首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Glucose-6-phosphate dehydrogenase (G6PD) changes were studied in livers of rats inoculated with Trypanosoma lewisi, Trypanosoma rhodesiense, Trypanosoma congolense and Trypanosoma brucei. Marked increases in G6PD were directly related to the degree of parasitemia. No essential differences in G6PD levels were seen in animals inoculated with physiological saline when compared with uninoculated controls. Elevation of G6PD was observed only from day 10 to 20 in rats inoculated with T. lewisi. After day 20, the G6PD levels were not statistically significant from those of uninoculated controls. Liver G6PD levels were increased as early as day 3 post-inoculation and continued up to the time of death in rats inoculated with T. brucei, T. rhodesiense and T. congolense.  相似文献   

2.
3.
Hemolysis in glucose-6-phosphate dehydrogenase deficiency   总被引:1,自引:0,他引:1  
  相似文献   

4.
It has been suggested by some authors that during amphibian development, due to the higher glucose-6-phosphate dehydrogenase (EC 1.1.1.49) activity compared to that of 6-phosphogluconate dehydrogenase (EC 1.1.1.43), 6-phosphogluconate could accumulate in the embryo tissues and regulate the channelling of glucose-6-phosphate into glycolysis. Here, on the base of the specific activities of glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and glucose-6-phosphate isomerase (EC 5.3.1.9) found in the embryos of Bufo bufo during development, it is discussed whether 6-phosphogluconate can accumulate and play a regulative role on glucose-6-phosphate metabolism in the anuran embryo.  相似文献   

5.
Thessaly variant of glucose-6-phosphate dehydrogenase   总被引:1,自引:0,他引:1  
  相似文献   

6.
Summary Characterization of partially purified eryrhrocyte G-6-PD from 50 enzymedeficient males in 45 unrelated Thai families revealed 6 enzyme variants. Thirty-five subjects in 31 families had G-6-PD variant with normal electrophoretic mobility, slightly low Km G-6-P, normal substrate-analog utilization, normal pH-optimum curve, and slightly increased heat stability. This enzyme variant is called G-6-PD Mahidol.Six subjects had enzyme with fast electrophoretic mobility (106–108% of normal), low Km G-6-P, slightly increased substrate-analog utilization, biphasic pH-optimum curve, and slightly low to normal heat stability. This variant was identical to G-6-PD Canton.Five subjects had G-6-PD with fast electrophoretic mobility (103–106% of normal), low Km G-6-P, very high substrate-analog utilization except for DPN which it did not use as cofactor, markedly biphasic pH-optimum curve and very low heat stability. This variant is called G-6-PD Union (Thai).Two brothers had G-6-PD with normal electrophoretic mobility, low Km G-6-P, slightly increased substrate-analog utilization, biphasic pH-optimum curve and low heat stability. This variant is designated G-6-PD Siriraj.G-6-PD from one patient had slightly fast electrophoretic mobility, increased substrateanalog utilization, especially of DPN, and very low thermal stability. It is called G-6-PD Kan.One subject had G-6-PD with normal electrophoretic mobility, Km G-6-P, pH-optimum curve and heat stability, and increased substrate-analog utilization. This G-6-PD variant is named G-6-PD Anant.G-6-PD Mahidol is far more common than any other known variants in Thailand.
Zusammenfassung Eine Charakterisierung von teilweise gereinigtem Erythrocyten-G-6-PD von 50 Männern mit Enzym-Defekt aus 45 nicht miteinander verwandten Thai-Familien ergab 6 Enzym-Varianten. 35 Personen in 31 Familien hatten eine G-6-PD-Variante mit normaler elektrophoretischer Wanderungsgeschwindigkeit, einen leicht verminderten G-6-P-Km-Wert, einer normalen Substratanalog-Verwertung, einer normalen pH-Optimum-Kurve und einer leicht erhöhten Hitze-Stabilität. Diese Enzym-Variante wurde G-6-PD Mahidol genannt.Sechs Personen hatten ein Enzym mit rascher elektrophoretischer Wanderung (106–108% der Norm), niedrigem Km für G-6-P, leicht erhöhter Substrat-Verwertung, einer biphasischen pH-Optimum-Kurve und normaler bis leicht erniedrigter Hitzestabilität. Diese Variante ist identisch mit G-6-PD Canton.Fünt Personen hatten G-6-PD mit rascher elektrophoretischer Wanderung (103–106%), niedrigem Km G-6-P, sehr hoher Substratanalog-Verwertung—mit Ausnahme von DPN, das nicht als Cofactor wirkte—, einer stark biphasischen pH-Optimum-Kurve und sehr geringer Hitze-Stabilität. Diese Variante wurde als G-6-PD Union (Thai) bezeichnet.Zwei Brüder hatten ein G-6-PD mit normaler elektrophoretischer Wanderung, niedrigem Km G-6-P, leicht erhöhter Substratanalog-Verwertung, einer biphasischen pH-Optimum-Kurve und geringer Hitze-Stabilität. Diese Variante erhielt den Namen G-6-PD Siriraj.G-6-PD eines Patienten hatte eine leicht erhöhte elektrophoretische Wanderungsgeschwindigkeit, eine erhöhte Substratanalog-Verwertung, besonders für DPN, und eine sehr geringe Hitze-Stabilität (G-6-PD Kan).Eine Person zeigte ein G-6-PD mit normaler elektrophoretischer Wanderungsgeschwindigkeit, Km G-6-P pH-Optimum-Kurve und Hitze-Stabilität. Nur die Substratanalog-Verwertung war erhöht. Diese Variante wurde G-6-PD Anant gennant.G-6-PD Mahidol ist die bei weitem häufigste Variante in Thailand.


This investigation received financial support from the World Health Organization.  相似文献   

7.
Histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase   总被引:3,自引:0,他引:3  
Histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase has found many applications in biomedical research. However, up to several years ago, the methods used often appeared to be unreliable because many artefacts occurred during processing and staining of tissue sections or cells. The development of histochemical methods preventing loss or redistribution of the enzyme by using either polyvinyl alcohol as a stabilizer or a semipermeable membrane interposed between tissue section and incubation medium, has lead to progress in the topochemical localization of glucose-6-phosphate dehydrogenase. Optimization of incubation conditions has further increased the precision of histochemical methods. Precise cytochemical methods have been developed either by the use of a polyacrylamide carrier in which individual cells have been incorporated before staining or by including polyvinyl alcohol in the incubation medium. In the present text, these methods for the histochemical and cytochemical localization of glucose-6-phosphate dehydrogenase for light microscopical and electron microscopical purposes are extensively discussed along with immunocytochemical techniques. Moreover, the validity of the staining methods is considered both for the localization of glucose-6-phosphate dehydrogenase activity in cells and tissues and for cytophotometric analysis. Finally, many applications of the methods are reviewed in the fields of functional heterogeneity of tissues, early diagnosis of carcinoma, effects of xenobiotics on cellular metabolism, diagnosis of inherited glucose-6-phosphate dehydrogenase deficiency, analysis of steroid-production in reproductive organs, and quality control of oocytes of mammals. It is concluded that the use of histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase is of highly significant value in the study of diseased tissues. In many cases, the first pathological change is an increase in glucose-6-phosphate dehydrogenase activity and detection of these early changes in a few cells by histochemical means only, enables prediction of other subsequent abnormal metabolic events. Analysis of glucose-6-phosphate dehydrogenase deficiency in erythrocytes has been improved as well by the development of cytochemical tools. Heterozygous deficiency can now be detected in a reliable way. Cell biological studies of development or maturation of various tissues or cells have profited from the use of histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase activity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
9.
10.
11.
Summary Relative to the formation of an ordinary colorless plant of Blastocladiella emersonii (which does not require bicarbonate for its formation), the bicarbonate-induced genesis of a resistant-sporangial plant (R.S.) is associated with: (a), a two-fold increase in the rate of exponential, net synthesis of an endogenous, apparently highly branched, glycogen-like polysaccharide; and (b), a three-fold increase in the total pool of this polysaccharide built up within the plant.The polysaccharide accumulates during the early development of an R. S. plant in synchronous, single-generation culture when glucose is being consumed rapidly from the medium without detectable production of lactic acid.The accumulated polysaccharide pool disappears again during the maturation period of a resistant-sporangial plant, when glucose is no longer being consumed from the medium. During this time, (a), approximately one mole of lactic acid is liberated per mole of polysaccharideglucose consumed; and (b), the specific activity of glucose-6-phosphate dehydrogenase rises sharply. These observations are consistent with the possibility that the final maturation of the resistant sporangium is associated with an increase in glucose metabolism via the hexose monophosphate shunt.  相似文献   

12.
This work reports the development of an amperometric glucose-6-phosphate biosensor by coimmobilizing p-hydroxybenzoate hydroxylase (HBH) and glucose-6-phosphate dehydrogenase (G6PDH) on a screen-printed electrode. The principle of the determination scheme is as follows: G6PDH catalyzes the specific dehydrogenation of glucose-6-phosphate by consuming NADP(+). The product, NADPH, initiates the irreversible the hydroxylation of p-hydroxybenzoate by HBH in the presence of oxygen to produce 3,4-dihydroxybenzoate, which results in a detectable signal due to its oxidation at the working electrode. The sensor shows a broad linear detection range between 2 microM and 1000 microM with a low detection limit of 1.2 microM. Also, it has a fast measuring time which can achieve 95% of the maximum current response in 20s after the addition of a given concentration of glucose-6-phosphate with a short recovery time (2 min).  相似文献   

13.
Glucose is metabolized in Escherichia coli chiefly via the phosphoglucose isomerase reaction; mutants lacking that enzyme grow slowly on glucose by using the hexose monophosphate shunt. When such a strain is further mutated so as to yield strains unable to grow at all on glucose or on glucose-6-phosphate, the secondary strains are found to lack also activity of glucose-6-phosphate dehydrogenase. The double mutants can be transduced back to glucose positivity; one class of transductants has normal phosphoglucose isomerase activity but no glucose-6-phosphate dehydrogenase. An analogous scheme has been used to select mutants lacking gluconate-6-phosphate dehydrogenase. Here the primary mutant lacks gluconate-6-phosphate dehydrase (an enzyme of the Enter-Doudoroff pathway) and grows slowly on gluconate; gluconate-negative mutants are selected from it. These mutants, lacking the nicotinamide dinucleotide phosphate-linked glucose-6-phosphate dehydrogenase or gluconate-6-phosphate dehydrogenase, grow on glucose at rates similar to the wild type. Thus, these enzymes are not essential for glucose metabolism in E. coli.  相似文献   

14.
15.
Molecular mechanism of glucose-6-phosphate dehydrogenase deficiency   总被引:4,自引:0,他引:4  
A Kahn  D Cottreau  P Boivin 《Humangenetik》1974,25(2):101-109
  相似文献   

16.
17.
18.
Post-translational modifications of human glucose-6-phosphate dehydrogenase   总被引:3,自引:0,他引:3  
A Kahn  P Boivin  M Vibert  D Cottreau  J C Dreyfus 《Biochimie》1974,56(10):1395-1407
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号