首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A derivative of the α-amylase from Bacillus licheniformis (AmyL) engineered to give an active enzyme with increased net positive charge is secreted by Bacillus subtilis with a yield that is significantly lower than that of the native enzyme. This reduction in yield is the result of increased proteolysis during or shortly after translocation through the cytoplasmic membrane. When we compared the overall rate of folding of the engineered derivative (AmyLQS50.5) with that of AmyL it exhibited a greater dependency on Ca2+ ions for in vitro folding. When the concentration of Ca2+ in the growth medium was increased, so too did the relative yield of AmyLQS50.5. We discuss the importance of secretory protein folding at the membrane/cell wall interface with respect to the yield of native and heterologous proteins from B. subtilis.  相似文献   

2.
The effect of calcium on the secretion of α-amylase (EC 3.2.1.1) and other hydrolases from aleurone layers of barley (Hordeum vulgare L. cv. Himalaya) was studied. Withdrawal of Ca2+ from the incubation medium of aleurone layers preincubated in 5 μM gibberellic acid (GA3) and 5 mM CaCl2 results in a 70–80% reduction in the secretion of α-amylase activity to the incubation medium. Agar-gel electrophoresis shows that the reduction in α-amylase activity following Ca2+ withdrawal is correlated with the disappearance of group B isoenzymes from the incubation medium. The secretion of isoenzymes of group A is unaffected by Ca2+. The addition of Ca2+ stimulates the secretion of group-B isoenzymes but has no measurable effect on either the α-amylase activity or the isoenzyme pattern of aleurone-layer extracts. Pulse-labelling experiments with [35S]methionine show that Ca2+ withdrawal results in a reduction in the secretion of labelled polypeptides into the incubation medium. Immunochemical studies also show that, in the absence of Ca2+, α-amylase isoenzymes of group B are not secreted into the incubation medium. In addition to its effect on α-amylase, Ca2+ influences the secretion of other proteins including several acid hydrolases. The secretion of these other proteins shows the same dependence on Ca2+ concentration as does that of α-amylase. Other cations can promote the secretion of α-amylase to less and varying extents. Strontium is 85% as effective as Ca2+ while Ba2+ is only 10% as effective. We conclude that Ca2+ regulates the secretion of enzymes and other proteins from the aleurone layer of barley.  相似文献   

3.
Neurotransmitter stimulation of plasma membrane receptors stimulates salivary gland fluid secretion via a complex process that is determined by coordinated temporal and spatial regulation of several Ca2+ signaling processes as well as ion flux systems. Studies over the past four decades have demonstrated that Ca2+ is a critical factor in the control of salivary gland function. Importantly, critical components of this process have now been identified, including plasma membrane receptors, calcium channels, and regulatory proteins. The key event in activation of fluid secretion is an increase in intracellular [Ca2+] ([Ca2+]i) triggered by IP3-induced release of Ca2+ from ER via the IP3R. This increase regulates the ion fluxes required to drive vectorial fluid secretion. IP3Rs determine the site of initiation and the pattern of [Ca2+]i signal in the cell. However, Ca2+ entry into the cell is required to sustain the elevation of [Ca2+]i and fluid secretion. This Ca2+ influx pathway, store-operated calcium influx pathway (SOCE), has been studied in great detail and the regulatory mechanisms as well as key molecular components have now been identified. Orai1, TRPC1, and STIM1 are critical components of SOCE and among these, Ca2+ entry via TRPC1 is a major determinant of fluid secretion. The receptor-evoked Ca2+ signal in salivary gland acinar cells is unique in that it starts at the apical pole and then rapidly increases across the cell. The basis for the polarized Ca2+ signal can be ascribed to the polarized arrangement of the Ca2+ channels, transporters, and signaling proteins. Distinct localization of these proteins in the cell suggests compartmentalization of Ca2+ signals during regulation of fluid secretion. This chapter will discuss new concepts and findings regarding the polarization and control of Ca2+ signals in the regulation of fluid secretion.  相似文献   

4.
Cytoplasmic calcium concentration ([Ca2+]i) and extracellular calcium (Ca2+o) influx has been studied in pollen tubes of Lilium longliflorum in which the processes of cell elongation and exocytosis have been uncoupled by use of Yariv phenylglycoside ((β-D-Glc)3). Growing pollen tubes were pressure injected with the ratio dye fura-2 dextran and imaged after application of (β-D-Glc)3, which binds arabinogalactan proteins (AGPs). Application of (β-D-Glc)3 inhibited growth but not secretion. Ratiometric imaging of [Ca2+]i revealed an initial spread in the locus of the apical [Ca2+]i gradient and substantial elevations in basal [Ca2+]i followed by the establishment of new regions of elevated [Ca2+]i on the flanks of the tip region. Areas of elevated [Ca2+]i corresponded to sites of pronounced exocytosis, as evidenced by the formation of wall ingrowths adjacent to the plasma membrane. Ca2+o influx at the tip of (β-D-Glc)3-treated pollen tubes was not significantly different to that of control tubes. Taken together these data indicate that regions of elevated [Ca2+]i, probably resulting from Ca2+o influx across the plasma membrane, stimulate exocytosis in pollen tubes independent of cell elongation.  相似文献   

5.
The dihydropyridine calcium agonist Bay K 8644 acts in a dose-dependent manner to increase prolactin secretion from the GH4C1 pituitary cell line. Enhanced secretion was observed at agonist concentrations as low as 10 nM. In the continued presence of Bay K 8644 secretion remained elevated for at least 30 min. The effect of the agonist was Ca2+-dependent and competitively antagonized by dihydropyridine antagonists. Apparently Bay K 8644 acts at the dihydropyridine binding site associated with GH4C1 Ca2+ channels to enhance Ca2+ influx and stimulate secretion from these cells. This is the first report demonstrating that the newly discovered Ca2+ agonist can, by itself, stimulate secretion from a cell.  相似文献   

6.
The effect of medium Ca2+ concentration upon the concentration and the rate of synthesis of muscle proteins was investigated in chicken pectoralis muscle cultures.There is an easily identifiable class of muscle protein which includes the Ca2+-ATPase of sarcoplasmic reticulum, myosin, troponin C, ATP : creatine phosphotransferase, muscle specific actin, tropomyosin 1 and 2, and muscle hemagglutinin, which show a large increase in concentration during normal development. The increased synthesis of these proteins was inhibited, without inhibition of cell proliferation, in culture media of relatively low Ca2+ concentration, 0.05–0.3 mM, where fusion was prevented. Similar medium Ca2+ concentration was required for the expression of all these proteins, suggesting their coordinate regulation. The proteins are denoted as ‘calcium-modulated proteins’. The increased Ca2+ transport activity of sarcoplasmic reticulum in cultured chicken pectoralis muscle cells during development at 1.8 mM medium calcium concentration represents de novo synthesis of the Ca2+ transport ATPase, as shown by immunoprecipitation, active site labeling and direct identification of the Ca2+ transport ATPase on two-dimensional gel electropherograms of whole muscle homogenates.The concentration and the turnover rate of the majority of the muscle proteins is not affected significantly by medium Ca2+ concentration between 0.06 and 1.8 mM.It is proposed that increase in cytoplasmic free Ca2+ concentration during fusion plays a central role in the regulation of the synthesis of calcium-modulated proteins.  相似文献   

7.
Abstract

Objective: Spinorphin is a potential endogenous antinociceptive agent although the mechanism(s) of its analgesic effect remain unknown. We conducted this study to investigate, by considering intracellular calcium concentrations as a key signal for nociceptive transmission, the effects of spinorphin on cytoplasmic Ca2+ ([Ca2+]i) transients, evoked by high-K+ (30?mM) depolariasation or capsaicin, and to determine whether there were any differences in the effects of spinorphin among subpopulation of cultured rat dorsal root ganglion (DRG) neurons. Methods: DRG neurons were cultured on glass coverslips following enzymatic digestion and mechanical agitation, and loaded with the calcium sensitive dye fura-2 AM (1?µM). Intracellular calcium responses in individual DRG neurons were quantified using standard fura-2 based ratiometric calcium imaging technique. All data were analyzed by using unpaired t test, p?<?0.05 defining statistical significance. Results: Here we found that spinorphin inhibited cytoplasmic Ca2+ ([Ca2+]i) transients, evoked by depolarization and capsaicin selectively in medium and small cultured rat DRG neurons. Spinorphin (10–300?µM) inhibited the Ca2+ signals in concentration dependant manner in small- and medium diameter DRG neurons. Capsaicin produced [Ca2+]i responses only in small- and medium-sized DRG neurons, and pre-treatment with spinorphin significantly attenuated these [Ca2+]i responses. Conclusion: Results from this study indicates that spinorphin significantly inhibits [Ca2+]i signaling, which are key for the modulation of cell membrane excitability and neurotransmitter release, preferably in nociceptive subtypes of this primary sensory neurons suggesting that peripheral site is involved in the pain modulating effect of this endogenous agent.  相似文献   

8.
It has been well established that increases in extracellular calcium concentration ([Ca2+]) inhibit parathyroid hormone (PTH) secretion. The effects of [Ca2+] are mediated through a G-protein-coupled receptor that has been cloned and characterized. Additionally, it has been demonstrated in parathyroid cells that an increase in [Ca2+] results in an increase in steady-state levels of intracellular calcium ([Ca2+]i). At present, it has not been fully resolved whether changes in [Ca2+]i are related to changes in PTH secretion. In the current study, the effect of increased [Ca2+] on PTH secretion and the connection regarding changes in concentrations of intracellular calcium [Ca2+]i have been examined in primary cultures of bovine parathyroid cells. PTH secretion was measured by radioimmunoassay and intracellular calcium was determined by single cell calcium imaging. Bovine parathyroid cells pre-incubated with either 0.5 or 1 mM calcium responded to rapid increases in [Ca2+] (≥0.5 mM) with an immediate and sustained increase in steady-state levels of [Ca2+]i that persisted for time intervals greater than 15 minutes. Although the magnitude of the sustained increase in [Ca2+]i varied among individual cells (∼40% to >300%), the overall pattern and course of time were similar in all cells examined (n = 142). In all trials, [Ca2+]i immediately returned to baseline levels following the addition of the calcium chelator, 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA). Additional control studies, however, suggest that sustained increases in [Ca2+]i do not correlate with regulation of parathyroid hormone secretion. Sustained elevations of [Ca2+]i were not observed when [Ca2+] was gradually increased by the addition of 0.1 mM increments at 1 minute intervals. Furthermore, the effect on inhibition of PTH secretion was the same regardless of whether [Ca2+] was increased by gradual or rapid addition.  相似文献   

9.
Day IS  Reddy VS  Shad Ali G  Reddy AS 《Genome biology》2002,3(10):research0056.1-research005624

Background  

In plants, calcium (Ca2+) has emerged as an important messenger mediating the action of many hormonal and environmental signals, including biotic and abiotic stresses. Many different signals raise cytosolic calcium concentration ([Ca2+]cyt), which in turn is thought to regulate cellular and developmental processes via Ca2+-binding proteins. Three out of the four classes of Ca2+-binding proteins in plants contain Ca2+-binding EF-hand motif(s). This motif is a conserved helix-loop-helix structure that can bind a single Ca2+ ion. To identify all EF-hand-containing proteins in Arabidopsis, we analyzed its completed genome sequence for genes encoding EF-hand-containing proteins.  相似文献   

10.
Rat sympathetic neurons undergo programmed cell death (PCD) in vitro and in vivo when they are deprived of nerve growth factor (NGF). Chronic depolarization of these neurons in cell culture with elevated concentrations of extracellular potassium ([K+]o) prevents this death. The effect of prolonged depolarization on neuronal survival is thought to be mediated by a rise of intracellular calcium concentration ([Ca2+]i) caused by Ca2+ influx through voltage-gated channels. In this report we investigate the effects of chronic treatment of rat sympathetic neurons with thapsigargin, an inhibitor of intracellular Ca2+ sequestration. In medium containing a normal concentration of extracellular Ca2+ ([Ca2+]o), thapsigargin caused a sustained rise of intracellular Ca2+ concentration and partially blocked death of NGF-deprived cells. Elevating [Ca2+]o in the presence of thapsigargin further increased [Ca2+]i, suggesting that the sustained rise of [Ca2+]i was caused by a thapsigargin-induced Ca2+ influx. This treatment potentiated the effect of thapsigargin on survival. The dihydropyridine Ca2+ channel antagonist, nifedipine, blocked both a sustained elevation of [Ca2+]i and enhanced survival caused by depolarization with elevated [K+]o, suggesting that these effects are mediated by Ca2+ influx through L-type channels. Nifedipine did not block the sustained rise of [Ca2+]i or enhanced survival caused by thapsigargin treatment, indicating that these effects were not mediated by influx of Ca2+ through L-type channels. These results provide additional evidence that increased [Ca2+]i can suppress neuronal PCD and identify a novel method for chronically raising neuronal [Ca2+]i for investigation of this and other Ca2+-dependent phenomena. © 1995 John Wiley & Sons, Inc.  相似文献   

11.
Soil salinization in arid zones is a major factor that resulted in the reduction in the yield and quality of many important crops in Northwestern China. In this study, the potential mechanism of flue gas desulfurization gypsum by-product (FGDB) mediated amendment of alkaline soils was investigated in an oil sunflower model by accessing the Ca2+ distribution and Ca2+-ATPase activity in leaf cells. Our results demonstrated an increased calcium concentration, as well as intact chloroplast structure with increasing calcium precipitates in the cell wall, intercellular space, and vacuole of leaf cells in the plants grown in alkaline soils supplied with FGDB or CaSO4. Additionally, a dose-dependent Ca2+-ATPase activity was detected in the plasma membrane and tonoplast of leaf cells from the plants grown in FGDB or CaSO4 supplemented soils. These results implied that the Ca2+-ATPase activity cause cytosolic Ca2+ efflux. The Ca2+ influx is through the Ca2+-channels, and increasing cytosolic Ca2+ concentration might benefit the stability and integrity of cell membrane and cell wall, sequentially alleviated the injury of oil sunflower against alkali stress.  相似文献   

12.
Experiments were carried out on isolated neurons of the thalamic nucleus lateralis dorsalis (LD) from 12-day-old rats. According to the morphological characteristics, LD neurons were classified as relay thalamo-cortical units and interneurons. The concentration of free Ca2+ ions in the cytoplasm ([Ca2+] i ) was measured by a fluorescent calcium indicator, fura-2AM. Application of 30 mM caffeine caused a transient change in the [Ca2+] i in 8 of 15 and in 6 of 11 of the thalamo-cortical units and interneurons under study, respectively. After stimulation of a cell with application of 50 mM KCl, a caffeine-induced increase in the [Ca2+] i was observed in all tested neurons. To study the contribution of Ca2+-induced Ca2+ release (CICR) to the calcium transient evoked by depolarization of the neuronal membrane, caffeine in a subthreshold concentration was pre-applied. After 50 mM KCl had been added to the medium following pre-application of 0.5 mM caffeine, the calcium transient amplitude in thalamo-cortical neurons increased by 51 ± 7% (n = 16). In interneurons this effect was not observed (n = 11). The data obtained allow us to hypothesize that CICR contributes to the depolarization-evoked calcium transient only in the relay (thalamo-cortical) neurons. Differences in the pattern of calcium signalling, which were detected in two types of neurons of the thalamic LD, can be a factor determining distinctions in the physiological characteristics of these neurons.  相似文献   

13.
Summary This paper presents a systematic investigation of the influence of the extracellular concentration of calcium ([Ca2+]0) on the electrophysiological response of the fly's photoreceptors (R1–R6) to light. The hemisected heads of flies were perfused with a standard medium containing 10–4 mol/1 CaCl2 and in this medium the intracellularly recorded response of the cell was virtually identical to the normal response obtained in vivo. All the effects of changing the [Ca2+]0 could be reversed within 5 min by perfusing the eye with the standard medium.Changing the [Ca2+]0 did not influence the frequency with which quantum bumps occurred or the resting membrane potential, but did lead to changes in the latency and amplitude of the response and, most significantly, in the repolarization time (t r). The plot oft r versus the [Ca2+]0 revealed that the value oft r changes significantly in two distinct regions representing a [Ca2+]0 of between 2×10–8 and 10–7 mol/l and 10–4 and 10–2 mol/l, respectively. Lowering the [Ca2+]0 did not affect the amplitude of the response but did lead to a drastic increase int r which was accompanied by an increase in latency and peak time. Raising the [Ca2+]0 led to a reduction in the duration and amplitude of the response. The latter effect is evidence of reduction in the sensitivity of the photoreceptor cell which is dependent on the [Ca2+]0.It is postulated that two types of binding site for calcium exist, high affinity binding sites (HABS) and low affinity binding sites (LABS), which modulate the functioning of ion channels in the cell membrane that are activated as a consequence of light absorption. The results indicate that the sensitivity of the photoreceptor cell is determined by the degree of saturation of the LABS.  相似文献   

14.
Summary A technique is devised to determine the spatial distribution of the free ionized cytoplasmic calcium concentration ([Ca2+] i ) inside a cell:Chironomus salivary gland cells are loaded with aequorin, and the Ca2+-dependent light emission of the aequorin is scanned with an image-intensifier/television system. With this technique, the [Ca2+] i is determined simultaneously with junctional electrical coupling when Ca2+ is microinjected into the cells, or when the cells are exposed to metabolic inhibitors, Ca-transporting ionophores, or Ca-free medium. Ca microinjections elevating the [Ca2+] i the junctional locale produce depression of junctional membrane conductance. When the [Ca2+] i elevation is confined to the vicinity of one cell junction, the conductance of that junction alone is depressed; other junctions of the same cell are not affected. The depression sets in as the [Ca2+] i rises in the junctional locale, and reverses after the [Ca2+] i falls to baseline. When the [Ca2+] i elevation is diffuse throughout the cell, the conductances of all junctions of the cell are depressed. The Ca injections produce no detectable [Ca2+] i elevations in cells adjacent to the injected one; the Ca-induced change in junctional membrane permeability seems fast enough to block appreciable transjunctional flow of Ca2+. Control injections of Cl or K+ do not affect junctional conductance. The Ca injections that elevate [Ca2+] i sufficiently to depress junctional conductance also produce under the usual conditions an increase in nonjunctional membrane conductance and, hence, depolarization. But injections that elevate [Ca2+] i at the junction while largely avoiding nonjunctional membrane cause depression of junctional conductance with little or no depolarization. Moreover, elevations of [Ca2+] i in cells clamped near resting potential produce the depression, too. On the other hand, complete depolarization in K medium does not produce the depression, unless accompanied by [Ca2+] i elevation. Thus, the depolarization is neither necessary nor sufficient for depression of junctional conductance. Treatment with cyanide, dinitrophenol and ionophores X537 A or A23187 produces diffuse elevation of [Ca2+] i associated with depression of nunctional conductance. Prolonged exposure to Ca-free medium leads to fluctuation in [Ca2+] i where rise and fall of [Ca2+] i correlate respectively with fall and rise in junctional conductance.  相似文献   

15.
L. Arqueros  A.J. Daniels 《Life sciences》1978,23(24):2415-2421
Verapamil blocked catecholamine (CA) secretion evoked by acetylcholine (ACh), Ba2+ or Ca2+ in isolated perfused bovine adrenals. This inhibitory effect was irreversible and not modified by increasing the Ca2+ concentration of the perfusion fluid. Tetracaine also inhibited CA secretion, although no additive effect was found when both verapamil and tetracaine were present simultaneously in the perfusion medium. It is concluded that verapamil and tetracaine inhibit CA secretion presumably at the same site, but verapamil effect cannot be reverted by excess of calcium ions.  相似文献   

16.
The permeability of isolated mitochondria which have undergone the Ca2+-induced transition can be modulated over a wide range simply by adjusting the concentration of free Ca2+ in the medium. The effect varies sigmoidally with respect to Ca2+ concentration, with an apparent Km of 16 μm at pH 7.0. It is concluded that the trigger site (by “trigger site” we mean the site of binding of Ca2+ which, when Ca2+ is bound, will allow the transition in permeability to occur) is possibly also the site for high-affinity Ca2+ uptake. Added ADP, NADH and Mg2+ inhibit the Ca2+-induced permeability of mitochondria which have undergone the Ca2+-induced transition. Mg2+ and other ions, including H+, act like competitive inhibitors of the Ca2+ effect. In the presence of Ca2+, both neutral and charged molecules of molecular weight <1000 pass readily through the membrane. This response to Ca2+ is interpreted as a gating effect at the internal end of hydrophilic channels which span the inner membrane.  相似文献   

17.
Is the folding pathway conserved in homologous proteins? To address this question, we compared the folding pathways of goat α-lactalbumin and canine milk lysozyme using equilibrium and kinetic circular dichroism spectroscopy. Both Ca2+-binding proteins have 41% sequence identity and essentially identical backbone structures. The Φ-value analysis, based on the effect of Ca2+ on the folding kinetics, showed that the Ca2+-binding site was well organized in the transition state in α-lactalbumin, although it was not yet organized in lysozyme. Equilibrium unfolding and hydrogen-exchange 2D NMR analysis of the molten globule intermediate also showed that different regions were stabilized in the two proteins. In α-lactalbumin, the Ca2+-binding site and the C-helix were weakly organized, whereas the A- and B-helices, both distant from the Ca2+-binding site, were well organized in lysozyme. The results thus provide an example of highly homologous proteins taking different folding pathways. To understand the molecular origin of this difference, we investigated the native three-dimensional structures of the proteins in terms of non-local contact clusters, a parameter based on the residue-residue contact map and known to be well correlated with the folding rate of non-two-state proteins. There were remarkable differences between the proteins in the distribution of the non-local contact clusters, and these differences provided a reasonable explanation of the observed difference in the folding initiation sites. In conclusion, the protein folding pathway is determined not only by the backbone topology but also by the specific side-chain interactions of contacting residues.  相似文献   

18.
Biochemical and kinetic properties under identical substrate and reaction conditions were obtained for an ATP-dependent Ca2+ pump and (Ca2+ + Mg2+)-ATPase in synaptosome membrane vesicles prepared from the brain of the moth, Mamestra configurata. Both the ATP-dependent Ca2+ pump and (Ca2+ + Mg2+)-ATPase had single, high-affinity binding sites for ATP (Km = 14 and 116 μM, respectively), Ca2+free (Km = 0.13 nM and 0.072 nM, respectively), and Mg2+ (Km = 1.1 mM and 0.07 mM, respectively). Both systems were relatively little affected by K+ and were insensitive to ouabain, an inhibitor of (Na+ + K+)-ATPase. The results indicate that the ATP-dependent Ca2+ pump and (Ca2+ + Mg2+)-ATPase are functionally coupled in synaptic membranes and constitute a mechanism for Ca2+ transport in the brain of M. configurata. Although moth brain (Ca2+ + Mg2+)-ATPase is maximally active at nanomolar concentrations of free calcium ion, the enzyme retains at least one-half of its maximal activity at micromolar calcium concentrations, indicating either that the enzyme has two binding sites for calcium (a high-affinity site at nanomolar Ca2+free and a low-affinity site at micromolar Ca2+free), or that there are two enzymes with high and low affinity for calcium, respectively. Calcium extrusion from brain neurones of M. configurata may operate in a two-stage, concentration-dependent process in which a first stage, low-affinity pump reduces intraneuronal calcium to a concentration at which a second stage, high-affinity pump becomes activated.  相似文献   

19.
Various media and Ca2+ concentrations are employed to culture neural progenitor cells (NPCs). We have therefore explored the effects of extracellular calcium concentrations on the survival, proliferation, spontaneous apoptosis and self-renewal capacity of mesencephalic NPCs grown adherently and as free-floating neurospheres. We employed EMEM supplemented with various concentrations of extracellular CaCl2 (0.1–1 mM). Raising the calcium concentration from 0.1 mM to 0.6 mM resulted in an increased number of NPCs growing as a monolayer and increased the protein yield of cells growing in neurospheres (24±3 μg total proteins in 0.1 mM Ca2+ medium vs. 316±34 μg proteins in 1 mM Ca2+ medium). Concentrations more than 0.6 mM did not result in a further improvement of proliferation or survival. Elimination of calcium from our control medium by 1 mM EGTA resulted in a decrease in cell number from 82±2×104 NPCs/ml observed in control medium to 62±2×104 NPCs/ml observed in calcium-free media. Protein yield dropped significantly in calcium-free media, accompanied by the decreased expression of the proliferation marker PCNA and the pro-survival marker Bcl-2. Two weeks of expansion as neurospheres caused spontaneous cell death in more than 90% of NPCs grown in 0.1 mM CaCl2 EMEM compared with 42% in 1 mM CaCl2 EMEM. Although the action of Ca2+ on NPCs appears to be complex, the presented data strongly suggest that extracellular calcium plays a crucial role in the maintenance of NPCs in a healthy and proliferating state; physiological concentrations (>1.0 mM) are not required, a concentration of 0.5 mM being adequate for cell maintenance.  相似文献   

20.
Measurements of intracellular Ca2+ in adrenal medullary cells suggest that a transient rise in Ca2+ leads to a transient secretory response, the rise in Ca2+ being brought about by an influx through voltage-sensitive Ca channels which subsequently inactivate. The level of Ca2+ observed is much smaller than the Ca2+ needed to trigger secretion when introduced directly into the cell. The discrepancy is removed by the presence of diacylglycerot, which increases the sensitivity of the secretory process to Ca2+. The site of action of Ca2+ and diacylglycerol is probably protein kinase C, and tile different secretory responses to increases of Ca2+ and diacylglycerol can be modelled in terms of a preferential order of binding of these two substrates to the enzyme. ATP is needed for secretion: one role is possibly to confer stability to the secretory apparatus; another may involve phosphorylation of some key protein. The kinetics of secretion suggest that if Ca2+ regulates phosphorylation or dephosphorylation, then it is therate of change of phosphorylation that controls secretion rather than theextent of phosphorylation or dephosphorylation. Guanine nucleotide-binding proteins may play a role not only at the level of signal transduction coupling, but also at or near the site of exocytosis, and the mechanism by which some Botulinum toxins inhibit secretion may be associated with these proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号