首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasmids with mutations in trfA, the gene encoding the replication initiation protein of the broad-host-range plasmid RK2, were isolated and characterized. Mutants identified from a nitrosoguanidine bank were defective in supporting the replication of a wild-type RK2 origin in Escherichia coli. Most of the mutations were clustered in a region of trfA corresponding to the carboxy-terminal quarter of the TrfA protein. 5' and 3' deletion mutants of trfA were also constructed. A C-terminal deletion of three amino acids of the Tr A protein was completely nonfunctional for RK2 replication. However, a deletion of 25 amino acids from the start of the 33-kDa TrfA protein was still competent for replication. Further characterization of the point and deletion trfA mutants in vivo revealed that a subset was capable of supporting RK2 replication in other gram-negative bacteria, including Pseudomonas putida, Agrobacterium tumefaciens, and Azotobacter vinelandii. Selected mutant TrfA proteins were partially purified and characterized in vitro. Velocity sedimentation analysis of these partially purified TrfA proteins indicated that the wild-type protein and all mutant TrfA proteins examined exist as dimers in solution. Results from in vitro replication assays corroborated the experimental findings in vivo. Gel retardation results clearly indicated that the point mutant TrfA-33:151S, which was completely defective in replication of an RK2 origin in all of the bacterial hosts tested in vivo, and a carboxy-terminal deletion mutant, TrfA-33:C delta 305, were not able to bind iterons in vitro. In addition to the partially defective or could not be distinguished from the wild-type protein in binding to the origin region. The mutant proteins with apparently normal DNA-binding activity in vitro either were inactive in all four gram-negative bacteria tested or exhibited differences in functionality depending on the host organism. These mutant TrfA proteins may be altered in the ability to interact with the replication proteins of the specific host bacterium.  相似文献   

2.
The trfA gene of the broad-host-range plasmid RK2 is essential for initiation of plasmid replication. Two related TrfA proteins of 43 and 32 kilodaltons (kDa) are produced by independent translation initiation at two start codons within the trfA open reading frame. These proteins were o overproduced in Escherichia coli and partially purified. Rabbit antisera raised against the 32-kDa TrfA protein (TrfA-32) and cross-reacting with the 43-kDa protein (TrfA-43) were used in Western blotting (immunoblotting) assays to measure intracellular TrfA levels. In logarithmically growing E. coli HB101, RK2 produced 4.6 +/- 0.6 ng of TrfA-32 and 1.8 +/- 0.2 ng of TrfA-43 per unit of optical density at 600 nm (mean +/- standard deviation). On the basis of determinations of the number of cells per unit of optical density at 600 nm, this corresponds to about 220 molecules of TrfA-32 and 80 molecules of TrfA-43 per cell. Dot blot hybridizations showed that plasmid RK2 is present in about 15 copies per E. coli cell under these conditions. Using plasmid constructs that produce different levels of TrfA proteins, the effect of excess TrfA on RK2 replication was tested. A two- to threefold excess of total TrfA increased the copy number of RK2 by about 30%. Additional increases in TrfA protein concentration had no further effect on copy number, even at levels 170-fold above normal. An RK2 minimal origin plasmid showed a similar response to intracellular TrfA concentration. These results demonstrate that TrfA protein concentration is not strictly rate limiting for RK2 replication and that a mechanism that is independent of TrfA concentration functions to limit RK2 copy number in the presence of excess TrfA.  相似文献   

3.
The trfA gene, encoding the essential replication initiation protein of the broad-host-range plasmid RK2, possesses an in-frame overlapping arrangement. This results in the production of TrfA proteins of 33 and 44 kDa, respectively. Utilizing deletion and site-specific mutagenesis to alter the trfA operon, we compared the replication of an RK2-origin plasmid in several distantly related gram-negative bacteria when supported by both TrfA-44 and TrfA-33, TrfA-33 alone, or TrfA-44/98L (a mutant form of the TrfA-44 protein) alone. TrfA-44/98L is identical to wild-type TrfA-44 with the exception of a single conservative amino acid alteration from methionine to leucine at codon 98; this alteration removes the translational start codon for the TrfA-33 protein. Copy number and stability were virtually identical for plasmids containing both TrfA-44 and TrfA-33 proteins or TrfA-44/98L alone in Pseudomonas aeruginosa and Agrobacterium tumefaciens, two unrelated bacteria in which TrfA-33 is poorly functional. This, along with recent in vitro studies comparing TrfA-44, TrfA-33, and TrfA-44/98L, suggests that the functional activity of TrfA-44 is not significantly affected by the 98L mutation. Analysis of minimal RK2 derivatives in certain gram-negative bacterial hosts suggests a role of the overlapping arrangement of trfA in facilitating the broad host range of RK2. RK2 derivatives encoding TrfA-44/98L alone demonstrated decreased copy number and stability in Escherichia coli and Azotobacter vinelandii when compared with derivatives specifying both TrfA-44 and TrfA-33. A strategy employing the trfA-44/98L mutant gene and in vivo homologous recombination was used to eliminate the internal translational start codon of trfA in the intact RK2 plasmid. The mutant intact RK2 plasmid produced only TrfA-44/98L. A small reduction in copy number and beta-lactamase expression resulted in E. coli, suggesting that overlapping trfA genes also enhance the efficiency of replication of the intact RK2 plasmid.  相似文献   

4.
S Valla  K Haugan  R Durland  D R Helinski 《Plasmid》1991,25(2):131-136
Two small plasmid RK2 derivatives, pSV6 and pSV16, were constructed and used for the isolation and characterization of trfA mutants temperature-sensitive (ts) for replication in Escherichia coli. Four of the mutants were examined for their ability to initiate replication from the RK2 replication origin in E. coli when present in cis with respect to the origin and in trans when present on a multicopy pBR322 replicon. Each of the mutant trfA genes exhibited temperature-sensitivity in supporting replication from the RK2 origin when present in cis, and the lowest nonpermissive temperature varied depending on the mutant. When the mutant trfA genes were present on the multicopy replicon (in trans), three of the four mutant genes could support replication of the RK2-oriV plasmid pSV16 at all temperatures tested. However, with the exception of one of the mutants, the activity was reduced when compared to wild-type. The increased activity in trans possibly is the result of the increased cellular level of the TrfA protein when compared with the in cis situation where the mutant trfA gene is at a much lower copy-number. Two of the mutants also were tested in cis for temperature sensitivity in Pseudomonas aeruginosa. One of the mutants did not exhibit temperature sensitivity under the conditions employed. The second mutant showed some temperature sensitivity but the nonpermissive temperature pattern was different than that found in E. coli.  相似文献   

5.
Replication of broad-host-range plasmid RK2 requires the protein product(s) of the plasmid-encoded trfA gene to initiate replication at oriV, the vegetative replication origin. The trfA gene contains two translational starts which direct translation of two polypeptides, of 382 and 285 amino acids, which differ by the 97 amino acids at their N-terminus. Nonpolar insertions which abolish expression of the larger TrfA polypeptide but otherwise retain the trfA gene's normal expression signals severely reduce plasmid replication efficiency in Pseudomonas aeruginosa and to a lesser extent in Pseudomonas putida, but have very little effect in Escherichia coli. This indicates that the organization of the trfA gene, producing two polypeptides products, plays an important part in the broad-host-range of plasmid RK2 by providing a degree of flexibility in the way the plasmid's replication system interacts with host biochemistry.  相似文献   

6.
The minimal replicon of the broad-host-range plasmid RK2 consists of the origin of vegetative replication (oriV) and a gene (trfA) encoding an essential replication protein that binds to short repeats in oriV. We report here the results of a DNA sequence analysis of seven unique mutants that are temperature sensitive for replication in Escherichia coli. The mutations (designated rts) were distributed throughout 40% of the downstream part of the trfA gene. Spontaneous revertants of the rts mutants were isolated, and further analysis of four such revertants demonstrated that the new phenotypes resulted from intragenic second-site copy up (cop) mutations. Subcloning experiments showed that all tested intragenic combinations of rts and cop mutations resulted in elimination or strong reduction of the temperature sensitivity of replication. This suppression was also observed under conditions where the mutant TrfA protein was provided in trans with respect to oriV, indicating that the reduction in temperature sensitivity could not be a TrfA protein dosage effect. The phenotypes of two of the cop mutants in Pseudomonas aeruginosa were analyzed; the results demonstrated that the mutants were either not functional or poorly functional in this host. The rts mutant plasmids were also reduced in their ability to replicate in P. aeruginosa, and the intragenic cop mutations did not improve the functionality of these mutants. The significance of the results is discussed in relation to current models of the mechanism of action of the TrfA protein.  相似文献   

7.
Kim PD  Rosche TM  Firshein W 《Plasmid》2000,43(3):214-222
Plasmid RK2 codes for two species of the replication initiator protein TrfA (33 and 44 kDa). Both polypeptides are strongly associated with membrane fractions of Escherichia coli host cells (W. Firshein and P. Kim, Mol. Microbiol. 23, 1-10, 1997). We investigated the role of a 12-amino-acid hydrophobic region (HR) in the membrane association of TrfA. Epitope-tagged polypeptide fragments of TrfA that contained HR were expressed and found to be associated with membrane fractions. Site-directed mutagenesis of trfA revealed that changes of specific amino acids in HR can affect both TrfA association with the membrane and its ability to support replication of an RK2 oriV plasmid in vivo. These results are consistent with the hypothesis that membrane association of TrfA is functionally relevant and that the HR region of TrfA is involved in membrane association and DNA replication in vivo.  相似文献   

8.
9.
The TrfA proteins, encoded by the broad host range plasmid RK2, are required for replication of this plasmid in a variety of Gram-negative bacteria. Two TrfA proteins, 33 and 44 kDa in molecular mass (designated TrfA-33 and TrfA-44, respectively), are expressed from the trfA gene of RK2 through the use of two alternative in-frame start codons within the same open reading frame. The two proteins have been purified from Escherichia coli to near homogeneity as a mixture of wild-type TrfA-44/33, as TrfA-33 alone and as a functional variant form of TrfA-44, designated TrfA-44(98L), which contains a leucine in place of the TrfA-33 methionine start codon. Cross-linking experiments demonstrated that TrfA-33 can multimerize in solution. By using gel mobility shift and DNase I footprinting techniques the binding properties of TrfA-33, TrfA-44(98L), and TrfA-44/33 to the origin of replication of plasmid RK2 were analyzed. All three protein preparations were able to bind very specifically to the cluster of five direct repeats (iterons) contained in the minimal origin of replication. Each protein preparation produced a ladder of TrfA/minimal oriV complexes of decreasing electrophoretic mobility. The DNase I protection pattern on the five iterons was identical for all three protein preparations and extended from the beginning of the first iteron to 5 base pairs upstream of the fifth iteron. Studies on the affinity of the proteins for DNA fragments containing one, two, or all five iterons of the origin revealed a strong preference of TrfA protein for DNA containing at least two iterons. To study the stability of TrfA.DNA complexes, association and dissociation rates of TrfA-33 and DNA fragments with one, two, or five iterons were measured. This analysis showed that unlike complexes involving two or five iterons the TrfA/one iteron complexes were highly unstable, suggesting some form of cooperativity between proteins or iterons in the formation of stable complexes and/or the requirement of specific sequences bordering the iterons at the RK2 origin of replication for the stabilization of TrfA/DNA complexes.  相似文献   

10.
R H Durland  D R Helinski 《Plasmid》1987,18(2):164-169
The trfA gene of the broad-host-range plasmid RK2 encodes two proteins of 43- and 32-kDa by initiating translation at either of two in-phase AUG codons in a single open reading frame. At least one of these proteins is essential for replication of RK2 derivatives. In order to study the role of the 43-kDa protein, Bal31 deletions into the 5' end of the trfA gene were constructed and incorporated into minimal RK2 replicons. When examined in Escherichia coli, replication and maintenance properties of plasmids encoding only the 32-kDa protein were indistinguishable from those of plasmids encoding both the 43- and the 32-kDa proteins. In four other gram-negative hosts deletion of sequences encoding only the 43-kDa protein did not have a substantial effect on plasmid establishment or stable maintenance. However, in Pseudomonas aeruginosa, deletion of 43-kDa coding sequences greatly reduced the efficiency of plasmid maintenance, suggesting a host-specific role for the 43-kDa TrfA protein in RK2 replication.  相似文献   

11.
Antibiotic selection drives adaptation of antibiotic resistance plasmids to new bacterial hosts, but the molecular mechanisms are still poorly understood. We previously showed that a broad‐host‐range plasmid was poorly maintained in Shewanella oneidensis, but rapidly adapted through mutations in the replication initiation gene trfA1. Here we examined if these mutations reduced the fitness cost of TrfA1, and whether this was due to changes in interaction with the host's DNA helicase DnaB. The strains expressing evolved TrfA1 variants showed a higher growth rate than those expressing ancestral TrfA1. The evolved TrfA1 variants showed a lower affinity to the helicase than ancestral TrfA1 and were no longer able to activate the helicase at the oriV without host DnaA. Moreover, persistence of the ancestral plasmid was increased upon overexpression of DnaB. Finally, the evolved TrfA1 variants generated higher plasmid copy numbers than ancestral TrfA1. The findings suggest that ancestral plasmid instability can at least partly be explained by titration of DnaB by TrfA1. Thus under antibiotic selection resistance plasmids can adapt to a novel bacterial host through partial loss of function mutations that simultaneously increase plasmid copy number and decrease unfavorably high affinity to one of the hosts' essential proteins.  相似文献   

12.
13.
Broad host range plasmid RK2 encodes two versions of its essential replication initiation protein, TrfA, using in-frame translational starts spaced 97 amino acids apart. The smaller protein, TrfA-33, is sufficient for plasmid replication in many bacterial hosts. Efficient replication in Pseudomonas aeruginosa, however, specifically requires the larger TrfA-44 protein. With the aim of identifying sequences of TrfA-44 required for stable replication of RK2 in P. aeruginosa, specific deletions and a substitution mutant within the N terminus sequence unique to TrfA-44 were constructed, and the mutant proteins were tested for activity. Deletion mutants were targeted to three of the four predicted helical regions in the first 97 amino acids of TrfA-44. Deletion of TrfA-44 amino acids 21-32 yielded a mutant protein, TrfA-44Delta2, that had lost the ability to bind and load the DnaB helicase of P. aeruginosa or Pseudomonas putida onto the RK2 origin in vitro and did not support stable replication of an RK2 mini-replicon in P. aeruginosa in vivo. A substitution of amino acid 22 within this essential region resulted in a protein, TrfA-44E22A, with reduced activity in vitro, particularly with the P. putida helicase. Deletion of amino acids 37-55 (TrfA-44Delta3) slightly affected protein activity in vitro with the P. aeruginosa helicase and significantly with the P. putida helicase, whereas deletion of amino acids 71-88 (TrfA-44Delta4) had no effect on TrfA activity in vitro with either helicase. These results identify regions of the TrfA-44 protein that are required for recruitment of the Pseudomonas DnaB helicases in the initiation of RK2 replication.  相似文献   

14.
15.
16.
17.
Broad-host-range IncP-1 plasmids generally encode two replication initiation proteins, TrfA1 and TrfA2. TrfA2 is produced from an internal translational start site within trfA1. While TrfA1 was previously shown to be essential for replication in Pseudomonas aeruginosa, its role in other bacteria within its broad host range has not been established. To address the role of TrfA1 and TrfA2 in other hosts, efficiency of transformation, plasmid copy number (PCN), and plasmid stability were first compared between a mini-IncP-1β plasmid and its trfA1 frameshift variant in four phylogenetically distant hosts: Escherichia coli, Pseudomonas putida, Sphingobium japonicum, and Cupriavidus necator. TrfA2 was sufficient for replication in these hosts, but the presence of TrfA1 enhanced transformation efficiency and PCN. However, TrfA1 did not contribute to, and even negatively affected, long-term plasmid persistence. When trfA genes were cloned under a constitutive promoter in the chromosomes of the four hosts, strains expressing either both TrfA1 and TrfA2 or TrfA1 alone, again, generally elicited a higher PCN of an IncP1-β replicon than strains expressing TrfA2 alone. When a single species of TrfA was produced at different concentrations in E. coli cells, TrfA1 maintained a 3- to 4-fold higher PCN than TrfA2 at the same TrfA concentrations, indicating that replication mediated by TrfA1 is more efficient than that by TrfA2. These results suggest that the broad-host-range properties of IncP-1 plasmids are essentially conferred by TrfA2 and the intact replication origin alone but that TrfA1 is nonetheless important to efficiently establish plasmid replication upon transfer into a broad range of hosts.  相似文献   

18.
TrfA is the only plasmid-encoded protein required for RK2 replication. We report here the construction and characterization of an RK2-based vector in which trfA is expressed from the inducible promoter Pm. The resulting construct, pJBSD1, was found to replicate in Escherichia coli DH5a (recA(-)) only in the presence of a Pm inducer. In two tested E. coli recA(+) strains pJBSD1 could replicate in the absence of inducer, but a replication inducer-dependent phenotype was obtained in these strains by introducing a mutation known to reduce the trfA expression level. The plasmid construct could be used as a conditional suicide vector system for targeted chromosomal integration via homologous recombination. This feature may potentially be used for many types of studies in microbial molecular biology.  相似文献   

19.
We previously reported that broad-host-range plasmid RK2 encodes multiple host-lethal kil determinants (kilA, kilB1, kilB2, and kilC) which are controlled by RK2-specified kor functions (korA, korB, and korC). Here we show that kil and kor determinants have significant effects on RK2 replication control. First, korA and korB inhibit the replication of certain RK2 derivatives, unless plasmid replication is made independent of the essential RK2 gene trfA. Second, kilB1 exerts a strong effect on this interaction. If the target plasmid is defective in kilB1, sensitivity to korA and korB is enhanced at least 100-fold. Thus, korA and korB act negatively on RK2 replication, whereas kilB1 acts in a positive manner to counteract this effect. A mutant RK2 derivative, resistant to korA and korB, was found to have fused a new promoter to trfA, indicating that the targets for korA and korB are at the 5' end of the trfA gene. We constructed a trfA-lacZ fusion and found that synthesis of beta-galactosidase is inhibited by korA and korB. Thus korA, korB, and kilB1 influence RK2 replication by regulating trfA expression. We conclude that the network of kil and kor determinants is part of a replication control system for RK2.  相似文献   

20.
The amino acid sequence of the 13-kDa polypeptide (P116) encoded by the first gene of the trfA operon of IncP plasmid RK2 shows significant similarity to several known single-stranded DNA-binding proteins. We found that unregulated expression of this gene from its natural promoter (trfAp) or induced expression from a strong heterologous promoter (trcp) was sufficient to complement the temperature-sensitive growth phenotype of an Escherichia coli ssb-1 mutant. The RK2 ssb gene is the first example of a plasmid single-stranded DNA-binding protein-encoding gene that is coregulated with replication functions, indicating a possible role in plasmid replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号