首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA fragments containing either the nifD or nifH promoter and 5' structural gene sequences from Bradyrhizobium japonicum I110 were fused in frame to the lacZ gene. Stable integration of these nif promoter-lacZ fusions by homologous double reciprocal crossover into a symbiotically nonessential region of the B. japonicum chromosome provided an easy assay for the effects of potential nif regulatory mutants. The level of beta-galactosidase activity expressed from these two nif promoter-lacZ fusions was assayed in bacteroids of B. japonicum I110 wild type and Fix mutants generated by transposon Tn5 mutagenesis and identified in the accompanying paper. No nif-positive regulatory mutants were identified from among an array of Fix- mutants in which Tn5 was inserted 9 kilobase pairs upstream of the nifDK operon and within the 18-kilobase-pair region separating the nifDK and nifH operons. This result indicates that there are no genes in these regions involved in the regulation of nitrogenase structural gene expression. Interestingly, the level of beta-galactosidase activity expressed from the nifH promoter was twice that expressed from the nifD promoter, suggesting that the normal cellular level of the nifH gene product in bacteroids is in a 2:1 ratio with the nifD gene product instead of in the 1:1 stoichiometry of the nitrogenase enzyme complex.  相似文献   

2.
3.
4.
Rhizobium japonicum nitrogenase Fe protein gene (nifH).   总被引:15,自引:6,他引:9       下载免费PDF全文
  相似文献   

5.
In the slow-growing soybean symbiont, Bradyrhizobium japonicum (strain 110), a nifA-like regulatory gene was located immediately upstream of the previously mapped fixA gene. By interspecies hybridization and partial DNA sequencing the gene was found to be homologous to nifA from Klebsiella pneumoniae and Rhizobium meliloti, and to a lesser extent, also to ntrC from K. pneumoniae. The B. japonicum nifA gene product was shown to activate B. japonicum and K. pneumoniae nif promoters (using nif::lacZ translational fusions) both in Escherichia coli and B. japonicum backgrounds. In the heterologous E. coli system activation was shown to be dependent on the ntrA gene product. Site-directed insertion and deletion/replacement mutagenesis revealed that nifA is probably the promoter-distal cistron within an operon. NifA- mutants were Fix- and pleiotropic: (i) they were defective in the synthesis of several proteins including the nifH gene product (nitrogenase Fe protein); the same proteins had been known to be repressed under aerobic growth of B. japonicum but derepressed at low O2 tension; (ii) the mutants had an altered nodulation phenotype inducing numerous, small, widely distributed soybean nodules in which the bacteroids were subject to severe degradation. These results show that nifA not only controls nitrogenase genes but also one or more genes involved in the establishment of a determinate, nitrogen-fixing root nodule symbiosis.  相似文献   

6.
7.
Two different repeated sequences (RSs) were discovered in the Rhizobium japonicum genome: RSRj alpha is 1126 base pairs long and is repeated 12 times; RSRj beta is approximately 950 base pairs long and is repeated at least 6 times. Their arrangement in root nodule bacteroid DNA is the same as in DNA from bacteria grown in culture. Deletion analysis showed that many copies of alpha and beta are clustered around the nitrogenase genes nifDK and nifH, or, in general, they are found within a genomic region harboring genes that are nonessential for growth. One copy each of alpha and beta are located upstream of nifDK and are adjacent to each other. Neither of them, however, is involved in the expression of nifDK. Nucleotide sequence analysis of three copies of RS alpha revealed many characteristics of procaryotic insertion sequence elements: potential inverted repeats at their ends, potential target site duplication, and large open reading frames. Despite this, their genomic positions appear to be stable. One possible function of these RSs is in deletion formation probably via recombination between them.  相似文献   

8.
9.
In contrast to Klebsiella pneumoniae or fast-growing Rhizobium species, such as R. meliloti, where the nitrogenase structural genes are clustered in one operon (nifHDK), in slow-growing Rhizobium japonicum 110, nifH and nifDK are on separate operons.  相似文献   

10.
11.
12.
13.
14.
15.
Sixty-five independent, N2 fixation-defective (Nif-) vector insertion (Vi) mutants were selected, cloned, and mapped to the ORS571 genome. The recombinant Nif::Vi plasmids obtained in this way were used as DNA hybridization probes to isolate homologous phages from a genomic library of ORS571 constructed in lambda EMBL3. Genomic maps were drawn for three ORS571 Nif gene loci. Forty-five Nif::Vi mutants in genomic Nif locus 1 defined two gene clusters separated by 8 kilobase pairs (kb) of DNA. In the first cluster, 36 Nif::Vi mutants mapped to a 7-kb DNA segment that showed DNA homology with Klebsiella pneumoniae nifHDKE and encoded at least two Nif operons. In the other cluster, nine Nif::Vi mutants mapped to a 1.5-kb DNA segment that showed homology with K. pneumoniae and Rhizobium meliloti nifA; this DNA segment encoded a separate Nif operon. Fifteen Nif::Vi mutants mapped to a 3.5-kb DNA segment defined as Nif locus 2 and showed DNA homology with the R. meliloti P2 fixABC operon. Nif locus 2 carries a second nifH (nifH2) gene. Four Nif::Vi mutants mapped to a 2-kb DNA segment defined as Nif locus 3 and showed DNA homology with K. pneumoniae nifB. DNA from lambda Nif phages comprising all three genomic Nif loci was subcloned in plasmid vectors able to stably replicate in ORS571. These plasmid subclones were introduced into ORS571 strains carrying physically mapped Nif::Vi insertions, and genetic complementations were conducted. With the exception of certain mutants mapping to the nifDK genes, all mutants could be complemented to Nif+ when they carried plasmid subclones of defined genomic DNA regions. Conversely, most nifDK mutants behaved as pseudodominant alleles.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号