for expansion of the ring canal opening and for plasma membrane stabilization.  相似文献   

4.
Anillin is a conserved protein required for cytokinesis but its molecular function is unclear. Anillin accumulation at the cleavage furrow is Rho guanine nucleotide exchange factor (GEF)(Pbl)-dependent but may also be mediated by known anillin interactions with F-actin and myosin II, which are under RhoGEF(Pbl)-dependent control themselves. Microscopy of Drosophila melanogaster S2 cells reveal here that although myosin II and F-actin do contribute, equatorial anillin localization persists in their absence. Using latrunculin A, the inhibitor of F-actin assembly, we uncovered a separate RhoGEF(Pbl)-dependent pathway that, at the normal time of furrowing, allows stable filamentous structures containing anillin, Rho1, and septins to form directly at the equatorial plasma membrane. These structures associate with microtubule (MT) ends and can still form after MT depolymerization, although they are delocalized under such conditions. Thus, a novel RhoGEF(Pbl)-dependent input promotes the simultaneous association of anillin with the plasma membrane, septins, and MTs, independently of F-actin. We propose that such interactions occur dynamically and transiently to promote furrow stability.  相似文献   

5.
The Drosophila Formin Homology (FH) protein Diaphanous has an essential role during cytokinesis. To gain insight into the function of Diaphanous during cytokinesis and explore its role in other processes, we generated embryos deficient for Diaphanous and analyzed three cell-cycle-regulated actin-mediated events during embryogenesis: formation of the metaphase furrow, cellularization and formation of the pole cells. In dia embryos, all three processes are defective. Actin filaments do not organize properly to the metaphase and cellularization furrows and the actin ring is absent from the base of the presumptive pole cells. Furthermore, plasma membrane invaginations that initiate formation of the metaphase furrow and pole cells are missing. Immunolocalization studies of wild-type embryos reveal that Diaphanous localizes to the site where the metaphase furrow is anticipated to form, to the growing tip of cellularization furrows, and to contractile rings. In addition, the dia mutant phenotype reveals a role for Diaphanous in recruitment of myosin II, anillin and Peanut to the cortical region between actin caps. Our findings thus indicate that Diaphanous has a role in actin cytoskeleton organization and is essential for many, if not all, actin-mediated events involving membrane invagination. Based on known biochemical functions of FH proteins, we propose that Diaphanous serves as a mediator between signaling molecules and actin organizers at specific phases of the cell cycle.  相似文献   

6.
The formation of multinucleated muscle cells through cell-cell fusion is a conserved process from fruit flies to humans. Numerous studies have shown the importance of Arp2/3, its regulators, and branched actin for the formation of an actin structure, the F-actin focus, at the fusion site. This F-actin focus forms the core of an invasive podosome-like structure that is required for myoblast fusion. In this study, we find that the formin Diaphanous (Dia), which nucleates and facilitates the elongation of actin filaments, is essential for Drosophila myoblast fusion. Following cell recognition and adhesion, Dia is enriched at the myoblast fusion site, concomitant with, and having the same dynamics as, the F-actin focus. Through analysis of Dia loss-of-function conditions using mutant alleles but particularly a dominant negative Dia transgene, we demonstrate that reduction in Dia activity in myoblasts leads to a fusion block. Significantly, no actin focus is detected, and neither branched actin regulators, SCAR or WASp, accumulate at the fusion site when Dia levels are reduced. Expression of constitutively active Dia also causes a fusion block that is associated with an increase in highly dynamic filopodia, altered actin turnover rates and F-actin distribution, and mislocalization of SCAR and WASp at the fusion site. Together our data indicate that Dia plays two roles during invasive podosome formation at the fusion site: it dictates the level of linear F-actin polymerization, and it is required for appropriate branched actin polymerization via localization of SCAR and WASp. These studies provide new insight to the mechanisms of cell-cell fusion, the relationship between different regulators of actin polymerization, and invasive podosome formation that occurs in normal development and in disease.  相似文献   

7.
In anaphase, the spindle dictates the site of contractile ring assembly. Assembly and ingression of the contractile ring involves activation of myosin-II and actin polymerization, which are triggered by the GTPase RhoA. In many cells, the central spindle affects division plane positioning via unknown molecular mechanisms. Here, we dissect furrow formation in human cells and show that the RhoGEF ECT2 is required for cortical localization of RhoA and contractile ring assembly. ECT2 concentrates on the central spindle by binding to centralspindlin. Depletion of the centralspindlin component MKLP1 prevents central spindle localization of ECT2; however, RhoA, F-actin, and myosin still accumulate on the equatorial cell cortex. Depletion of the other centralspindlin component, CYK-4/MgcRacGAP, prevents cortical accumulation of RhoA, F-actin, and myosin. CYK-4 and ECT2 interact, and this interaction is cell cycle regulated via ECT2 phosphorylation. Thus, central spindle localization of ECT2 assists division plane positioning and the CYK-4 subunit of centralspindlin acts upstream of RhoA to promote furrow assembly.  相似文献   

8.
BACKGROUND: The ring canals in the ovary of the fruit fly Drosophila provide a versatile system in which to study the assembly and regulation of membrane-associated actin structures. Derived from arrested cleavage furrows, ring canals allow direct communication between cells. The robust inner rim of filamentous actin that attaches to the ring-canal plasma membrane contains cytoskeletal proteins encoded by the hu-li-tao shao (hts) and kelch genes, and is regulated by the Src64 and Tec29 tyrosine kinases. Female sterile cheerio mutants fail to recruit actin to ring canals, disrupting the flow of cytoplasm to oocytes. RESULTS: We have cloned cheerio and found that it encodes a member of the Filamin/ABP-280 family of actin-binding proteins, known to bind transmembrane proteins and crosslink actin filaments into parallel or orthogonal arrays. Antibodies to Drosophila Filamin revealed that Filamin is an abundant ring-canal protein and the first known component of both the outer and inner rims of the ring canal. The cheerio gene also encodes a new Filamin isoform that lacks the actin-binding domain. CONCLUSIONS: Localization of Filamin to nascent ring canals is necessary for the recruitment of actin filaments. We propose that Filamin links filamentous actin to the plasma membrane of the ring canal. Although loss of Filamin in human cells supports a role for Filamin in organizing orthogonal actin arrays at the cell cortex, the cheerio mutant provides the first evidence that Filamin is required in membrane-associated parallel actin bundles, such as those found in ring canals, contractile rings and stress fibers.  相似文献   

9.
During cytokinesis, cleavage furrow invagination requires an actomyosin-based contractile ring and addition of new membrane. Little is known about how this actin and membrane traffic to the cleavage furrow. We address this through live analysis of fluorescently tagged vesicles in postcellularized Drosophila melanogaster embryos. We find that during cytokinesis, F-actin and membrane are targeted as a unit to invaginating furrows through formation of F-actin-associated vesicles. F-actin puncta strongly colocalize with endosomal, but not Golgi-derived, vesicles. These vesicles are recruited to the cleavage furrow along the central spindle and a distinct population of microtubules (MTs) in contact with the leading furrow edge (furrow MTs). We find that Rho-specific guanine nucleotide exchange factor mutants, pebble (pbl), severely disrupt this F-actin-associated vesicle transport. These transport defects are a consequence of the pbl mutants' inability to properly form furrow MTs and the central spindle. Transport of F-actin-associated vesicles on furrow MTs and the central spindle is thus an important mechanism by which actin and membrane are delivered to the cleavage furrow.  相似文献   

10.
K. Katoh  H. Ishikawa 《Protoplasma》1989,150(2-3):83-95
Summary The distribution and arrangement of cytoskeletal components in the early embryo ofDrosophila melanogaster were examined by thin-section electron microscopy to elucidate their involvement in the formation of the cellular blastoderm, a process called cellularization. During the final nuclear division in the cortex of the syncytial blastoderm bundles of astral microtubules were closely associated with the surface plasma membrane along the midline where a new gutter was initiated. Thus the new gutter together with the pre-formed ones compartmentalized the embryo surface to reflect underlying individual daughter nuclei. Subsequently such gutters became deeper by further invagination of the plasma membrane between adjacent nuclei to form so-called cleavage furrows. Nuclei simultaneously elongated in the direction perpendicular to the embryo surface and numerous microtubules from the centrosomes ran longitudinally between the nucleus and the cleavage furrow. Microtubules often appeared to be in close association with the nuclear envelope and the cleavage furrow membrane. The plasma membrane at the advancing tip of the furrow was always undercoated with an electron-dense layer, which could be shown to be mainly composed of 5–6 nm microfilaments. These microfilaments were decorated with H-meromyosin to be identified as actin filaments. As cleavage proceeded, each nucleus with its perikaryon became demarcated by the furrow membrane, which then extended laterally to constrict the cytoplasmic connection between each newly forming cell and the central yolk region. The cytoplasmic strand thus formed possessed a prominent circular bundle of microfilaments which were also decorated with H-meromyosin and bidirectionally arranged, similar in structure to the contractile ring in cytokinesis. These observations strongly suggest that both microtubules and actin filaments play a crucial role in cellularization ofDrosophila embryos.  相似文献   

11.
The Arp2/3 complex has been shown to dramatically increase the slow spontaneous rate of actin filament nucleation in vitro, and it is known to be important for remodeling the actin cytoskeleton in vivo. We isolated and characterized loss of function mutations in genes encoding two subunits of the Drosophila Arp2/3 complex: Arpc1, which encodes the homologue of the p40 subunit, and Arp3, encoding one of the two actin-related proteins. We used these mutations to study how the Arp2/3 complex contributes to well-characterized actin structures in the ovary and the pupal epithelium. We found that the Arp2/3 complex is required for ring canal expansion during oogenesis but not for the formation of parallel actin bundles in nurse cell cytoplasm and bristle shaft cells. The requirement for Arp2/3 in ring canals indicates that the polymerization of actin filaments at the ring canal plasma membrane is important for driving ring canal growth.  相似文献   

12.
Cytokinesis requires the formation of an actomyosin contractile ring between the two sets of sister chromatids. Annexin A2 is a calcium- and phospholipid-binding protein implicated in cortical actin remodeling. We report that annexin A2 accumulates at the equatorial cortex at the onset of cytokinesis and depletion of annexin A2 results in cytokinetic failure, due to a defective cleavage furrow assembly. In the absence of annexin A2, the small GTPase RhoA—which regulates cortical cytoskeletal rearrangement—fails to form a compact ring at the equatorial plane. Furthermore, annexin A2 is required for cortical localization of the RhoGEF Ect2 and to maintain the association between the equatorial cortex and the central spindle. Our results demonstrate that annexin A2 is necessary in the early phase of cytokinesis. We propose that annexin A2 participates in central spindle–equatorial plasma membrane communication.  相似文献   

13.
The early Drosophila embryo undergoes two distinct membrane invagination events believed to be mechanistically related to cytokinesis: metaphase furrow formation and cellularization. Both involve actin cytoskeleton rearrangements, and both have myosin II at or near the forming furrow. Actin and myosin are thought to provide the force driving membrane invagination; however, membrane addition is also important. We have examined the role of myosin during these events in living embryos, with a fully functional myosin regulatory light-chain-GFP chimera. We find that furrow invagination during metaphase and cellularization occurs even when myosin activity has been experimentally perturbed. In contrast, the basal closure of the cellularization furrows and the first cytokinesis after cellularization are highly dependent on myosin. Strikingly, when ingression of the cellularization furrow is experimentally inhibited by colchicine treatment, basal closure still occurs at the appropriate time, suggesting that it is regulated independently of earlier cellularization events. We have also identified a previously unrecognized reservoir of particulate myosin that is recruited basally into the invaginating furrow in a microfilament-independent and microtubule-dependent manner. We suggest that cellularization can be divided into two distinct processes: furrow ingression, driven by microtubule mediated vesicle delivery, and basal closure, which is mediated by actin/myosin based constriction.  相似文献   

14.
The function of organelles is intimately associated with rapid changes in membrane shape. By exerting force on membranes, the cytoskeleton and its associated motors have an important role in membrane remodelling. Actin and myosin 1 have been implicated in the invagination of the plasma membrane during endocytosis. However, whether myosin 1 and actin contribute to the membrane deformation that gives rise to the formation of post-Golgi carriers is unknown. Here we report that myosin 1b regulates the actin-dependent post-Golgi traffic of cargo, generates force that controls the assembly of F-actin foci and, together with the actin cytoskeleton, promotes the formation of tubules at the TGN. Our results provide evidence that actin and myosin 1 regulate organelle shape and uncover an important function for myosin 1b in the initiation of post-Golgi carrier formation by regulating actin assembly and remodelling TGN membranes.  相似文献   

15.
Morphogenesis of the Drosophila embryo is associated with dynamic rearrangement of the actin cytoskeleton mediated by small GTPases of the Rho family. These GTPases act as molecular switches that are activated by guanine nucleotide exchange factors. One of these factors, DRhoGEF2, plays an important role in the constriction of actin filaments during pole cell formation, blastoderm cellularization, and invagination of the germ layers. Here, we show that DRhoGEF2 is equally important during morphogenesis of segmental grooves, which become apparent as tissue infoldings during mid-embryogenesis. Examination of DRhoGEF2-mutant embryos indicates a role for DRhoGEF2 in the control of cell shape changes during segmental groove morphogenesis. Overexpression of DRhoGEF2 in the ectoderm recruits myosin II to the cell cortex and induces cell contraction. At groove regression, DRhoGEF2 is enriched in cells posterior to the groove that undergo apical constriction, indicating that groove regression is an active process. We further show that the Formin Diaphanous is required for groove formation and strengthens cell junctions in the epidermis. Morphological analysis suggests that Dia regulates cell shape in a way distinct from DRhoGEF2. We propose that DRhoGEF2 acts through Rho1 to regulate acto-myosin constriction but not Diaphanous-mediated F-actin nucleation during segmental groove morphogenesis.  相似文献   

16.
The process of myogenesis includes the recognition, adhesion, and fusion of committed myoblasts into multinucleate syncytia. In the larval body wall muscles of Drosophila, this elaborate process is initiated by Founder Cells and Fusion-Competent Myoblasts (FCMs), and cell adhesion molecules Kin-of-IrreC (Kirre) and Sticks-and-stones (Sns) on their respective surfaces. The FCMs appear to provide the driving force for fusion, via the assembly of protrusions associated with branched F-actin and the WASp, SCAR and Arp2/3 pathways. In the present study, we utilize the dorsal pharyngeal musculature that forms in the Drosophila embryo as a model to explore myoblast fusion and visualize the fusion process in live embryos. These muscles rely on the same cell types and genes as the body wall muscles, but are amenable to live imaging since they do not undergo extensive morphogenetic movement during formation. Time-lapse imaging with F-actin and membrane markers revealed dynamic FCM-associated actin-enriched protrusions that rapidly extend and retract into the myotube from different sites within the actin focus. Ultrastructural analysis of this actin-enriched area showed that they have two morphologically distinct structures: wider invasions and/or narrow filopodia that contain long linear filaments. Consistent with this, formin Diaphanous (Dia) and branched actin nucleator, Arp3, are found decorating the filopodia or enriched at the actin focus, respectively, indicating that linear actin is present along with branched actin at sites of fusion in the FCM. Gain-of-function Dia and loss-of-function Arp3 both lead to fusion defects, a decrease of F-actin foci and prominent filopodia from the FCMs. We also observed differential endocytosis of cell surface components at sites of fusion, with actin reorganizing factors, WASp and SCAR, and Kirre remaining on the myotube surface and Sns preferentially taken up with other membrane proteins into early endosomes and lysosomes in the myotube.  相似文献   

17.
The growth-arrest-specific gene, Gas7, is required for neurite outgrowth in cerebellar neurons. Here we report that Gas7 can induce the formation of extended cellular processes in NIH3T3 cells by interacting with actin and mediating reorganization of microfilaments. The Gas 7 protein, which increased markedly during growth arrest of NIH3T3 cells and persisted transiently at high levels upon reentry of cells into the cell cycle, localized near the plasma membrane and selectively colocalized with microfilaments in membrane ruffles. Process extensions induced by ectopic overexpression of Gas7 were blocked by the actin-depolymerizing agent cytochalasin D, suggesting that membrane extensions produced by Gas7 require actin polymerization. Association of endogenous Gas7 protein with microfilaments was verified by F-actin affinity chromatography; direct binding of purified His-Gas7 to actin also was demonstrated and shown to be mediated by the Gas7 C-terminal domain. Similarly, localization of Gas7 in membrane ruffles was mediated by the C-terminal domain, although neither this region nor the N-terminal domain was individually sufficient to induce process formation. Biochemical studies and electron microscopy showed that both full-length Gas7 protein and its C-terminal region can promote actin assembly as well as the crosslinking of actin filaments. We propose that Gas7 localized near the plasma membrane induces the assembly of actin and the membrane outgrowth.  相似文献   

18.
To study molecular motion and function of membrane phospholipids, we have developed various probes which bind specifically to certain phospholipids. Using a novel peptide probe, RoO9-0198, which binds specifically to phosphatidylethanolamine (PE) in biological membranes, we have analyzed the cell surface movement of PE in dividing CHO cells. We found that PE was exposed on the cell surface specifically at the cleavage furrow during the late telophase of cytokinesis. PE was exposed on the cell surface only during the late telophase and no alteration in the distribution of the plasma membranebound peptide was observed during the cytokinesis, suggesting that the surface exposure of PE reflects the enhanced transbilayer movement of PE at the cleavage furrow. Furthermore, cell surface immobilization of PE induced by adding of the cyclic peptide coupled with streptavidin to prometaphase cells effectively blocked the cytokinesis at late telophase. The peptide-streptavidin complex bound specifically to cleavage furrow and inhibited both actin filament disassembly at cleavage furrow and subsequent plasma membrane fusion. Binding of the peptide complex to interphase cells also induced immediate disassembly of stress fibers followed by assembly of cortical actin filaments to the local area of plasma membrane where the peptide complex bound. The cytoskeletal reorganizations caused by the peptide complex were fully reversible; removal of the surface-bound peptide complex by incubating with PE-containing liposome caused gradual disassembly of the cortical actin filaments and subsequent formation of stress fibers. These observations suggest that the redistribution of plasma membrane phospholipids act as a regulator of actin cytoskeleton organization and may play a crucial role in mediating a coordinate movement between plasma membrane and actin cytoskeleton to achieve successful cell division.  相似文献   

19.
Actin assembly on the surface of Listeria monocytogenes in the cytoplasm of infected cells provides a model to study actin-based motility and changes in cell shape. We have shown previously that the ActA protein, exposed on the bacterial surface, is required for polarized nucleation of actin filaments. To investigate whether plasma membrane-associated ActA can control the organization of microfilaments and cell shape, variants of ActA, in which the bacterial membrane signal had been replaced by a plasma membrane anchor sequence, were produced in mammalian cells. While both cytoplasmic and membrane-bound forms of ActA increased the F-actin content, only membrane-associated ActA caused the formation of plasma membrane extensions. This finding suggests that ActA acts as an actin filament nucleator and shows that permanent association with the inner face of the plasma membrane is required for changes in cell shape. Based on the observation that the amino-terminal segment of ActA and the remaining portion which includes the proline-rich repeats cause distinct phenotypic modifications in transfected cells, we propose a model in which two functional domains of ActA cooperate in the nucleation and dynamic turnover of actin filaments. The present approach is a new model system to dissect the mechanism of action of ActA and to further investigate interactions of the plasma membrane and the actin cytoskeleton during dynamic changes of cell shape.  相似文献   

20.
In cytokinesis, the contractile ring constricts the cleavage furrow. However, the formation and properties of the contractile ring are poorly understood. Fimbrin has two actin-binding domains and two EF-hand Ca(2+)-binding motifs. Ca(2+) binding to the EF-hand motifs inhibits actin-binding activity. In Tetrahymena, fimbrin is localized in the cleavage furrow during cytokinesis. In a previous study, Tetrahymena fimbrin was purified with an F-actin affinity column. However, the purified Tetrahymena fimbrin was broken in to a 60 kDa fragment of a 70 kDa full length fimbrin. In this study, we investigated the properties of recombinant Tetrahymena fimbrin. In an F-actin cosedimentation assay, Tetrahymena fimbrin bound to F-actin and bundled it in a Ca(2+)-independent manner, with a K(d) of 0.3 micro M and a stoichiometry at saturation of 1:1.4 (Tetrahymena fimbrin: actin). In the presence of 1 molecule of Tetrahymena fimbrin to 7 molecules of actin, F-actin was bundled. Immunofluorecence microscopy showed that a dotted line of Tetrahymena fimbrin along the cleavage furrow formed a ring structure. The properties and localization of Tetrahymena fimbrin suggest that it bundles actin filaments in the cleavage furrow and plays an important role in contractile ring formation during cytokinesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号