首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As part of our studies on the molecular mechanism of mutation [Chambers, R. W. (1982) in Molecular and Cellular Mechanisms of Mutagenesis (Lemontt, J. F., & Generoso, W. M., Eds.) pp 121-145, Plenum, New York and London], we wanted to prepare specific oligonucleotides carrying O2- or O4-alkylthymidine residues. Since O-alkylthymine moieties are known to be alkali labile, side reactions were expected during the deprotection procedures used for synthesis of oligonucleotides on a solid support by the classical phosphoramidite method. We have studied these side reactions in detail. Kinetic data show the deprotection procedures displace most O-alkyl groups at rates that make these procedures inappropriate for synthesis of most oligonucleotides carrying O-alkylthymine moieties. We describe alternative deprotection procedures, using readily accessible reagents, that we have used successfully to synthesize a series of oligonucleotides carrying several different O-alkylthymine moieties. The oligonucleotides synthesized are d(A-A-A-A-G-T-alkT-T-A-A-A-A-C-A-T), where alk = O2-methyl, O2-isopropyl, O4-methyl, O4-isopropyl, and O4-n-butyl. This work extends the previously described procedure for the chemical synthesis of oligonucleotides carrying an O4-methylthymine moiety [Li, B. F., Reese, C. B., & Swann, P. F. (1987) Biochemistry 26, 1086-1093] and reports the first chemical synthesis of an oligonucleotide carrying an O2-alkylthymine. The oligonucleotides synthesized have a sequence corresponding to the minus strand that is complementary to the viral strand at the start of gene G in bacteriophage phi X174 replicative form DNA where the normal third codon has been replaced with the ocher codon, TAA.  相似文献   

2.
The success of oligonucleotide ligation assays in probing specific sequences of DNA arises in large part from high enzymatic selectivity against base mismatches at the ligation junction. We describe here a study of the effect of mismatches on a new non-enzymatic, reagent-free method for ligation of oligonucleotides. In this approach, two oligonucleotides bound at adjacent sites on a complementary strand undergo autoligation by displacement of a 5'-end iodide with a 3'-phosphorothioate group. The data show that this ligation proceeds somewhat more slowly than ligation by T4 ligase, but with substantial discrimination against single base mismatches both at either side of the junction and a few nucleotides away within one of the oligonucleotide binding sites. Selectivities of >100-fold against a single mismatch are observed in the latter case. Experiments at varied concentrations and temperatures are carried out both with the autoligation of two adjacent linear oligonucleotides and with intramolecular autoligation to yield circular 'padlock' DNAs. Application of optimized conditions to discrim-ination of an H- ras codon 12 point mutation is demonstrated with a single-stranded short DNA target.  相似文献   

3.
The viral protein HIV-1 integrase is required for insertion of the viral genome into human chromosomes and for viral replication. Integration proceeds in two consecutive integrase-mediated reactions: 3'-processing and strand transfer. To investigate the DNA minor groove interactions of integrase relative to known sites of integrase action, we synthesized oligodeoxynucleotides containing single covalent adducts of known absolute configuration derived from trans-opening of benzo-[a]pyrene 7,8-diol 9,10-epoxide by the exocyclic 2-amino group of deoxyguanosine at specific positions in a duplex sequence corresponding to the terminus of the viral U5 DNA. Because the orientations of the hydrocarbon in the minor groove are known from NMR solution structures of duplex oligonucleotides containing these deoxyguanosine adducts, a detailed analysis of the relationship between the position of minor groove ligands and integrase interactions is possible. Adducts placed in the DNA minor groove two or three nucleotides from the 3'-processing site inhibited both 3'-processing and strand transfer. Inosine substitution showed that the guanine 2-amino group is required for efficient 3'-processing at one of these positions and for efficient strand transfer at the other. Mapping of the integration sites on both strands of the DNA substrates indicated that the adducts both inhibit strand transfer specifically at the minor groove bound sites and enhance integration at sites up to six nucleotides away from the adducts. These experiments demonstrate the importance of position-specific minor groove contacts for both the integrase-mediated 3'-processing and strand transfer reactions.  相似文献   

4.
Retroviral integrase catalyzes integration of double-stranded viral DNA into the host chromosome by a process that has become an attractive target for drug design. In the 3' processing reaction, two nucleotides are specifically cleaved from both 3' ends of viral DNA yielding a 5' phosphorylated dimer (pGT). The resulting recessed 3' hydroxy groups of adenosine provide the attachment sites to the host DNA in the strand transfer reaction. Here, we studied the effect of modified double-stranded oligonucleotides mimicking both the unprocessed (21-mer oligonucleotides) and 3' processed (19-mer oligonucleotides) U5 termini of proviral DNA on activities of HIV-1 integrase in vitro. The inhibitions of 3' processing and strand transfer reactions were studied using 21-mer oligonucleotides containing isopolar, nonisosteric, both conformationally flexible and restricted phosphonate internucleotide linkages between the conservative AG of the sequence CAGT, and using a 21-mer oligonucleotide containing 2'-fluoroarabinofuranosyladenine. All modified 21-mer oligonucleotides competitively inhibited both reactions mediated by HIV-1 integrase with nanomolar IC50 values. Our studies with 19-mer oligonucleotides showed that modifications of the 3' hydroxyl significantly reduced the strand transfer reaction. The inhibition of integrase with 19-mer oligonucleotides terminated by (S)-9-(3-hydroxy-2-phosphonomethoxypropyl)adenine, 9-(2-phosphonomethoxyethyl)adenine, and adenosine showed that proper orientation of the 3' OH group and the presence of the furanose ring of adenosine significantly influence the strand transfer reaction.  相似文献   

5.
Gamper HB  Nulf CJ  Corey DR  Kmiec EB 《Biochemistry》2003,42(9):2643-2655
RecA protein catalyzes strand exchange between homologous single-stranded and double-stranded DNAs. In the presence of ATPgammaS, the post-strand exchange synaptic complex is a stable end product that can be studied. Here we ask whether such complexes can hybridize to or exchange with DNA, 2'-OMe RNA, PNA, or LNA oligonucleotides. Using a gel mobility shift assay, we show that the displaced strand of a 45 bp synaptic complex can hybridize to complementary oligonucleotides with different backbones to form a four-stranded (double D-loop) joint that survives removal of the RecA protein. This hybridization reaction, which confirms the single-stranded character of the displaced strand in a synaptic complex, might initiate recombination-dependent DNA replication if it occurs in vivo. We also show that either strand of the heteroduplex in a 30 bp synaptic complex can be replaced with a homologous DNA oligonucleotide in a strand exchange reaction that is mediated by the RecA filament. Consistent with the important role that deoxyribose plays in strand exchange, oligonucleotides with non-DNA backbones did not participate in this reaction. The hybridization and strand exchange reactions reported here demonstrate that short synaptic complexes are dynamic structures even in the presence of ATPgammaS.  相似文献   

6.
Reverse-phase chromatography has been used for carrying out Maxam-Gilbert sequencing reactions. The DNA loss has been minimized. Time-consuming ethanol precipitation and lyophilization of piperidine have been eliminated. The method has been used successfully in sequencing oligonucleotides as well as large DNA fragments. Based upon these modifications, we have developed a semiautomatic device for carrying out the Maxam-Gilber sequencing reactions. It is also possible to fully automate the Maxam-Gilbert method of DNA sequencing, and we present the diagram of a fully automated set up. The development of such a machine should expedite the sequencing of the large number of genes being cloned.  相似文献   

7.
Abstract

A triple helix can be formed upon binding of a pyrimidine oligonucleotide to the major groove of a homopurine-homopyrimidine (R·Y) double-stranded DNA target site. Here, we report that this reaction can be influenced by base methylation. The pyrimidine strand 5′- TmCTmCTmCTmCTTmCT (mY12), whose cytosine residues are methylated at C5, does not bind the duplex 5′-AGAGAGAGAAGA·3′-TCTCTCTCTTCT (R12·Y12) to yield a 12-triad triplex, as would be expected from these DNA sequences. Rather, a complex of overlapping oligonucleotides, which we define concatenamer, is formed. The concatenamer is clearly evidenced by Polyacrylamide gel electrophoresis (PAGE) since it migrates with a smeared band of very low mobility. The stoichiometry of the concatenamer, determined by both UV mixing curves and electrophoresis, is surprisingly found to be (R12· 2mY12)n, thus showing that the unmethylated Y12 strand is excluded from the complex. Denaturation experiments performed by ultraviolet absorbance (UV) and differential scanning calorimetry (DSC) show that the concatenamers melt with a single and highly cooperative transition whose Tm strongly depends on pH. Overall, the data point to the conclusion that the concatenamers are in triple helix, where the methylated mY12 strand is engaged in both Watson-Crick and Hoogsteen base pairings, thus displacing the Y12 strand from the R12·Y12 duplex. A possible mechanism of concatenamer formation is proposed. The results presented in this paper show that 5-methylcytosine brings about a strong stabilizing effect on both double and triple DNA helices, and that pyrimidine oligonucleotides containing 5-methylcytosine can displace from R·Y duplexes the analogous non-methylated strand. The advantage of using methylated oligonucleotides in antisense technology is discussed.  相似文献   

8.
Mutagenesis at a specific position in a DNA sequence   总被引:25,自引:0,他引:25  
Predefined changes in a known DNA sequence were introduced by a general method. Oligodeoxyribonucleotides complementary to positions 582 to 593 of the viral DNA strand of the bacteriophage phiX174 am3 mutant (pGTATCCTACAAA), and to the wild type sequence in this region (pGTATCCTACAAA), were synthesized and used as specific mutagens. Each of these oligonucleotides was incorporated into a complete circular complementary strand when used as primer on a genetically heterologous viral strand template, by the combined action of subtilisin-treated Escherichia coli DNA polymerase I and T4 DNA ligase. Incomplete duplexes were removed or were inactivated by nuclease S1 and the products were used to transfect spheroplasts of E. coli. Both oligonucleotides induced specific mutations at high efficiency when used with heterologous template (15% mutants among progeny phage). The am phages isolated by this procedure are phenotypically gene E mutants, and contain A at position 587 of the viral strand. They thus appear identical with am3 and provide evidence that the change G leads to A at position 587 is sufficient to produce a defective E function. Since the template for the induction of am mutants carried another genetic marker (sB1), the strains carrying the induced mutations have the new genotype am3 sB1. It should be possible to introduce the am3 mutation into any known mutant strain of phi174 using this same oligonucleotide. Both possible transition mutations were induced in these experiments. In principle, the method could also induce transversions, insertions, and deletions. The method should be applicable to other circular DNAs of similar size, for example recombinant DNA plasmids.  相似文献   

9.
Bennett RL  Holloman WK 《Biochemistry》2001,40(9):2942-2953
Two RecA homologues have been identified to date in Ustilago maydis. One is orthologous to Rad51 while the other, Rec2, is structurally quite divergent and evolutionarily distant. DNA repair and recombination proficiency in U. maydis requires both Rec2 and Rad51. Here we have examined biochemical activities of Rec2 protein purified after overexpression of the cloned gene. Rec2 requires DNA as a cofactor to hydrolyze ATP and depends on ATP to promote homologous pairing and DNA strand exchange. ATPgammaS was found to substitute for ATP in all pairing reactions examined. With superhelical DNA and a homologous single-stranded oligonucleotide as substrates, Rec2 actively promoted formation and dissociation of D-loops. When an RNA oligonucleotide was substituted it was found that R-loops could also be formed and utilized as primer/template for limited DNA synthesis. In DNA strand exchange reactions using oligonucleotides, we found that Rec2 exhibited a pairing bias that is opposite that of RecA. Single-stranded oligonucleotides were activated for DNA strand exchange when attached as tails protruding from a duplex sequence due to enhanced binding of Rec2. The results indicate that Rec2 is competent, and in certain ways even better than Rad51, in the ability to provide the fundamental DNA pairing activity necessary for recombinational repair. We propose that the emerging paradigm for homologous recombination featuring Rad51 as the essential catalytic component for strand exchange may not be universal in eukaryotes.  相似文献   

10.
The gene II protein of bacteriophage f1 is a site-specific endonuclease required for initiation of phage viral strand DNA synthesis. Within gene II is another gene, X, encoding a protein of unknown function identical to the C-terminal 27% of the gene II protein, and separately translated from codon 300 (AUG) of gene II. By oligonucleotide mutagenesis, we constructed phage mutants in which this codon has been changed to UAG (amber) or UUG (leucine), and propagated them on cells carrying a cloned copy of gene X on a plasmid. The amber mutant makes no gene X protein, and cannot grow in the absence of the complementing plasmid; the leucine-inserting mutant can make gene X protein, and grows normally without the plasmid. Without gene X protein, phage DNA synthesis (particularly viral strand synthesis) is impaired. We discuss this finding in the context of other known in-frame overlapping genes (particularly genes A and A* of phage phi X174), many of which are also involved in the specific initiation of DNA synthesis, and suggest applications for the mutagenic strategy we employed.  相似文献   

11.
The bacterial RecA protein and the homologous Rad51 protein in eukaryotes both bind to single-stranded DNA (ssDNA), align it with a homologous duplex, and promote an extensive strand exchange between them. Both reactions have properties, including a tolerance of base analog substitutions that tend to eliminate major groove hydrogen bonding potential, that suggest a common molecular process underlies the DNA strand exchange promoted by RecA and Rad51. However, optimal conditions for the DNA pairing and DNA strand exchange reactions promoted by the RecA and Rad51 proteins in vitro are substantially different. When conditions are optimized independently for both proteins, RecA promotes DNA pairing reactions with short oligonucleotides at a faster rate than Rad51. For both proteins, conditions that improve DNA pairing can inhibit extensive DNA strand exchange reactions in the absence of ATP hydrolysis. Extensive strand exchange requires a spooling of duplex DNA into a recombinase-ssDNA complex, a process that can be halted by any interaction elsewhere on the same duplex that restricts free rotation of the duplex and/or complex, I.e. the reaction can get stuck. Optimization of an extensive DNA strand exchange without ATP hydrolysis requires conditions that decrease nonproductive interactions of recombinase-ssDNA complexes with the duplex DNA substrate.  相似文献   

12.
Branched DNA was synthesized from tripropargylated oligonucleotides by the Huisgen-Meldal-Sharpless cycloaddition using "stepwise and double click" chemistry. Dendronized oligonucleotides decorated with 7-tripropargylamine side chains carrying two terminal triple bonds were further functionalized with bis-azides to give derivatives with two terminal azido groups. Then, the branched side chains with two azido groups or two triple bonds were combined with DNA-fragments providing the corresponding clickable function. Both concepts afforded branched (Y-shaped) three-armed DNA. Annealing of branched DNA with complementary oligonucleotides yielded supramolecular assemblies. The concept of "stepwise and double click" chemistry combined with selective hybridization represents a flexible tool to generate DNA nanostructures useful for various purposes in DNA diagnostics, delivery, and material science applications.  相似文献   

13.
The human genomic H-ras proto-oncogene was inserted into an Epstein-Barr virus (EBV) vector (p220.2) that replicates synchronously with the cell cycle. Unique restriction enzyme sites, 30 bp apart, were created on either side of codon 12 to enable the construction of gapped heteroduplex (GHD) DNA. Depending upon experimental protocol, the gap could be located either on the coding (non-transcribed) strand or the non-coding (transcribed) strand. GHD DNA was created using a 1.8 kb segment of H-ras DNA containing exon 1, into which a synthetic 30 nucleotide oligomer containing a strand- and site-specific mismatched nucleotide was annealed. The 1.8 kb segment of H-ras DNA containing a codon 12; middle G:T, A:C or T:C mismatch has been religated with high efficiency into the EBV vector and transfected into NIH 3T3 cells using a mild liposome-mediated protocol. Subsequent hygromycin resistant NIH 3T3 colonies have been PCR amplified and sequenced. In this study, codon 12; middle nucleotide mismatch correction rates to wild-type G:C during replication in NIH 3T3 cells were 96.4% of G:T mismatches, 87.5% of A:C mismatches and 67% of T:C mismatches.  相似文献   

14.
Oligodeoxynucleotides spanning codon 12 of the human c-Ha-ras gene were found to be exceptionally good substrates for de novo methylation by human DNA(cytosine-5)methyltransferase. In the complex formed by two complementary 30mers, only the C-rich strand was methylated by the enzyme. Guanines at the 3' end of the G-rich strand of the complex could not be completely modified by dimethyl sulfate [corrected] suggesting tetrameric bonding at these G-residues. An eight-stranded structure, composed of four duplex DNAs at one end, joined to a G4-DNA segment at the other with the junction between the two DNA forms at codon 12, can account for our results.  相似文献   

15.
Integration of retroviral DNA into the host cell genome requires the interaction of retroviral integrase (IN) protein with the outer ends of both viral long terminal repeats (LTRs) to remove two nucleotides from the 3' ends (3' processing) and to join the 3' ends to newly created 5' ends in target DNA (strand transfer). We have purified the IN protein of human immunodeficiency virus type 1 (HIV-1) after production in Saccharomyces cerevisiae and found it to have many of the properties described for retroviral IN proteins. The protein performs both 3' processing and strand transfer reactions by using HIV-1 or HIV-2 attachment (att) site oligonucleotides. A highly conserved CA dinucleotide adjacent to the 3' processing site of HIV-1 is important for both the 3' processing and strand transfer reactions; however, it is not sufficient for full IN activity, since alteration of nucleotide sequences internal to the HIV-1 U5 CA also impairs IN function, and Moloney murine leukemia virus att site oligonucleotides are poor substrates for HIV-1 IN. When HIV-1 att sequences are positioned internally in an LTR-LTR circle junction substrate, HIV-1 IN fails to cleave the substrate preferentially at positions coinciding with correct 3' processing, implying a requirement for positioning att sites near DNA ends. The 2 bp normally located beyond the 3' CA in linear DNA are not essential for in vitro integration, since mutant oligonucleotides with single-stranded 3' or 5' extensions or with no residues beyond the CA dinucleotide are efficiently used. Selection of target sites is nonrandom when att site oligonucleotides are joined to each other in vitro. We modified an in vitro assay to distinguish oligonucleotides serving as the substrate for 3' processing and as the target for strand transfer. The modified assay demonstrates that nonrandom usage of target sites is dependent on the target oligonucleotide sequence and independent of the oligonucleotide used as the substrate for 3' processing.  相似文献   

16.
Retroviral integrase participates in two catalytic reactions, which require interactions with the two ends of the viral DNA in the 3'processing reaction, and with a targeted host DNA in the strand transfer reaction. The 3'-hydroxyl group of 2'-deoxyadenosine resulting from the specific removing of GT dinucleotide from the viral DNA in the processing reaction provides the attachment site for the host DNA in a transesterification reaction. We synthesized oligonucleotides (ONs) of various lengths that mimic the processed HIV-1 U5 terminus of the proviral long terminal repeat (LTR) and are ended by 2'-deoxyadenosine containing a 3'-O-phosphonomethyl group. The duplex stability of phosphonomethyl ONs was increased by covalent linkage of the modified strand with its complementary strand by a triethylene glycol loop (TEG). Modified ONs containing up to 10 bases inhibited in vitro the strand transfer reaction catalyzed by HIV-1 integrase at nanomolar concentrations.  相似文献   

17.
18.
There is considerable interest in coupling oligonucleotides to molecules and surfaces. Although amino- and thiol-containing oligonucleotides are being successfully used for this purpose, cycloaddition reactions may offer greater advantages due to their higher chemoselectivity and speed. In this study, copper-catalyzed 1,3-dipolar cycloaddition reactions between oligonucleotides carrying azido and alkyne groups are examined. For this purpose, several protocols for the preparation of oligonucleotides carrying these two groups are described. The non-templated chemical ligation of two oligonucleotides via copper-catalyzed [3+2] cycloaddition is described. By solid-phase methodology, oligonucleotides carrying 5'-5' linkages can be obtained in good yields.  相似文献   

19.
Amplification in the leader sequence of late polyoma virus mRNAs.   总被引:30,自引:0,他引:30  
S Legon  A J Flavell  A Cowie  R Kamen 《Cell》1979,16(2):373-388
  相似文献   

20.
We investigated the incorporation of oxidatively modified guanine residues in DNA using three DNA polymerases, Escherichia coli Kf exo+, Kf exo-, and Taq DNA polymerase. We prepared nucleoside 5'-triphosphates with modified bases (dN (ox)TP) including imidazolone associated with oxazolone (dIzTP/dZTP), dehydroguanidinohydantoin (dOGhTP), and oxaluric acid (dOxaTP). We showed that the single-nucleotide incorporation of these dN (ox)TP at the 3'-end of a primer DNA strand was possible opposite C or G for dIzTP/dZTP, opposite C for dOGhTP using the Klenow fragment, and opposite C for dOxaTP using Taq. The efficiency of these misincorporations was compared to that of the nucleoside 5'-triphosphate modified with the mutagenic guanine lesion 8-oxo-G opposite A or C as well as to that of the natural dNTPs. The reaction was found not competitive. However, the ability of Kf exo- to further copy the whole template DNA strand from the primer carrying one modified residue at the 3'-end proved to be easy and rapid. The two-step polymerization process consisting of the single-nucleotide extension followed by the full extension of a primer afforded a method for the preparation of tailored double-stranded DNA oligonucleotides carrying a single modified base at a precise site on any sequence. This very rapid method allowed the incorporation of unique residues in DNA that were not available before due to their unstable character.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号