首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cryopreservation of the anaerobic rumen fungus Neocallimastix patriciarum   总被引:1,自引:1,他引:0  
A rapid extraction and purification procedure is described for the preparation of toxic peptides from freshwater blooms and laboratory isolates of Microcystis aeruginosa . Extraction with methanol/butanol, followed by C18 cartridge concentration; gel filtration and high performance liquid chromatography yields discrete toxin peaks. Elution profiles for the laboratory isolates and bloom extracts are compared and the applicability of the method for detecting cyanobacterial toxins in natural waters is discussed.  相似文献   

2.
The ionophore antibiotics monensin and tetronasin have been reported to inhibit anaerobic fungi in vitro, and are suitable for animal use. In this study, their effectiveness in removing the anaerobic fungus Neocallimastix sp. LM1 from the rumen was investigated in vitro. Both antibiotics were fungistatic: tetronasin at 0.5 microgram/ml and monensin at 1.0 microgram/ml; exposure for 24 h did not inhibit subsequent growth after removal of the ionophore. The ionophores were fungicidal at much higher concentrations, 1 microgram/ml for tetronasin and 16 micrograms/ml for monensin. It seems likely that the combination of relatively high inhibitory dose and the fungistatic nature of monensin would explain difficulties in using this compound to eliminate anaerobic fungi from the rumens of experimental animals.  相似文献   

3.
The effects of bacterial fermentation products on cellulose degradation by the rumen fungus Neocallimastix frontalis have been investigated. H2, formate, lactate and ethanol were strong inhibitors, particularly at high concentrations. Acetate and malate also inhibited, whereas succinate had a variable effect. Butyrate and propionate had no inhibitory effects.  相似文献   

4.
The rumen anaerobic fungus Neocallimastix frontalis was grown on cellulosic substrates, and the cellular distribution and types of glycosidases produced by the organism were studied. Fungal cultures were fractionated into extracellular, insoluble (membrane), and intracellular fractions and assayed for glycosidase activity by using Avicel, carboxymethylcellulose, xylan, starch, polygalacturonic acid, and the p-nitrophenyl derivatives of galactose, glucose, and xylose as substrates. Enzymic activity was highest in the extracellular fraction; however, the membrane fraction also displayed appreciable activity. The intracellular fraction was inactive towards all substrates. Polygalacturonic acid was the only substrate not hydrolyzed by the active fractions, indicating that pectinase was absent. The results show that N. frontalis, a common rumen anaerobic fungus, produces enzymes for degrading cellulose and hemicellulose, key components of plant fiber.  相似文献   

5.
Cellulase production was examined in two strains of Neocallimastix frontalis, namely, PN-1 isolated from the ovine rumen, and PN-2 from the bovine rumen. For both strains, carboxymethylcellulase (CMCase) had a pH optimum of 6.0 and a temperature optimum of 50 degrees C. CMCase resided mainly in the culture fluid, and activities up to 170 U ml-1 (1 U represents 1 microgram of glucose equivalents released per min) were obtained for cultures grown on 2.5 mg of cellulose ml-1. For resting cultures of strain PN-1, the yield of CMCase increased from 9.9 X 10(3) to 10.4 X 10(4) U per g of cellulose degraded, as the initial cellulose concentration decreased from 10 to 0.58 mg ml-1. The range for PN-2 was 8.1 X 10(3) to 11 X 10(4) U g-1. Shaking cultures improved yields for strain PN-1 but not for PN-2. Decreased CMCase production at high initial cellulose concentrations concurred with accumulation of glucose, and addition of glucose (4 mg ml-1) to cultures grown on low cellulose in which none of the sugar accumulated repressed CMCase. Adsorption of CMCase was excluded as a likely explanation for decreased yields at high initial cellulose as only a low proportion (less than 20%) of the enzyme was adsorbed onto the growth substrate. Exoglucanase, measured with alkali-treated Sigmacell or Avicel, gave low levels of activity in the culture fluid (less than 2 U ml-1) and did not appear to be associated with the fungal rhizoid, as treatment with various solubilizing agents failed to give increased activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Abstract An extracellular cellulase which was highly active in solubilizing the highly hydrogen bond-ordered cellulose in cotton fibre was found in a culture filtrate of the anaerobic fungus, Neocallimastix frontalis , isolated from the rumen of a sheep. The cellulase was several-fold more active in solubilizing cotton fibre per unit of endo-1,4-β-glucanase than the cellulase of the aerobic fungus Trichoderma reesei mutant strain C-30, which is one of the most active cellulases isolated so far.  相似文献   

7.
The rumen anaerobic fungus Neocallimastix frontalis was grown on cellulosic substrates, and the cellular distribution and types of glycosidases produced by the organism were studied. Fungal cultures were fractionated into extracellular, insoluble (membrane), and intracellular fractions and assayed for glycosidase activity by using Avicel, carboxymethylcellulose, xylan, starch, polygalacturonic acid, and the p-nitrophenyl derivatives of galactose, glucose, and xylose as substrates. Enzymic activity was highest in the extracellular fraction; however, the membrane fraction also displayed appreciable activity. The intracellular fraction was inactive towards all substrates. Polygalacturonic acid was the only substrate not hydrolyzed by the active fractions, indicating that pectinase was absent. The results show that N. frontalis, a common rumen anaerobic fungus, produces enzymes for degrading cellulose and hemicellulose, key components of plant fiber.  相似文献   

8.
Hydrogenosomes in the rumen fungus Neocallimastix patriciarum.   总被引:11,自引:1,他引:10       下载免费PDF全文
Sedimentable hydrogenase activity was demonstrated in cell-free extracts from both zoospores and vegetative growth of the anaerobic rumen fungus Neocallimastix patriciarum. Electron micrographs of the fraction enriched in hydrogenase activity contained finely granular microbody-like organelles, about 0.5 micron in diameter and having an equilibrium density of about 1.2 g X ml-1 in sucrose, 1.12 g X ml-1 in Percoll and 1.27-1.28 g X ml-1 in Metrizamide. These organelles, which are sedimentable at 10(5) g-min, bear no similarity to mitochondria, but are morphologically similar to hydrogen-evolving organelles possessed by certain anaerobic protozoa and termed 'hydrogenosomes'. Other typical hydrogenosomal enzymes, namely 'malic' enzyme, pyruvate:ferredoxin oxidoreductase and NADPH:ferredoxin oxidoreductase, were enriched in the same particle fraction as hydrogenase. The synthesis of pyruvate:ferredoxin oxidoreductase was found to be suppressed when the organism was cultured under an atmosphere of CO2, and an alternative pathway is proposed for growth under these conditions.  相似文献   

9.
Cellulase production was examined in two strains of Neocallimastix frontalis, namely, PN-1 isolated from the ovine rumen, and PN-2 from the bovine rumen. For both strains, carboxymethylcellulase (CMCase) had a pH optimum of 6.0 and a temperature optimum of 50 degrees C. CMCase resided mainly in the culture fluid, and activities up to 170 U ml-1 (1 U represents 1 microgram of glucose equivalents released per min) were obtained for cultures grown on 2.5 mg of cellulose ml-1. For resting cultures of strain PN-1, the yield of CMCase increased from 9.9 X 10(3) to 10.4 X 10(4) U per g of cellulose degraded, as the initial cellulose concentration decreased from 10 to 0.58 mg ml-1. The range for PN-2 was 8.1 X 10(3) to 11 X 10(4) U g-1. Shaking cultures improved yields for strain PN-1 but not for PN-2. Decreased CMCase production at high initial cellulose concentrations concurred with accumulation of glucose, and addition of glucose (4 mg ml-1) to cultures grown on low cellulose in which none of the sugar accumulated repressed CMCase. Adsorption of CMCase was excluded as a likely explanation for decreased yields at high initial cellulose as only a low proportion (less than 20%) of the enzyme was adsorbed onto the growth substrate. Exoglucanase, measured with alkali-treated Sigmacell or Avicel, gave low levels of activity in the culture fluid (less than 2 U ml-1) and did not appear to be associated with the fungal rhizoid, as treatment with various solubilizing agents failed to give increased activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Neocallimastix frontalis PN-1 utilized the soluble sugars D-glucose, D-cellobiose, D-fructose, maltose, sucrose, and D-xylose for growth. L-Arabinose, D-galactose, D-mannose, and D-xylitol did not support growth of the fungus. Paired substrate test systems were used to determine whether any two sugars were utilized simultaneously or sequentially. Of the paired monosaccharides tested, glucose was found to be preferentially utilized compared with fructose and xylose. The disaccharides cellobiose and sucrose were preferentially utilized compared with fructose and glucose, respectively, an cellobiose was also the preferred substrate compared with xylose. Xylose was the preferred substrate compared with maltose. In further incubations, the fungus was grown on the substrate utilized last in the two-substrate tests. After moderate growth was attained, the preferred substrate was added to the culture medium. Inhibition of nonpreferred substrate utilization by the addition of the preferred substrate was taken as evidence of catabolite regulation. For the various combinations of substrates tested, fructose and xylose utilization was found to be inhibited in the presence of glucose, indicating that catabolite regulation was involved. No clear-cut inhibition was observed with any of the other substrate combinations tested. The significance of these findings in relation to rumen microbial interactions and competitions is discussed.  相似文献   

11.
A new strain of strictly anaerobic fungi was isolated from the rumen of sheep. This strain is characterized by a polycentric thallus, an extensive and polynuclear rhizomycelium, polyflagellated zoospores with gamma particle-like bodies. We propose to assign this strain in a new species: Neocallimastix joyonii.  相似文献   

12.
The ability of the ruminal anaerobic phycomycete Neocallimastix patriciarum to digest model lignin compounds and lignified structures in plant material was studied in batch culture. The fungus did not degrade or transform model lignin compounds that were representative of the predominant intermonomer linkages in lignin, nor did it solubilize acid detergent lignin that had been isolated from spear grass. In a stem fraction of sorghum, 33.6% of lignin was apparently solubilized by the fungus. Solubilization of ester- and either-linked phenolics accounted for 9.2% of the lignin released. The amounts of free phenolic acids detected in culture fluid were equivalent to the apparent loss of ester-linked phenolics from the sorghum substrate. However, the fungus was unable to cleave the ether bond in hydroxycinnamic acid bridges that cross-link lignin and polysaccharide. It is suggested that the majority of the solubilized lignin fraction was a lignin carbohydrate complex containing ether-linked hydroxycinnamic acids. The lignin carbohydrate complex was probably solubilized through dissolution of xylan in the lignin-xylan matrix rather than by lignin depolymerization.  相似文献   

13.
Xylanase (1,4-beta-D-xylan xylanohydrolase, EC 3.2.1.8) production was investigated in the ruminal anaerobic fungus Neocallimastix frontalis. The enzyme was released principally into the culture fluid and had pH and temperature optima of 5.5 and 55 degrees C, respectively. In the presence of low concentrations of substrate, the enzyme was stabilized at 50 degrees C. Xylobiose was the principal product of xylanase action, with lesser amounts of longer-chained xylooligosaccharides. No xylose was detected, indicating that xylobiase activity was absent. Activities of xylanase up to 27 U ml-1 (1 U represents 1 micromol of xylose equivalents released min-1) were obtained for cultures grown on xylan (from oat spelt) at 2.5 mg ml-1 in shaken cultures. No growth occurred in unshaken cultures. Xylanase production declined with elevated concentrations of xylan (less than 2.5 mg ml-1), and this was accompanied by an accumulation of xylose and, to a lesser extent, arabinose. Addition of either pentose to cultures grown on low levels of xylan in which neither sugar accumulated suppressed xylanase production, and in growth studies with the paired substrates xylan-xylose, active production of the enzyme occurred during growth on xylan only after xylose had been preferentially utilized. When cellobiose, glucose, and xylose were tested as growth substrates for the production of xylanase (each initially at 2.5 mg ml-1), they were found to be less effective than xylan, and use of xylan from different origins (birch wood or larch wood) as the growth substrate or in the assay system resulted in only marginal differences in enzyme activity. However, elevated production of xylanase occurred during growth on crude hemicellulose (barley straw leaf). The results are discussed in relation to the role of the anaerobic fungi in the ruminal ecosystem, and the possible application of the enzyme in bioconversion processes is also considered.  相似文献   

14.
Neocallimastix frontalis PN-1 utilized the soluble sugars D-glucose, D-cellobiose, D-fructose, maltose, sucrose, and D-xylose for growth. L-Arabinose, D-galactose, D-mannose, and D-xylitol did not support growth of the fungus. Paired substrate test systems were used to determine whether any two sugars were utilized simultaneously or sequentially. Of the paired monosaccharides tested, glucose was found to be preferentially utilized compared with fructose and xylose. The disaccharides cellobiose and sucrose were preferentially utilized compared with fructose and glucose, respectively, an cellobiose was also the preferred substrate compared with xylose. Xylose was the preferred substrate compared with maltose. In further incubations, the fungus was grown on the substrate utilized last in the two-substrate tests. After moderate growth was attained, the preferred substrate was added to the culture medium. Inhibition of nonpreferred substrate utilization by the addition of the preferred substrate was taken as evidence of catabolite regulation. For the various combinations of substrates tested, fructose and xylose utilization was found to be inhibited in the presence of glucose, indicating that catabolite regulation was involved. No clear-cut inhibition was observed with any of the other substrate combinations tested. The significance of these findings in relation to rumen microbial interactions and competitions is discussed.  相似文献   

15.
Xylanase (1,4-beta-D-xylan xylanohydrolase, EC 3.2.1.8) production was investigated in the ruminal anaerobic fungus Neocallimastix frontalis. The enzyme was released principally into the culture fluid and had pH and temperature optima of 5.5 and 55 degrees C, respectively. In the presence of low concentrations of substrate, the enzyme was stabilized at 50 degrees C. Xylobiose was the principal product of xylanase action, with lesser amounts of longer-chained xylooligosaccharides. No xylose was detected, indicating that xylobiase activity was absent. Activities of xylanase up to 27 U ml-1 (1 U represents 1 micromol of xylose equivalents released min-1) were obtained for cultures grown on xylan (from oat spelt) at 2.5 mg ml-1 in shaken cultures. No growth occurred in unshaken cultures. Xylanase production declined with elevated concentrations of xylan (less than 2.5 mg ml-1), and this was accompanied by an accumulation of xylose and, to a lesser extent, arabinose. Addition of either pentose to cultures grown on low levels of xylan in which neither sugar accumulated suppressed xylanase production, and in growth studies with the paired substrates xylan-xylose, active production of the enzyme occurred during growth on xylan only after xylose had been preferentially utilized. When cellobiose, glucose, and xylose were tested as growth substrates for the production of xylanase (each initially at 2.5 mg ml-1), they were found to be less effective than xylan, and use of xylan from different origins (birch wood or larch wood) as the growth substrate or in the assay system resulted in only marginal differences in enzyme activity. However, elevated production of xylanase occurred during growth on crude hemicellulose (barley straw leaf). The results are discussed in relation to the role of the anaerobic fungi in the ruminal ecosystem, and the possible application of the enzyme in bioconversion processes is also considered.  相似文献   

16.
17.
The genomic DNA of an anaerobic rumen phycomycete of the genus Neocallimastix has been purified and characterized. The non-repetitive fraction of the DNA has a G.C content of only 13%. The ribosomal RNA genes are highly reiterated, making up about 30% of the total DNA, and are evident as a more G.C-rich satellite with a repeating unit of about 9.4 kilobases (Kb). A.T-rich regions of DNA are highly dispersed and possess some sequence complexity. Chemical analysis of the DNA constituents reveals no evidence of modified bases. The genome of this anaerobic fungus has the highest A.T content of any organism so far described.  相似文献   

18.
A grass + fishmeal ruminant feed was incubated for 7 d in a mineral salts medium with the non-proteolytic rumen bacteria Bacteroides succinogenes, Ruminococcus flavefaciens, Megasphaera elsdenii and proteolytic strains of Bacteroides ruminicola, Selenomonas ruminantium and Streptococcus bovis in the presence and absence of the anaerobic fungus Neocallitnastix frontalis . The fungus increased the dry matter digestion from 65·0 to 69·4%, and more than doubled the proteolytic activity of the culture filtrate. However, a greater difference was observed with the solid material, where the proteolytic activity increased from 0·71 to 6·89 mg 14C-casein hydrolysed/g/h, due mainly to EDTA-sensitive fungal protease.  相似文献   

19.
Proteolytic activity of a rumen anaerobic fungus   总被引:7,自引:0,他引:7  
Abstract A strain of the anaerobic phycomycetous fungus Neocallimastix frontalis isolated from the rumen of a sheep had a high proteolytic activity which became predominantly extracellular during growth. Proteolytic activity appeared to be due to a metalloprotease, as it was inhibited by 1,10-phenanthroline, EDTA and other chelators but not by phenylmethylsulphonyl fluoride (PMSF). Inhibition by EDTA was fully reversed by the addition of Zn2+, Ca2+ or Co2+, whereas addition of metal ions in the presence of 1,10-phenanthroline restored only a little activity. p -Chloromercuribenzoate (PCMB) was also inhibitory in dialysed supernatant fluid. N-α-p-Tosyl- l -lysine chloromethylketone (TLCK) inhibited proteolysis, suggesting that the protease(s) has a trypsin-like specificity, but benzoylarginine p -nitroanilide was not hydrolysed. Protease activity has a broad pH profile with a maximum at pH 7.5. Gel fractionation indicated that most of the activity was in a high- M r form.  相似文献   

20.
The effect of fibrolytic and saccharolytic rumen bacteria on xylanolysis by the rumen fungus Neocallimastix frontalis has been investigated. In cocultivations N. frontalis interacted synergistically with Bacteroides ruminicola, Succinivibrio dextrin-osolvens and Selenomonas ruminantium during xylan utilization. Xylan utilization decreased in cocultures containing Lachnospira multiparus or Streptococcus bovis. Ruminococcus flavefaciens appeared to inhibit fungal growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号