首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We propose that some of the critical molecules involved in the transfer of melanosomes from melanocytes to keratinocytes include plasma membrane lectins and their glycoconjugates. To investigate this mechanism, co-cultures of human melanocytes and keratinocytes derived from neonatal foreskins were established. The process of melanosome transfer was assessed by two experimental procedures. The first involved labeling melanocyte cultures with the fluorochrome CFDA. Labeled melanocytes were subsequently co-cultured with keratinocytes, and the transfer of fluorochrome assessed visually by confocal microscopy and quantitatively by flow cytometry. The second investigative approach involved co-culturing melanocytes with keratinocytes, and processing the co-cultures after 3 days for electron microscopy to quantitate the numbers of melanosomes in keratinocytes. Results from these experimental approaches indicate significant transfer of dye or melanosomes from melanocytes to keratinocytes that increased with time of co-culturing. Using these model systems, we subsequently tested a battery of lectins and neoglycoproteins for their effect in melanosome transfer. Addition of these selected molecules to co-cultures inhibited transfer of fluorochrome by approximately 15-44% as assessed by flow cytometry, and of melanosomes by 67-93% as assessed by electron microscopy. Therefore, our results suggest the roles of selected lectins and glycoproteins in melanosome transfer to keratinocytes in the skin.  相似文献   

2.
Long-term exposure of ultraviolet radiation B (UVB)-induced pigmented spots in the dorsal skin of hairless mice of Hos:(HR-1 X HR//De) F1. Previous study showed that the proliferative and differentiative activities of cultured epidermal melanoblasts/melanocytes from UVB-induced pigmented spots increased with the development of the pigmented spots. To determine whether the increase in the proliferative and differentiative activities of epidermal melanoblasts/melanocytes was brought about by direct changes in melanocytes, or by indirect changes in surrounding keratinocytes, pure cultured melanoblasts/melanocytes and keratinocytes were prepared and co-cultured in combination with control and irradiated mice in a serum-free culture medium. Keratinocytes from irradiated mice stimulated the proliferation and differentiation of both neonatal and adult non-irradiated melanoblasts/melanocytes more greatly than those from non-irradiated mice. In contrast, both non-irradiated and irradiated adult melanocytes proliferated and differentiated similarly when they were co-cultured with irradiated adult keratinocytes. These results suggest that the increased proliferative and differentiative activities of mouse epidermal melanocytes from UVB-induced pigmented spots are regulated by keratinocytes, rather than melanocytes.  相似文献   

3.
We propose that some of the critical molecules involved in the transfer of melanosomes from melanocytes to keratinocytes include plasma membrane lectins and their glycoconjugates. To investigate this mechanism, co‐cultures of human melanocytes and keratinocytes derived from neonatal foreskins were established. The process of melanosome transfer was assessed by two experimental procedures. The first involved labeling melanocyte cultures with the fluorochrome CFDA. Labeled melanocytes were subsequently co‐cultured with keratinocytes, and the transfer of fluorochrome assessed visually by confocal microscopy and quantitatively by flow cytometry. The second investigative approach involved co‐culturing melanocytes with keratinocytes, and processing the co‐cultures after 3 days for electron microscopy to quantitate the numbers of melanosomes in keratinocytes. Results from these experimental approaches indicate significant transfer of dye or melanosomes from melanocytes to keratinocytes that increased with time of co‐culturing. Using these model systems, we subsequently tested a battery of lectins and neoglycoproteins for their effect in melanosome transfer. Addition of these selected molecules to co‐cultures inhibited transfer of fluorochrome by approximately 15–44% as assessed by flow cytometry, and of melanosomes by 67–93% as assessed by electron microscopy. Therefore, our results suggest the roles of selected lectins and glycoproteins in melanosome transfer to keratinocytes in the skin.  相似文献   

4.
Protein kinase C (PKC) is a multigene family of at least 12 isoforms involved in the transduction of extracellular signals. We investigated whether PKC-α, a major isoform known to be relatively abundant in brain tissue, is increased in human melanocytes relative to keratinocytes in vitro and in situ. Immunohistochemical staining for PKC-α in frozen neonatal human foreskin exhibited intermittent 2–3+ staining along the basal cell layer consistent with melanocytes, and 0–1+ staining of keratinocytes (on a scale of 0–3). Microscopic densitometry of the intermittent cellular staining was at least 3-fold greater than that of adjacent keratinocyte cell cytoplasm. Sequential frozen sections revealed similar intermittent cell staining with PKC-α and Mel-5 (tyrosinase related protein-1), known to specifically react with melanocytes. Northern blot analysis with a specific cDNA probe for PKC-α showed strong PKC-α mRNA expression in cultured melanocytes, whereas PKC-α mRNA in cultured non-stratifying keratinocytes was expressed at low levels. Western blot analysis revealed a prominent PKC-α band at approximately 80 kDa in melanocytes as opposed to a weak band in keratinocytes. Densitometry of the northern and western blots revealed that melanocytes had at least 10-fold more PKC-α mRNA and approximately 6-fold more PKC-α protein expression than keratinocytes. Total PKC activity measured in vitro revealed that melanocytes had 5-fold more activity than keratinocytes. The marked difference in melanocyte and keratinocyte expression of PKC-α provides further evidence for cell type specificity in the balance of PKC-α expression and may implicate differential PKC isoform signaling pathways in neuro-ectodermally derived cells.  相似文献   

5.
Co-culture of mouse epidermal cells for studies of pigmentation   总被引:6,自引:0,他引:6  
Interactions between melanocytes and keratinocytes in the skin suggest bi-directional interchanges between these two cell types. Thus, melanocytes cultured alone may not accurately reflect the physiology of the skin and the effects of physiological regulators in vivo, because they do not consider possible interactions with keratinocytes. As more and more pigment genes are identified and cloned, the characterization of their functions becomes more of a challenge, particularly with respect to their roles in the processing and transport of melanosomes and their transfer to keratinocytes. Immortalized melanocytes mutant at these loci are now being routinely generated from mice, but interestingly, successful co-culture of murine melanocytes and keratinocytes is very difficult compared with their human counterparts. Thus, we have now optimized co-culture conditions for murine melanocytes and keratinocytes so that pigmentation and the effects of specific mutations can be studied in a more physiologically relevant context.  相似文献   

6.
Skin pigmentation involves the production of the pigment melanin by melanocytes, in melanosomes and subsequent transfer to keratinocytes. Within keratinocytes, melanin polarizes to the apical perinuclear region to form a protective cap, shielding the DNA from ultraviolet radiation‐induced damage. Previously, we found evidence to support the exocytosis by melanocytes of the melanin core, termed melanocore, followed by endo/phagocytosis by keratinocytes as a main form of transfer, with Rab11b playing a key role in the process. Here, we report the requirement for the exocyst tethering complex in melanocore exocytosis and transfer to keratinocytes. We observed that the silencing of the exocyst subunits Sec8 or Exo70 impairs melanocore exocytosis from melanocytes, without affecting melanin synthesis. Moreover, we confirmed by immunoprecipitation that Rab11b interacts with Sec8 in melanocytes. Furthermore, we found that the silencing of Sec8 or Exo70 in melanocytes impairs melanin transfer to keratinocytes. These results support our model as melanocore exocytosis from melanocytes is essential for melanin transfer to keratinocytes and skin pigmentation and suggest that the role of Rab11b in melanocore exocytosis is mediated by the exocyst.  相似文献   

7.
8.
9.
Interactions between melanocytes and keratinocytes in the skin suggest bi‐directional interchanges between these two cell types. Thus, melanocytes cultured alone may not accurately reflect the physiology of the skin and the effects of physiological regulators in vivo, because they do not consider possible interactions with keratinocytes. As more and more pigment genes are identified and cloned, the characterization of their functions becomes more of a challenge, particularly with respect to their roles in the processing and transport of melanosomes and their transfer to keratinocytes. Immortalized melanocytes mutant at these loci are now being routinely generated from mice, but interestingly, successful co‐culture of murine melanocytes and keratinocytes is very difficult compared with their human counterparts. Thus, we have now optimized co‐culture conditions for murine melanocytes and keratinocytes so that pigmentation and the effects of specific mutations can be studied in a more physiologically relevant context.  相似文献   

10.
Epidermal pigmentation and UV exposure are related to the incidence of skin tumors. There is a higher incidence of UV related skin tumors in populations with low pigment and in vitiligo patients, resulting from DNA damage. Normally DNA repair processes set in with the expression of PCNA in the keratinocyte. The present study was conducted on the marginal zone skin in vitiligo. Whole skin organ cultures irradiated with increasing doses of UV in the 280–400 nm range show that in the depigmented area there is no expression of PCNA by the keratinocytes. In comparison, the marginal zone keratinocytes show a dose related positivity in the presence of UV responsive melanocytes. These photoresponsive melanocytes show dendricity and cytoplasmic PCNA positivity. The melanocytes interact with keratinocytes by active melanosome transfer. From this study it is suggested that this involves transfer of PCNA as well. The present study indicates the differentiating keratinocytes in skin do not express PCNA but appear to be dependent on active UV responding melanocytes for DNA repair. This factor could play an important role in the occurrence of UV-related skin tumors.  相似文献   

11.
Summary Keratinocytes and melanocytes, which together form units of structure and function within human epidermis, are known to differ in expression of autocrine growth factors, particularly those with heparin binding affinity. Because such cytokines could be regulated by the endogenous heparinlike glycosaminoglycan, heparan sulfate, proteoglycan synthesis was compared between human keratinocytes and melanocytes cultured from a common donor. Following steady-state isotopic labeling under conditions of active growth (low density cultures) and growth inhibition (high density cultures), the sulfated polymers were isolated from conditioned media and cell extracts. We found that keratinocytes produced substantially more sulfated glycosaminoglycans than did the melanocytes. There was no evidence for hyaluronic acid synthesis by the melanocytes. The majority of [35S]-sulfate labeling was in the heparan sulfates of the keratinocytes and in the chondroitin sulfates of the melanocytes. During the transition from active growth to growth inhibition, there was increased heparan sulfate proteoglycan and free chain synthesis by keratinocytes but not by melanocytes, and chondroitin sulfate proteoglycan production declined in both cell lineages. The differences may reflect divergent evolution as each cell type came to exploit those complex polysaccharides in different ways to regulate molecular pathways of growth and differentiation. The coupling of growth inhibition with augmented synthesis of heparan sulfates observed for the keratinocytes suggests a regulatory role in growth factor signaling in that cell type.  相似文献   

12.
In mammalian skin, melanocyte proliferation and melanogenesis can be stimulated by keratinocytes, fibroblasts and other regulatory factors. To determine whether hydroxybenzyl alcohols (HBAs) show more inhibitory in melanocytes cultured alone or in melanocytes co-cultured with keratinocytes, we developed a murine melanocyte-keratinocyte co-culture model to investigate the pigmentation regulators in company with other melanogenic inhibitors and stimulators. It was found that the effects of HBAs and melanogenic factors were more evident in melanocytes co-cultured with keratinocytes. Keratinocytes may play a synergistic role in melanocyte melanogenesis and influence the pigment production. The tests in the co-culture model also imply that the inhibitory effects of HBAs on melanogenesis are due to the direct inhibition of melanosomal tyrosinase activity. HBAs showed a low cytotoxicity. The eventual results proved that HBAs are promising and safe agents for skin whitening in melanocyte alone and in co-culture systems. The co-culture model provides a more physiologically realistic condition to study the interaction between melanocytes and keratinocytes, which enables a reliable screening system for depigmenting compounds.  相似文献   

13.
Long‐term exposure of ultraviolet radiation B (UVB)‐induced pigmented spots in the dorsal skin of hairless mice of Hos:(HR‐1 X HR//De) F1. Previous study showed that the proliferative and differentiative activities of cultured epidermal melanoblasts//melanocytes from UVB‐induced pigmented spots increased with the development of the pigmented spots. To determine whether the increase in the proliferative and differentiative activities of epidermal melanoblasts//melanocytes was brought about by direct changes in melanocytes, or by indirect changes in surrounding keratinocytes, pure cultured melanoblasts//melanocytes and keratinocytes were prepared and co‐cultured in combination with control and irradiated mice in a serum‐free culture medium. Keratinocytes from irradiated mice stimulated the proliferation and differentiation of both neonatal and adult non‐irradiated melanoblasts//melanocytes more greatly than those from non‐irradiated mice. In contrast, both non‐irradiated and irradiated adultmelanocytes proliferated and differentiated similarly when they were co‐cultured with irradiated adult keratinocytes. These results suggest that the increased proliferative and differentiative activities of mouse epidermal melanocytes from UVB‐induced pigmented spots are regulated by keratinocytes, rather than melanocytes.  相似文献   

14.
Exposure to solar UV radiation is the origin of most skin cancers, including deadly melanomas. Melanomas are quite different from keratinocyte-derived tumours and exhibit a different mutation spectrum in the activated oncogenes, possibly arising from a different class of DNA damage. In addition, some data suggest a role for UVA radiation in melanomagenesis. To get further insight into the molecular mechanisms underlying induction of melanoma, we quantified a series of UV-induced DNA damage in primary cultures of normal human melanocytes. The results were compared with those obtained in keratinocytes from the same donors. In the UVB range, the frequency and the distribution of pyrimidine dimers was the same in melanocytes and keratinocytes. UVA was also found to produce thymine cyclobutane dimer as the major DNA lesion with an equal efficiency in both cell types. In contrast, following UVA-irradiation a large difference was found for the yield of 8-oxo-7,8-dihydroguanine; the level of this product was 2.2-fold higher in melanocytes than in keratinocytes. The comet assay showed that the induction of strand breaks was equally efficient in both cell types but that the yield of Fpg-sensitive sites was larger in melanocytes. Our data show that, upon UVA irradiation, oxidative lesions contribute to a larger extent to DNA damage in melanocytes than in keratinocytes. We also observed that the basal level of oxidative lesions was higher in the melanocytes, in agreement with a higher oxidative stress that may be due to the production of melanin. The bulk of these results, combined with qPCR and cell survival data, may explain some of the differences in mutation spectrum and target genes between melanomas and carcinomas arising from keratinocytes.  相似文献   

15.
Several different in vivo and in vitro bioassays are used to evaluate melanosome transfer efficacy from melanocytes to keratinocytes. However, these methods are complicated and time consuming. Here, we report on a simple, rapid, direct, and reliable in vitro method for observing the process of melanosome transfer from melanocytes to keratinocytes. First, we selected and tested a melanoma cell line RPMI-7951 that can normally synthesize melanin and transfer from mature melanosomes to keratinocytes in vitro. We cocultured these cells with a human ovarian teratoma transformed epidermal carcinoma cell line, which is also capable of accepting melanosomes transferred from melanocytes, as in normal keratinocytes. The cells were cocultured for 24-72 h and double labeled with FITC-conjugated antibody against the melanosome-associated protein TRP-1, and with Cy5-conjugated antibody against the keratinocyte-specific marker keratin 14. The cells were examined by fluorescence microscope and flow cytometry. Melanosome transfer from melanocytes to keratinocytes increased in a time-dependent manner. To verify the accessibility of this method, the melanosome transfer inhibitor, a serine protease inhibitor, 4-(2-aminoethyl) benzenesulfonyl fluoride hydrochloride, and a melanosome transfer stimulator, alpha-melanocyte-stimulating hormone, were added. The serine protease inhibitor decreased melanosome transfer, and alpha-melanocyte-stimulating hormone increased melanosome transfer, in a dose-dependent manner. In conclusion, this is a simple, rapid, and effective model system to quantify the melanosome transfer efficacy from melanocytes to keratinocytes in vitro.  相似文献   

16.
Human epidermal keratinocytes differentiate in vitro into a stratified epithelium suitable for grafting on burned patients. In this paper, we show that differentiated melanocytes are present in the cultured epithelium. In particular, we have found that i) melanocytes proliferate in the same culture conditions that allow keratinocyte growth, ii) during the culture the ratio between keratinocytes and melanocytes tends to remain constant, iii) melanocytes organize into the basal layer of the cultured epithelium independently of the presence of dermis, develop dendritic arborizations with melanosome-containing processes and transfer melanosomes into keratinocyte cytoplasm.  相似文献   

17.
18.
In mammalian skin, melanocyte proliferation and melanogenesis can be stimulated by keratinocytes, fibroblasts and other regulatory factors. To determine whether hydroxybenzyl alcohols (HBAs) show more inhibitory in melanocytes cultured alone or in melanocytes co-cultured with keratinocytes, we developed a murine melanocyte–keratinocyte co-culture model to investigate the pigmentation regulators in company with other melanogenic inhibitors and stimulators. It was found that the effects of HBAs and melanogenic factors were more evident in melanocytes co-cultured with keratinocytes. Keratinocytes may play a synergistic role in melanocyte melanogenesis and influence the pigment production. The tests in the co-culture model also imply that the inhibitory effects of HBAs on melanogenesis are due to the direct inhibition of melanosomal tyrosinase activity. HBAs showed a low cytotoxicity. The eventual results proved that HBAs are promising and safe agents for skin whitening in melanocyte alone and in co-culture systems. The co-culture model provides a more physiologically realistic condition to study the interaction between melanocytes and keratinocytes, which enables a reliable screening system for depigmenting compounds.  相似文献   

19.
Human skin color is predominantly determined by melanin produced in melanosomes within melanocytes and subsequently distributed to keratinocytes. There are many studies that have proposed mechanisms underlying ethnic skin color variations, whereas the processes involved from melanin synthesis in melanocytes to the transfer of melanosomes to keratinocytes are common among humans. Apart from the activities in the melanogenic rate-limiting enzyme, tyrosinase, in melanocytes and the amounts and distribution patterns of melanosomes in keratinocytes, the abilities of the actin-associated factors in charge of melanosome transport within melanocytes also regulate pigmentation. Mutations in genes encoding melanosome transport-related molecules, such as MYO5A, RAB27A and SLAC-2A, have been reported to cause a human pigmentary disease known as Griscelli syndrome, which is associated with diluted skin and hair color. Thus we hypothesized that process might play a role in modulating skin color variations. To address that hypothesis, the correlations of expression of RAB27A and its specific effector, SLAC2-A, to melanogenic ability were evaluated in comparison with tyrosinase, using human melanocytes derived from 19 individuals of varying skin types. Following the finding of the highest correlation in RAB27A expression to the melanogenic ability, darkly-pigmented melanocytes with significantly higher RAB27A expression were found to transfer significantly more melanosomes to keratinocytes than lightly-pigmented melanocytes in co-culture and in human skin substitutes (HSSs) in vivo, resulting in darker skin color in concert with the difference observed in African-descent and Caucasian skins. Additionally, RAB27A knockdown by a lentivirus-derived shRNA in melanocytes concomitantly demonstrated a significantly reduced number of transferred melanosomes to keratinocytes in co-culture and a significantly diminished epidermal melanin content skin color intensity (ΔL* = 4.4) in the HSSs. These data reveal the intrinsically essential role of RAB27A in human ethnic skin color determination and provide new insights for the fundamental understanding of regulatory mechanisms underlying skin pigmentation.  相似文献   

20.
Repeated exposure of ultraviolet radiation B (UVB) on the dorsal skin of hairless mice induces the development of pigmented spots long after its cessation. The proliferation and differentiation of epidermal melanocytes in UVB-induced pigmented spots are greatly increased, and those effects are regulated by keratinocytes rather than by melanocytes. However, it remains to be resolved what factor(s) derived from keratinocytes are involved in regulating the proliferation and differentiation of epidermal melanocytes. In this study, primary melanoblasts (c. 80%) and melanocytes (c. 20%) derived from epidermal cell suspensions of mouse skin were cultured in a basic fibroblast growth factor-free medium supplemented with granulocyte-macrophage colony-stimulating factor (GM-CSF). GM-CSF induced the proliferation and differentiation of melanocytes in those keratinocyte-depleted cultures. Moreover, an antibody to GM-CSF inhibited the proliferation of melanoblasts and melanocytes from epidermal cell suspensions derived from the pigmented spots of UV-irradiated mice, but not from control mice. Further, the GM-CSF antibody inhibited the proliferation and differentiation of melanocytes co-cultured with keratinocytes derived from UV-irradiated mice, but not from control mice. The quantity of GM-CSF secreted from keratinocytes derived from the pigmented spots of UV-irradiated mice was much greater than that secreted from keratinocytes derived from control mice. Moreover, immunohistochemistry revealed the expression of GM-CSF in keratinocytes derived from the pigmented spots of skin in UV-irradiated mice, but not from normal skin in control mice. These results suggest that GM-CSF is one of the keratinocyte-derived factors involved in regulating the proliferation and differentiation of mouse epidermal melanocytes from UVB-induced pigmented spots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号