首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ProNGF can be cleaved proteolytically at dibasic residues and liberates two other peptides beside NGF, LIP1 a 29 amino acid (aa) peptide and LIP2 a 38 aa peptide. These peptides were found present in the rat intestine and shown to induce rapid phosphorylation of the Trk receptor in cell lines. The present study describes several novel biological properties for these peptides. They exert an anti-proliferative effect on the mitogenic activity of estrogen and IGF in MCF-7 cells. They protect against in vivo induction of excitotoxic lesions by the glutamatergic analogue ibotenate injected into the developing mouse brain and against in vitro NMDA-induced cell death in primary neuronal cultures. They bind to murine microglial cells and induce phosphorylation of Akt. These results suggest a role for LIP1 and LIP2 in cell survival.  相似文献   

2.
Cell migration is involved in various physiological and pathogenic events, and the complex underlying molecular mechanisms have not been fully elucidated. The simple eukaryote Dictyostelium discoideum displays chemotactic locomotion in stages of its life cycle. By characterizing a Dictyostelium mutant defective in chemotactic responses, we identified a novel actin-binding protein serving to modulate cell migration and named it actin-binding protein G (AbpG); this 971–amino acid (aa) protein contains an N-terminal type 2 calponin homology (CH2) domain followed by two large coiled-coil regions. In chemoattractant gradients, abpG cells display normal directional persistence but migrate significantly more slowly than wild-type cells; expressing Flag-AbpG in mutant cells eliminates the motility defect. AbpG is enriched in cortical/lamellipodial regions and colocalizes well with F-actin; aa 401–600 and aa 501–550 fragments of AbpG show the same distribution as full-length AbpG. The aa 501–550 region of AbpG, which is essential for AbpG to localize to lamellipodia and to rescue the phenotype of abpG cells, is sufficient for binding to F-actin and represents a novel actin-binding protein domain. Compared with wild-type cells, abpG cells have significantly higher F-actin levels. Collectively our results suggest that AbpG may participate in modulating actin dynamics to optimize cell locomotion.  相似文献   

3.
Differentiation of neutrophil granulocytes (neutrophils) occurs through several steps in the bone marrow and requires a coordinate regulation of factors determining survival and lineage-specific development. A number of genes are known whose deficiency disrupts neutrophil generation in humans and in mice. One of the proteins encoded by these genes, glucose-6-phosphatase-β (G6PC3), is involved in glucose metabolism. G6PC3 deficiency causes neutropenia in humans and in mice, linked to enhanced apoptosis and ER stress. We used a model of conditional Hoxb8 expression to test molecular and functional differentiation as well as survival defects in neutrophils from G6PC3−/− mice. Progenitor lines were established and differentiated into neutrophils when Hoxb8 was turned off. G6PC3−/− progenitor cells underwent substantial apoptosis when differentiation was started. Transgenic expression of Bcl-XL rescued survival; however, Bcl-XL-protected differentiated cells showed reduced proliferation, immaturity and functional deficiency such as altered MAP kinase signaling and reduced cytokine secretion. Impaired glucose utilization was found and was associated with ER stress and apoptosis, associated with the upregulation of Bim and Bax; downregulation of Bim protected against apoptosis during differentiation. ER-stress further caused a profound loss of expression and secretion of the main neutrophil product neutrophil elastase during differentiation. Transplantation of wild-type Hoxb8-progenitor cells into irradiated mice allowed differentiation into neutrophils in the bone marrow in vivo. Transplantation of G6PC3−/− cells yielded few mature neutrophils in bone marrow and peripheral blood. Transgenic Bcl-XL permitted differentiation of G6PC3−/− cells in vivo. However, functional deficiencies and differentiation abnormalities remained. Differentiation of macrophages from Hoxb8-dependent progenitors was only slightly disturbed. A combination of defects in differentiation and survival thus underlies neutropenia in G6PC3−/− deficiency, both originating from a reduced ability to utilize glucose. Hoxb8-dependent cells are a model to study differentiation and survival of the neutrophil lineage.  相似文献   

4.
There are few mouse models that adequately mimic large bowel cancer in humans or the gastrointestinal inflammation which frequently precedes it. Dextran sodium sulphate (DSS)-induces colitis in many animal models and has been used in combination with the carcinogen azoxymethane (AOM) to induce cancer in mice. Smad3 −/− mice are deficient in the transforming growth factor beta (TGFβ) signaling molecule, SMAD3, resulting in dysregulation of the cellular pathway most commonly affected in human colorectal cancer, and develop inflammation-associated colon cancer. Previous studies have shown a requirement for a bacterial trigger for the colitis and colon cancer phenotype in Smad3−/− mice. Studies presented here in Smad3−/− mice detail disease induction with DSS, without the use of AOM, and show a) Smad3 −/− mice develop a spectrum of lesions ranging from acute and chronic colitis, crypt herniation, repair, dysplasia, adenomatous polyps, disseminated peritoneal adenomucinosis, adenocarcinoma, mucinous adenocarcinoma (MAC) and squamous metaplasia; b) the colon lesions have variable galactin-3 (Mac2) staining c) increased DSS concentration and duration of exposure leads to increased severity of colonic lesions; d) heterozygosity of SMAD3 does not confer increased susceptibility to DSS-induced disease and e) disease is partially controlled by the presence of T and B cells as Smad3 −/− Rag2 −/− double knock out (DKO) mice develop a more severe disease phenotype. DSS-induced disease in Smad3 −/− mice may be a useful animal model to study not only inflammation-driven MAC but other human diseases such as colitis cystica profunda (CCP) and pseudomyxomatous peritonei (PMP).  相似文献   

5.
Phosphatidylcholine (PC) is synthesized from choline via the CDP-choline pathway. Liver cells can also synthesize PC via the sequential methylation of phosphatidylethanolamine, catalyzed by phosphatidylethanolamine N-methyltransferase (PEMT). The current study investigates whether or not hepatic PC biosynthesis is linked to diet-induced obesity. Pemt+/+ mice fed a high fat diet for 10 weeks increased in body mass by 60% and displayed insulin resistance, whereas Pemt−/− mice did not. Compared with Pemt+/+ mice, Pemt−/− mice had increased energy expenditure and maintained normal peripheral insulin sensitivity; however, they developed hepatomegaly and steatosis. In contrast, mice with impaired biosynthesis of PC via the CDP-choline pathway in liver became obese when fed a high fat diet. We, therefore, hypothesized that insufficient choline, rather than decreased hepatic phosphatidylcholine, was responsible for the lack of weight gain in Pemt−/− mice despite the presence of 1.3 g of choline/kg high fat diet. Supplementation with an additional 2.7 g of choline (but not betaine)/kg of diet normalized energy metabolism, weight gain, and insulin resistance in high fat diet-fed Pemt−/− mice. Furthermore, Pemt+/+ mice that were fed a choline-deficient diet had increased oxygen consumption, had improved glucose tolerance, and gained less weight. Thus, de novo synthesis of choline via PEMT has a previously unappreciated role in regulating whole body energy metabolism.  相似文献   

6.
Protein trans-splicing by split inteins has many uses in protein production and research. Splicing proteins with synthetic peptides, which employs atypical split inteins, is particularly useful for site-specific protein modifications and labeling, because the synthetic peptide can be made to contain a variety of unnatural amino acids and chemical modifications. For this purpose, atypical split inteins need to be engineered to have a small N-intein or C-intein fragment that can be more easily included in a synthetic peptide that also contains a small extein to be trans-spliced onto target proteins. Here we have successfully engineered multiple atypical split inteins capable of protein trans-splicing, by modifying and testing more than a dozen natural inteins. These included both S1 split inteins having a very small (11–12 aa) N-intein fragment and S11 split inteins having a very small (6 aa) C-intein fragment. Four of the new S1 and S11 split inteins showed high efficiencies (85–100%) of protein trans-splicing both in E. coli cells and in vitro. Under in vitro conditions, they exhibited reaction rate constants ranging from ∼1.7×10−4 s−1 to ∼3.8×10−4 s−1, which are comparable to or higher than those of previously reported atypical split inteins. These findings should facilitate a more general use of trans-splicing between proteins and synthetic peptides, by expanding the availability of different atypical split inteins. They also have implications on understanding the structure-function relationship of atypical split inteins, particularly in terms of intein fragment complementation.  相似文献   

7.
Neurotrophin proteins are essential for the survival, differentiation, and maintenance of neurons in the peripheral and central nervous systems. Recent studies have shown that the unprocessed proforms of the neurotrophins are preferential high-affinity ligands for p75NTR and potent inducers of p75NTR-mediated cell death. Here, we explore differences in the selective constraints acting on the proregions of the three avian neurotrophin genes—NT-3, BDNF, and NGF—in an explicit phylogenetic context. We found a 50-fold difference in levels of constraint as estimated by d N/d S ratios, with the NGF proregion showing the lowest degree of constraint and BDNF the highest. These patterns suggest that the high conservation exhibited by the BDNF proregion results from intense functional constraints that are relaxed in NGF and somewhat relaxed in NT-3. The proregion of BDNF is likely to have a function that differentiates it from the corresponding regions of the NGF and NT-3 genes, suggesting that BDNF is the avian neurotrophin most likely to be used both in its precursor and mature forms in vivo.  相似文献   

8.
9.
Possible roles of coexisting cells in inducing neurite growth from a nerve cell were studied. Nerve growth factor (NGF)-inducing neurite growth from PC12h-R (a cell line derived from cultured nerve cells) was investigated at various cell densities. At the cell density 102104 cells/ml neurites appeared even without NGF. In contrast, no neurite appeared without NGF in single cell culture. The neurite growth observed in plural cell culture without NGF was only partially inhibited by antibody to NGF receptor (Ab-NGFR). However, the effect of the used medium alone was mostly inhibited by Ab-NGFR. These results suggest that the neurite inducing potency of coexisting cells is via different sites than the NGF receptor.Abbreviations Ab-IgG-FITC anti-mouse-IgG labeled with fluorescein isothiocyanate - Ab-NF monoclonal antibody to neurofilament 160 kD - Ab-NGFR monoclonal antibody to NGF receptor - BDNF brain-derived neurotrophic factor - D-medium medium for differentiation culture - DMEM Dulbecco's modified Eagle's medium - M-medium medium for multiplication culture - NGF nerve growth factor - NGFR NGF receptor - NT-3 neurotrophin-3 - PC12 pheochromocytoma cell line - PC12h-R subclone of PC12 - Sup-D supernatant of D-medium  相似文献   

10.
11.
Tachykinins are a large group of neuropeptides with both central and peripheral activity. Despite the increasing number of studies reporting a growth supportive effect of tachykinin peptides in various in vitro stem cell systems, it remains unclear whether these findings are applicable in vivo. To determine how neurokinin-1 receptor (NK-1R) deficient hematopoietic stem cells would behave in a normal in vivo environment, we tested their reconstitution efficiency using competitive bone marrow repopulation assays. We show here that bone marrow taken from NK-1R deficient mice (Tacr1−/−) showed lineage specific B and T cell engraftment deficits compared to wild-type competitor bone marrow cells, providing evidence for an involvement of NK-1R signalling in adult hematopoiesis. Tachykinin knockout mice lacking the peptides SP and/or HK-1 (Tac1 −/−, Tac4 −/− and Tac1 −/−/Tac4 −/− mice) repopulated a lethally irradiated wild-type host with similar efficiency as competing wild-type bone marrow. The difference between peptide and receptor deficient mice indicates a paracrine and/or endocrine mechanism of action rather than autocrine signalling, as tachykinin peptides are supplied by the host environment.  相似文献   

12.
Viral fusogenic membrane proteins have been proposed as tools to increase the potency of oncolytic viruses, but there is a need for mechanisms to control the spread of fusogenic viruses in normal versus tumor cells. We have previously shown that a mutant of the paramyxovirus simian virus 5 (SV5) that harbors mutations in the P/V gene from the canine parainfluenza virus (P/V-CPI) is a potent inducer of type I interferon (IFN) and apoptosis and is restricted for spread through normal but not tumor cells in vitro. Here, we have used the cytopathic P/V-CPI as a backbone vector to test the hypothesis that a virus expressing a hyperfusogenic glycoprotein will be a more effective oncolytic vector but will retain sensitivity to IFN. A P/V mutant virus expressing an F protein with a glycine-to-alanine substitution in the fusion peptide (P/V-CPI-G3A) was more fusogenic than the parental P/V-CPI mutant. In two model prostate tumor cell lines which are defective in IFN production (LNCaP and DU145), the hyperfusogenic P/V-CPI-G3A mutant had normal growth properties at low multiplicities of infection and was more effective than the parental P/V-CPI mutant at cell killing in vitro. However, in PC3 cells which produce and respond to IFN, the hyperfusogenic P/V-CPI-G3A mutant was attenuated for growth and spread. Killing of PC3 cells was equivalent between the parental P/V-CPI mutant and the hyperfusogenic P/V-CPI-G3A mutant. In a nude mouse model using LNCaP cells, the hyperfusogenic P/V-CPI-G3A mutant was more effective than P/V-CPI at reducing tumor burden. In the case of DU145 tumors, the two vectors based on P/V-CPI were equally effective at limiting tumor growth. Together, our results provide proof of principle that a cytopathic SV5 P/V mutant can serve as an oncolytic virus and that the oncolytic effectiveness of P/V mutants can be enhanced by a fusogenic membrane protein without compromising sensitivity to IFN. The potential advantages of SV5-based oncolytic vectors are discussed.  相似文献   

13.
Non-enzymatic collagen cross-linking and carbonyl adduct deposition are features of Bruch''s membrane aging in the eye, and disturbances in extracellular matrix turnover are considered to contribute to Bruch''s membrane thickening. Because bisretinoid constituents of the lipofuscin of retinal pigment epithelial (RPE) cells are known to photodegrade to mixtures of aldehyde-bearing fragments and small dicarbonyls (glyoxal (GO) and methylglyoxal (MG)), we investigated RPE lipofuscin as a source of the reactive species that covalently modify protein side chains. Abca4−/− and Rdh8−/−/Abca4−/− mice that are models of accelerated bisretinoid formation were studied and pre-exposure of mice to 430 nm light enriched for dicarbonyl release by bisretinoid photodegradation. MG protein adducts were elevated in posterior eyecups of mutant mice, whereas carbonylation of an RPE-specific protein was observed in Abca4−/− but not in wild-type mice under the same conditions. Immunolabeling of cryostat-sectioned eyes harvested from Abca4−/− mice revealed that carbonyl adduct deposition in Bruch''s membrane was accentuated. Cell-based assays corroborated these findings in mice. Moreover, the receptor for advanced glycation end products that recognizes MG and GO adducts and glyoxylase 1 that metabolizes MG and GO were up-regulated in Abca4−/− mice. Additionally, in acellular assays, peptides were cross-linked in the presence of A2E (adduct of two vitamin A aldehyde and ethanolamine) photodegradation products, and in a zymography assay, reaction of collagen IV with products of A2E photodegradation resulted in reduced cleavage by the matrix metalloproteinases MMP2 and MMP9. In conclusion, these mechanistic studies demonstrate a link between the photodegradation of RPE bisretinoid fluorophores and aging changes in underlying Bruch''s membrane that can confer risk of age-related macular degeneration.  相似文献   

14.
The localizations of soybean lectin (SBL) and antigenically related proteins in cotyledons and roots of lectin positive (Le+) and lectin negative (Le) soybean cultivars were compared by light level immunocytochemistry using antibodies produced against the 120 kilodalton (kD) native seed lectin tetramer or its subunits. Lectin is present in the protein bodies of cotyledons cells as are two other seed proteins, the Kunitz trypsin inhibitor and the storage protein glycinin. Analysis of single seed extracts by immunoblotting of sodium dodecyl sulfate-polyacrylamide gels using the same antibodies, reveals up to 4 milligrams of the 30 kD seed lectin protein is present per seed in the Le+ varieties. There is no detectable lectin in the protein bodies of Le cotyledons as determined by immunocytochemistry and immunoblotting. Enzyme-linked immunosorbent assay confirmed this result to a sensitivity of less than 20 nanograms per seed. In contrast, the roots of both Le+ and Le plants bind the seed lectin antibody during immunocytochemistry, with fluorescence mainly localized in vacuole-like bodies in the epidermis. Root extracts contain a 33 kD polypeptide that binds anti-SBL antibody at an estimated minimal level of 20 nanograms per 4-day seedling, or 2.0 nanograms per primary root tip. This polypeptide is also present in the embryo axis and in leaves. The latter also contain a 26 kD species that binds seed lectin antibody. The 30 kD seed lectin subunit, however, is not detectable in roots or leaves.  相似文献   

15.
Studies of human NK cells and their role in tumor suppression have largely been restricted to in vitro experiments which lack the complexity of whole organisms, or mouse models which differ significantly from humans. In this study we showed that, in contrast to C57BL/6 Rag2−/−c −/− and NOD/Scid mice, newborn BALB/c Rag2−/−c −/− mice can support the development of human NK cells and CD56+ T cells after intrahepatic injection with hematopoietic stem cells. The human CD56+ cells in BALB/c Rag2−/−c −/− mice were able to produce IFN-γ in response to human IL-15 and polyI:C. NK cells from reconstituted Rag2−/−c −/− mice were also able to kill and inhibit the growth of K562 cells in vitro and were able to produce IFN-γ in response to stimulation with K562 cells. In vivo, reconstituted Rag2−/−c −/− mice had higher survival rates after K562 challenge compared to non-reconstituted Rag2−/−c −/− mice and were able to control tumor burden in various organs. Reconstituted Rag2−/−c −/− mice represent a model in which functional human NK and CD56+ T cells can develop from stem cells and can thus be used to study human disease in a more clinically relevant environment.  相似文献   

16.
Cot/tpl2 (also known as MAP3K8) has emerged as a new and potentially interesting therapeutic anti-inflammatory target. Here, we report the first study of Cot/tpl2 involvement in acute peripheral inflammation in vivo. Six hours after an intraplantar injection of zymosan, Cot/tpl2−/− mice showed a 47% reduction in myeloperoxidase activity, concomitant with a 46% lower neutrophil recruitment and a 40% decreased luminol-mediated bioluminescence imaging in vivo. Accordingly, Cot/tpl2 deficiency provoked a 25–30% reduction in luminol-mediated bioluminescence and neutrophil recruitment together with a 65% lower macrophage recruitment 4 h following zymosan-induced peritonitis. Significantly impaired levels of G-CSF and GM-CSF and of other cytokines such as TNFα, IL-1β, and IL-6, as well as some chemokines such as MCP-1, MIP-1β, and keratinocyte-derived chemokine, were detected during the acute zymosan-induced intraplantar inflammatory response in Cot/tpl2−/− mice. Moreover, Cot/tpl2 deficiency dramatically decreased the production of the hypernociceptive ligand NGF at the inflammatory site during the course of inflammation. Most importantly, Cot/tpl2 deficiency significantly reduced zymosan-induced inflammatory hypernociception in mice, with a most pronounced effect of a 50% decrease compared with wild type (WT) at 24 h following intraplantar injection of zymosan. At this time, Cot/tpl2−/− mice showed significantly reduced NGF, TNFα, and prostaglandin E2 levels compared with WT littermates. In conclusion, our study demonstrates an important role of Cot/tpl2 in the NGF, G-CSF, and GM-CSF production and myeloperoxidase activity in the acute inflammatory response process and its implication in inflammatory hypernociception.  相似文献   

17.
The major histocompatibility complex (MHC) class II-associated Invariant chain (Ii) is present in professional antigen presenting cells where it regulates peptide loading onto MHC class II molecules and the peptidome presented to CD4+ T lymphocytes. Because Ii prevents peptide loading in neutral subcellular compartments, we reasoned that Ii cells may present peptides not presented by Ii+ cells. Based on the hypothesis that patients are tolerant to MHC II-restricted tumor peptides presented by Ii+ cells, but will not be tolerant to novel peptides presented by Ii cells, we generated MHC II vaccines to activate cancer patients'' T cells. The vaccines are Ii tumor cells expressing syngeneic HLA-DR and the costimulatory molecule CD80. We used liquid chromatography coupled with mass spectrometry to sequence MHC II-restricted peptides from Ii+ and Ii MCF10 human breast cancer cells transfected with HLA-DR7 or the MHC Class II transactivator CIITA to determine if Ii cells present novel peptides. Ii expression was induced in the HLA-DR7 transfectants by transfection of Ii, and inhibited in the CIITA transfectants by RNA interference. Peptides were analyzed and binding affinity predicted by artificial neural net analysis. HLA-DR7-restricted peptides from Ii and Ii+ cells do not differ in size or in subcellular location of their source proteins; however, a subset of HLA-DR7-restricted peptides of Ii cells are not presented by Ii+ cells, and are derived from source proteins not used by Ii+ cells. Peptides from Ii cells with the highest predicted HLA-DR7 binding affinity were synthesized, and activated tumor-specific HLA-DR7+ human T cells from healthy donors and breast cancer patients, demonstrating that the MS-identified peptides are bonafide tumor antigens. These results demonstrate that Ii regulates the repertoire of tumor peptides presented by MHC class II+ breast cancer cells and identify novel immunogenic MHC II-restricted peptides that are potential therapeutic reagents for cancer patients.Cancer vaccines are a promising tool for cancer treatment and prevention because of their potential for inducing tumor-specific responses in conjunction with minimal toxicity for healthy cells. Cancer vaccines are based on the concept that tumor cells synthesize multiple peptides that are potential immunogens, and that with the appropriate vaccine protocol, these peptides will activate an efficacious antitumor response in the patient. Much effort has been invested in identifying and testing tumor-encoded peptides, particularly peptides presented by major histocompatibility complex (MHC)1 class I, molecules capable of activating CD8+ T-cells that directly kill tumor cells (1, 2). Fewer studies have been devoted to identifying MHC class II-restricted peptides for the activation of tumor-reactive CD4+ T-cells despite compelling evidence that Type 1 CD4+ T helper cells facilitate the optimal activation of CD8+ T-cells and the generation of immune memory, which is likely to be essential for protection from metastatic disease.Activation of CD4+ T cells requires delivery of a costimulatory signal plus an antigen-specific signal consisting of peptide bound to an MHC II molecule. Most cells do not express MHC II or costimulatory molecules, so CD4+ T cells are typically activated by professional antigen presenting cells (APC), which endocytose exogenously synthesized antigen and process and present it in the context of their own MHC II molecules. This processing and presentation process requires Invariant chain (Ii), a molecule that is coordinately synthesized with MHC II molecules and prevents the binding and presentation of APC-encoded endogenous peptides (3, 4). As a result, tumor-reactive CD4+ T cells are activated to tumor peptides generated by the antigen processing machinery of professional APC, rather than peptides generated by the tumor cells. Because of the potential discrepancy in peptide generation between professional APC and tumor cells, and the critical role of Ii in preventing the presentation of endogenous peptides, we have generated “MHC II cancer vaccines” that consist of Ii tumor cells transfected with syngeneic MHC class II and CD80 genes. We reasoned that MHC II+IiCD80+ tumor cells may present a novel repertoire of MHC II-restricted tumor peptides that are not presented by professional APC, and therefore may be highly immunogenic. Once activated, CD4+ T cells produce IFNγ and provide help to CD8+ T cells and do not need to react with native tumor cells. Therefore, the MHC II vaccines have the potential to activate CD4+ Th1 cells that facilitate antitumor immunity. In vitro (5) and in vivo (57) studies with mice support this conclusion. In vitro studies with human MHC II vaccines further demonstrate that the absence of Ii facilitates the activation of MHC II-restricted tumor-specific CD4+ type 1 T cells of HLA-DR-syngeneic healthy donors and cancer patients, and that the vaccines activate CD4+ T cells with a distinct repertoire of T cell receptors (812). A critical negative role for Ii is also supported by studies of human acute myelogenous leukemia (AML). High levels of class II-associated invariant chain peptide (CLIP), a degradation product of Ii, by leukemic blasts is associated with poor patient prognosis (13, 14), whereas down-modulation of CLIP on AML cells increases the activation of tumor-reactive human CD4+ T cells (14, 15).We have now used mass spectrometry to identify MHC II-restricted peptides from MHC II+Ii and MHC II+Ii+ human breast cancer cells to test the concept that the absence of Ii facilitates the presentation of unique immunogenic MHC II-restricted peptides. We report here that a subset of MHC II-restricted peptides from HLA-DR7+ breast cancer cells are unique to Ii cells and are derived from source proteins not used by Ii+ cells. Ii peptides have high binding affinity for HLA-DR7 and activate tumor-specific T-cells from the peripheral blood of healthy donors and breast cancer patients. This is the first study to compare the human tumor cell MHC II peptidome in the absence or presence of Ii and to demonstrate that MHC II+Ii tumor cells present novel immunogenic MHC II-restricted peptides that are potential therapeutic reagents for cancer patients.  相似文献   

18.
Human CD4 T cell recall responses to influenza virus are strongly biased towards Type 1 cytokines, producing IFNγ, IL-2 and TNFα. We have now examined the effector phenotypes of CD4 T cells in more detail, particularly focusing on differences between recent versus long-term, multiply-boosted responses. Peptides spanning the proteome of temporally distinct influenza viruses were distributed into pools enriched for cross-reactivity to different influenza strains, and used to stimulate antigen-specific CD4 T cells representing recent or long-term memory. In the general population, peptides unique to the long-circulating influenza A/New Caledonia/20/99 (H1N1) induced Th1-like responses biased toward the expression of IFNγ+TNFα+ CD4 T cells. In contrast, peptide pools enriched for non-cross-reactive peptides of the pandemic influenza A/California/04/09 (H1N1) induced more IFNγIL-2+TNFα+ T cells, similar to the IFNγIL-2+ non-polarized, primed precursor T cells (Thpp) that are a predominant response to protein vaccination. These results were confirmed in a second study that compared samples taken before the 2009 pandemic to samples taken one month after PCR-confirmed A/California/04/09 infection. There were striking increases in influenza-specific TNFα+, IFNγ+, and IL-2+ cells in the post-infection samples. Importantly, peptides enriched for non-cross-reactive A/California/04/09 specificities induced a higher proportion of Thpp-like IFNγIL-2+TNFα+ CD4 T cells than peptide pools cross-reactive with previous influenza strains, which induced more Th1 (IFNγ+TNFα+) responses. These IFNγIL-2+TNFα+ CD4 T cells may be an important target population for vaccination regimens, as these cells are induced upon infection, may have high proliferative potential, and may play a role in providing future effector cells during subsequent infections.  相似文献   

19.
Acute heat shock can induce apoptosis through a canonical pathway involving the upstream activation of caspase-2, followed by BID cleavage and stimulation of the intrinsic pathway. Herein, we report that the BH3-only protein BIM, rather than BID, is essential to heat shock-induced cell death. We observed that BIM-deficient cells were highly resistant to heat shock, exhibiting short and long-term survival equivalent to Bax−/−Bak−/− cells and better than either Bid−/− or dominant-negative caspase-9-expressing cells. Only Bim−/− and Bax−/−Bak−/− cells exhibited resistance to mitochondrial outer membrane permeabilization and loss of mitochondrial inner membrane potential. Moreover, while dimerized caspase-2 failed to induce apoptosis in Bid−/− cells, it readily did so in Bim−/− cells, implying that caspase-2 kills exclusively through BID, not BIM. Finally, BIM reportedly associates with MCL-1 following heat shock, and Mcl-1−/− cells were indeed sensitized to heat shock-induced apoptosis. However, pharmacological inhibition of BCL-2 and BCL-XL with ABT-737 also sensitized cells to heat shock, most likely through liberation of BIM. Thus, BIM mediates heat shock-induced apoptosis through a BAX/BAK-dependent pathway that is antagonized by antiapoptotic BCL-2 family members.  相似文献   

20.
IFN-γ is a signature Th1 cell associated cytokine critical for the inflammatory response in autoimmunity with both pro-inflammatory and potentially protective functions. IL-17A is the hallmark of T helper 17 (Th17) cell subsets, produced by γδT, CD8+ T, NK and NKT cells. We have taken advantage of our colony of IL-2Rα−/− mice that spontaneously develop both autoimmune cholangitis and inflammatory bowel disease. In this model CD8+ T cells mediate biliary ductular damage, whereas CD4+ T cells mediate induction of colon-specific autoimmunity. Importantly, IL-2Rα−/− mice have high levels of interferon γ (IFN-γ), and interleukin-17A (IL-17A). We produced unique double deletions of mice that were either IL-17A−/−IL-2Rα−/− or IFN-γ−/−IL-2Rα−/− to specifically address the precise role of these two cytokines in the natural history of autoimmune cholangitis and colitis. Of note, deletion of IL-17A in IL-2Rα−/− mice led to more severe liver inflammation, but ameliorated colitis. In contrast, there were no significant changes in the immunopathology of double knock-out IFN-γ−/− IL-2Rα−/− mice, compared to single knock-out IL-2Rα−/− mice with respect to cholangitis or colitis. Furthermore, there was a significant increase in pathogenetic CD8+ T cells in the liver of IL-17A−/−IL-2Rα−/− mice. Our data suggest that while IL-17A plays a protective role in autoimmune cholangitis, it has a pro-inflammatory role in inflammatory bowel disease. These data take on particular significance in the potential use of anti-IL-17A therapy in humans with primary biliary cirrhosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号