首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exposure of animals to hyperoxia results in respiratory failure and death within 72 h. Histologic evaluation of the lungs of these animals demonstrates epithelial apoptosis and necrosis. Although the generation of reactive oxygen species (ROS) is widely thought to be responsible for the cell death observed following exposure to hyperoxia, it is not clear whether they act upstream of activation of the cell death pathway or whether they are generated as a result of mitochondrial membrane permeabilization and caspase activation. We hypothesized that the generation of ROS was required for hyperoxia-induced cell death upstream of Bax activation. In primary rat alveolar epithelial cells, we found that exposure to hyperoxia resulted in the generation of ROS that was completely prevented by the administration of the combined superoxide dismutase/catalase mimetic EUK-134 (Eukarion, Inc., Bedford, MA). Exposure to hyperoxia resulted in the activation of Bax at the mitochondrial membrane, cytochrome c release, and cell death. The administration of EUK-134 prevented Bax activation, cytochrome c release, and cell death. In a mouse lung epithelial cell line (MLE-12), the overexpression of Bcl-XL protected cells against hyperoxia by preventing the activation of Bax at the mitochondrial membrane. We conclude that exposure to hyperoxia results in Bax activation at the mitochondrial membrane and subsequent cytochrome c release. Bax activation at the mitochondrial membrane requires the generation of ROS and can be prevented by the overexpression of Bcl-XL.  相似文献   

2.
Ultraviolet light-induced apoptosis can be caused by DNA damage but also involves immediate-early cell death cascades characteristic of death receptor signaling. Here we show that the UV light-induced apoptotic signaling pathway is unique, targeting Bax activation at the mitochondrial membrane independent of caspase-8 or cathepsin D activity. Cells deficient in acid sphingomyelinase (ASMase) do not show UV light-induced Bax activation, cytochrome c release, or apoptosis. In ASMase-deficient cells, the apoptotic UV light response is restored by stable or transient expression of human ASMase. Bax conformational change in ASMase(-/-) cells is also caused by synthetic C(16)-ceramide acting on intact cells or isolated mitochondria. The results suggest that UV light-triggered ASMase activation is essentially required for Bax conformational change leading to mitochondrial release of pro-apoptotic factors like cytochrome c and Smac.  相似文献   

3.
The initiating events that lead to the induction of apoptosis mediated by the chemopreventative agent beta-phenyethyl isothiocyanate (PEITC) have yet to be elucidated. In the present investigation, we examined the effects of PEITC on mitochondrial function and apoptotic signaling in hepatoma HepG2 cells and isolated rat hepatocyte mitochondria. PEITC induced a conformational change in Bax leading to its translocation to mitochondria in HepG2 cells. Bax accumulation was associated with a rapid loss of mitochondrial membrane potential (Deltapsim), impaired respiratory chain enzymatic activity, release of mitochondrial cytochrome c and the activation of caspase-dependent cell death. Caspase inhibition did not prevent Bax translocation, the release of cytochrome c or the loss of Deltapsim, but blocked caspase-mediated DNA fragmentation and cell death. To determine whether PEITC dependent Bax translocation caused loss of Deltapsim by the activation of the mitochondrial permeability transition (MPT), we examined the effects of PEITC in isolated rat hepatocyte mitochondria. Interestingly, PEITC did not induce MPT in isolated rat mitochondria. Accordingly, using pharmacological inhibitors of MPT namely cyclosporine A, trifluoperazine and Bongkrekic acid we were unable to block PEITC mediated apoptosis in HepG2 cells, this suggesting that mitochondrial permeablisation is a likely consequence of Bax dependent pore formation. Taken together, our data suggest that mitochondria are a key target in PEITC induced apoptosis in HepG2 cells via the pore forming ability of pro-apoptotic Bax.  相似文献   

4.
Bax, a pro-apoptotic member of the Bcl-2 family of proteins has the ability to form transmembrane pores large enough to allow cytochrome c (Cyt c) release, as well as to activate the mitochondrial permeability transition pore (mPTP); however, no differential study has been conducted to clarify which one of these mechanisms predominates over the other in the same system. In the present study, we treated isolated mitochondria from MCF7 cells with recombinant protein Bax and tested the efficacy of the mPTP inhibitor cyclosporin A (CsA) and of the Bax channel blocker (Bcb) to inhibit cytochrome c release. We also, induced apoptosis in MCF7 cell cultures with TNF-α plus cycloheximide to determine the effect of such compounds in apoptosis induction via mPTP or Bax oligomerization. Cytochrome c release was totally prevented by CsA and partially by Bcb when apoptosis was induced with recombinant Bax in isolated mitochondria from MCF7 cells. CsA increased the number of living cells in cell culture, as compared with the effect of Bax channel blocker. These results indicate that mPTP activation is the predominant pathway for Bax-induced cytochrome c release from MCF7 mitochondria and for apoptosis induction in the whole cell.  相似文献   

5.
Legionella pneumophila, the agent of human Legionnaire's disease is a Gram-negative, rod-shaped bacterium. During infection, the bacteria invade human cells and replicate intracellularly. L. pneumophila can induce apoptosis in human myeloid and epitheloid cells and this may contribute to the development of pathology and disease. However, the molecular mechanism of apoptosis induction is still uncertain. Here we investigate this process. Legionella efficiently induced apoptosis in myeloid cells, T cells and fibroblasts. Induction of apoptosis involved activation of the initiator caspase-9 and effector caspases. Caspase activity was required for cell death. Analysis of mutant cells showed that the death receptor pathway was not involved in Legionella-induced apoptosis. Surprisingly, caspase activity was found almost exclusively in cells that did not harbor bacteria. Infection with Legionella caused the activation of the pro-apoptotic protein Bax and the release of cytochrome c. Mouse embryonic fibroblasts deficient for Bax and/or Bak were protected from Legionella-induced caspase activation. These results show a clear contribution of the mitochondrial pathway to Legionella-induced apoptosis.  相似文献   

6.
Activation of Bax following diverse cytotoxic stress has been shown to be an essential gateway to mitochondrial dysfunction and activation of the intrinsic apoptotic pathway characterized by cytochrome c release with caspase-9/-3 activation. Interestingly, c-Myc has been reported to promote apoptosis by destabilizing mitochondrial integrity in a Bax-dependent manner. Stress-induced activation of caspase-2 may also induce permeabilization of mitochondria with activation of the intrinsic death pathway. To test whether c-Myc and caspase-2 cooperate to activate Bax and thereby mediate intrinsic apoptosis, small interfering RNA was used to efficiently knock down the expression of c-Myc, caspase-2, and Apaf-1, an activating component in the apoptosome, in two human cancer cell lines, lung adenocarcinoma A-549 and osteosarcoma U2-OS cells. Under conditions when the expression of endogenous c-Myc, caspase-2, or Apaf-1 is reduced 80-90%, cisplatin (or etoposide)-induced apoptosis is significantly decreased. Biochemical studies reveal that the expression of c-Myc and caspase-2 is crucial for cytochrome c release from mitochondria during cytotoxic stress and that Apaf-1 is only required following cytochrome c release to activate caspases-9/-3. Although knockdown of c-Myc or caspase-2 does not affect Bax expression, caspase-2 is important for cytosolic Bax to integrate into the outer mitochondrial membrane, and c-Myc is critical for oligomerization of Bax once integrated into the membrane.  相似文献   

7.
Bcl-x(l) and Bax play important roles in the regulation of apoptosis. This study investigated the involvement of the mitochondrial death pathway and the role of Bcl-x(l) and Bax in the escape from apoptosis after prolonged serum deprivation in Madin-Darby canine kidney (MDCK) cells. Low level apoptosis and basal activity of the mitochondrial death pathway were detectable in normal cell growth. In serum deprivation, mitosis was partially suppressed, and the mitochondrial activity was stimulated. The level of apoptosis continuously rose over 48 h. This rise was concomitant with the increasing presence of cytochrome c in cytosol. However, both apoptosis and cytosolic cytochrome c fell dramatically at 72 h. Elevation of whole cell Bcl-x(l) and redistribution of Bcl-x(l) protein from cytosol to the membrane at 48 h and 72 h was observed. Redistribution of Bax protein from the membrane to cytosol occurred at 24 h, and remained steady to 72 h. Bax/Bcl-x(l) coimmunoprecipitation by anti-Bax antibody showed reduced Bax/Bcl-x(l) interaction at the membrane at 72 h, but not at 24 or 48 h. These results suggest that apoptosis upon serum withdrawal results from the leakage of cytochrome c to cytosol. Amelioration of the leakage of cytochrome c and apoptosis requires not only the increase of Bcl-x(l)/Bax ratio, but also the release of Bcl-x(l) from Bax at the membrane.  相似文献   

8.
Apoptosis-associated mitochondrial outer membrane permeabilization assays   总被引:1,自引:0,他引:1  
Following most cell death signals, pro-apoptotic Bcl-2 members as Bax and Bak are activated and oligomerize into the mitochondria outer membrane, triggering its permeabilization and release into the cytosol of soluble apoptogenic factors such as cytochrome c involved in caspase activation. Thus, in many studies focused on apoptosis, cytochrome c release within cells is frequently examined to assess Bax/Bak activation and mitochondrial outer membrane permeabilization. In addition, cytochrome c release can also be investigated in vitro in functional mitochondria that have been isolated from cultured cells, offering a number of advantages. Here, protocols for measuring cytochrome c release from intact cells as well as from isolated mitochondria is detailed. Finally, assays to investigate Bax/Bak activation and olimerization are also presented.  相似文献   

9.
Upon apoptosis induction, the proapoptotic protein Bax is translocated from the cytosol to mitochondria, where it promotes release of cytochrome c, a caspase‐activating protein. However, the molecular mechanisms by which Bax triggers cytochrome c release are unknown. Here we report that before the initiation of apoptotic execution by etoposide or staurosporin, an active calpain activity cleaves Bax at its N‐terminus, generating a potent proapoptotic 18‐kDa fragment (Bax/p18). Both the calpain‐mediated Bax cleavage activity and the Bax/p18 fragment were found in the mitochondrial membrane‐enriched fraction. Cleavage of Bax was followed by release of mitochondrial cytochrome c, activation of caspase‐3, cleavage of poly(ADP‐ribose) polymerase, and fragmentation of DNA. Unlike the full‐length Bax, Bax/p18 did not interact with the antiapoptotic Bcl‐2 protein in the mitochondrial fraction of drug‐treated cells. Pretreatment with a specific calpain inhibitor calpeptin inhibited etoposide‐induced calpain activation, Bax cleavage, cytochrome c release, and caspase‐3 activation. In contrast, transfection of a cloned Bax/p18 cDNA into multiple human cancer cell lines targeted Bax/p18 to mitochondria, which was accompanied by release of cytochrome c and induction of caspase‐3‐mediated apoptosis that was not blocked by overexpression of Bcl‐2 protein. Therefore, Bax/p18 has a cytochrome c–releasing activity that promotes cell death independent of Bcl‐2. Finally, Bcl‐2 overexpression inhibited etoposide‐induced calpain activation, Bax cleavage, cytochrome c release, and apoptosis. Our results suggest that the mitochondrial calpain plays an essential role in apoptotic commitment by cleaving Bax and generating the Bax/p18 fragment, which in turn mediates cytochrome c release and initiates the apoptotic execution. J. Cell. Biochem. 80:53–72, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

10.
Endoplasmic reticulum (ER) stress induces apoptosis by mechanisms that are not fully clear. Here we show that ER stress induced by the Ca(2+)-ATPase inhibitor thapsigargin (THG) activates cytochrome c-dependent apoptosis through cooperation between Bax and the mitochondrial permeability transition (MPT) in human leukemic CEM cells. Pharmacological inhibition of the MPT as well as small interfering RNA (siRNA) knockdown of the MPT core component cyclophilin D blocked cytochrome c release and caspase-dependent apoptosis but did not prevent Bax activation, translocation or N-terminal exposure in mitochondria. siRNA knockdown of Bax also blocked THG-mediated cytochrome c release and apoptosis, but did not prevent MPT activation and resulted in caspase-independent cell death. Our results show that ER-stress-induced cell death involves a caspase and Bax-dependent pathway as well as a caspase-independent MPT-directed pathway.  相似文献   

11.
Mitochondrial apoptosis pathway is an important target of cardioprotective signalling. Tanshinones, a group of major bioactive compounds isolated from Salvia miltiorrhiza, have been reported with actions against inflammation, oxidative stress, and myocardial ischemia reperfusion injury. However, the actions of these compounds on the chronic hypoxia-related mitochondrial apoptosis pathway have not been investigated. In this study, we examined the effects and molecular mechanisms of two major tanshonones, tanshinone IIA (TIIA) and cryptotanshinone (CT) on hypoxia induced apoptosis in H9c2 cells. Cultured H9c2 cells were treated with TIIA and CT (0.3 and 3 μΜ) 2 hr before and during an 8 hr hypoxic period. Chronic hypoxia caused a significant increase in hypoxia inducible factor 1α expression and the cell late apoptosis rate, which was accompanied with an increase in caspase 3 activity, cytochrome c release, mitochondria membrane potential and expression of pro-apoptosis proteins (Bax and Bak). TIIA and CT (0.3 and 3 μΜ), in concentrations without affecting the cell viability, significantly inhibited the late apoptosis and the changes of caspase 3 activity, cytochrome c release, and mitochondria membrane potential induced by chronic hypoxia. These compounds also suppressed the overexpression of Bax and reduced the ratio of Bax/Bcl-2. The results indicate that TIIA and CT protect against chronic hypoxia induced cell apoptosis by regulating the mitochondrial apoptosis signaling pathway, involving inhibitions of mitochondria hyperpolarization, cytochrome c release and caspase 3 activity, and balancing anti- and pro-apoptotic proteins in Bcl-2 family proteins.  相似文献   

12.
Calphostin C-mediated apoptosis in glioma cells was reported previously to be associated with down-regulation of Bcl-2 and Bcl-xL. In this study, we report that 100 nM calphostin C also induces translocation and integration of monomeric Bax into mitochondrial membrane, followed by cytochrome c release into cytosol and subsequent decrease of mitochondrial inner membrane potential (DeltaPsim) before activation of caspase-3. The integration of monomeric Bax was associated with acquirement of alkali-resistance. The translocated monomeric Bax was partly homodimerized after cytochrome c release and decrease of DeltaPsim. The translocation and homodimerization of Bax, cytochrome c release, and decrease of DeltaPsim were not blocked by 100 microM z-VAD.fmk, a pan-caspase inhibitor, but the homodimerization of Bax and decrease of DeltaPsim were inhibited by 10 microM oligomycin, a mitochondrial F0F1-ATPase inhibitor. Therefore, it would be assumed that mitochondrial release of cytochrome c results from translocation and integration of Bax and is independent of permeability transition of mitochondria and caspase activation, representing a critical step in calphostin C-induced cell death.  相似文献   

13.
Upon apoptosis induction, the proapoptotic protein Bax is translocated from the cytosol to mitochondria, where it promotes release of cytochrome c, a caspase-activating protein. However, the molecular mechanisms by which Bax triggers cytochrome c release are unknown. Here we report that before the initiation of apoptotic execution by etoposide or staurosporin, an active calpain activity cleaves Bax at its N-terminus, generating a potent proapoptotic 18-kDa fragment (Bax/p18). Both the calpain-mediated Bax cleavage activity and the Bax/p18 fragment were found in the mitochondrial membrane-enriched fraction. Cleavage of Bax was followed by release of mitochondrial cytochrome c, activation of caspase-3, cleavage of poly(ADP-ribose) polymerase, and fragmentation of DNA. Unlike the full-length Bax, Bax/p18 did not interact with the antiapoptotic Bcl-2 protein in the mitochondrial fraction of drug-treated cells. Pretreatment with a specific calpain inhibitor calpeptin inhibited etoposide-induced calpain activation, Bax cleavage, cytochrome c release, and caspase-3 activation. In contrast, transfection of a cloned Bax/p18 cDNA into multiple human cancer cell lines targeted Bax/p18 to mitochondria, which was accompanied by release of cytochrome c and induction of caspase-3-mediated apoptosis that was not blocked by overexpression of Bcl-2 protein. Therefore, Bax/p18 has a cytochrome c-releasing activity that promotes cell death independent of Bcl-2. Finally, Bcl-2 overexpression inhibited etoposide-induced calpain activation, Bax cleavage, cytochrome c release, and apoptosis. Our results suggest that the mitochondrial calpain plays an essential role in apoptotic commitment by cleaving Bax and generating the Bax/p18 fragment, which in turn mediates cytochrome c release and initiates the apoptotic execution.  相似文献   

14.
Bcl-2 is an antiapoptotic molecule that prevents oxidative stress damage and cell death. We investigated the possible protective mechanisms mediated by Bcl-2 during hyperoxia-induced cell death in L929 cells. In these cells, hyperoxia promoted apoptosis without DNA fragmentation. Overexpression of Bcl-2 significantly protected cells from oxygen-induced apoptosis, as shown by measurement of lactate dehydrogenase release, quantification of apoptotic nuclei, and detection of Annexin-V-positive cells. Bcl-2 partially prevented mitochondrial damage and interfered with the mitochondrial proapoptotic signaling pathway: it reduced Bax translocation to mitochondria, decreased the release of cytochrome c, and inhibited caspase 3 activation. However, treatment with the caspase inhibitor Z-VAD.fmk failed to rescue the cells from death, indicating that protection provided by Bcl-2 was due not only to caspase inhibition. Bcl-2 also prevented the release of mitochondrial apoptotic inducing factor, a mediator of caspase-independent apoptosis, correlating with the absence of oligonucleosomal DNA fragmentation. In addition, Bcl-2-overexpressing cells showed significantly higher intracellular amounts of glutathione after 72 h of oxygen exposure. In conclusion, our results demonstrate that the overexpression of Bcl-2 is able to prevent hyperoxia-induced cell death, by affecting mitochondria-dependent apoptotic pathways and increasing intracellular antioxidant compounds.  相似文献   

15.
Arachidonic acid and, to a smaller extent, oleic acid at micromolar concentrations decreased the mitochondrial membrane potential within AS-30D rat hepatoma cells cultivated in vitro and increased cell respiration. The uncoupling effect of both fatty acids on cell respiration was partly prevented by cyclosporin A, blocker of the mitochondrial permeability transition pore. Arachidonic acid increased the rate of reactive oxygen species (ROS) production, while oleic acid decreased it. Both fatty acids induced apoptotic cell death of AS-30D cells, accompanied by the release of cytochrome c from mitochondria to the cytosol, activation of caspase-3 and association of proapoptotic Bax protein with mitochondria; arachidonic acid being a more potent inducer than oleic acid. Trolox, a potent antioxidant, prevented ROS increase induced by arachidonic acid and protected the cells against apoptosis produced by this fatty acid. It is concluded that arachidonic and oleic acids induce apoptosis of AS-30D hepatoma cells by the mitochondrial pathway but differ in the mechanism of their action: Arachidonic acid induces apoptosis mainly by stimulating ROS production, whereas oleic acid may contribute to programmed cell death by activation of the mitochondrial permeability transition pore.  相似文献   

16.
The role of the mitochondrial permeability transition (MPT) in apoptosis and necrosis is controversial. Here we show that the MPT regulates the release of cytochrome c for apoptosis during endoplasmic reticulum (ER) stress by remodeling the cristae junction (CJ). CEM cells, HCT116 colon cancer cells, and murine embryo fibroblast cells were treated with the ER stressor thapsigargin (THG), which led to cyclophilin D-dependent mitochondrial release of the profusion GTPase optic atrophy 1 (OPA1), which controls CJ integrity, and cytochrome c, leading to apoptosis. Interference RNA knockdown of Bax blocked OPA1 and cytochrome c release after THG treatment but did not prevent the MPT, showing that Bax was essential for the release of cytochrome c by MPT. In isolated mitochondria, MPT led to OPA1 and cytochrome c release independently of voltage-dependent anion channel and the outer membrane, indicating that the MPT is an inner membrane phenomenon. Last, the MPT was regulated by the electron transport chain but not mitochondrial reactive oxygen species, since THG-induced cell death was not blocked by antioxidants and did not occur in cells lacking mitochondrial DNA. Our results show that the MPT regulates CJ remodeling for cytochrome c-dependent apoptosis induced by ER stress and that mitochondrial electron transport is indispensable for this process.  相似文献   

17.
Activation of p53 induces apoptosis in various cell types. However, the mechanism by which p53 induces apoptosis is still unclear. We reported previously that the activation of a temperature-sensitive mutant p53 (p53(138Val)) induced activation of caspase 3 and apoptosis in Jurkat cells. To elucidate the pathway linking p53 and downstream caspases, we examined the activation of caspases 8 and 9 in apoptotic cells. The results showed that both caspases were activated during apoptosis as judged by the appearance of cleavage products from procaspases and the caspase activities to cleave specific fluorogenic substrates. The significant inhibition of apoptosis by a tetrapeptide inhibitor of caspase 8 and caspase 9 suggested that both caspases are required for apoptosis induction. In addition, the membrane translocation of Bax and cytosolic release of cytochrome c, but not loss of mitochondrial membrane potential, were detected at an early stage of apoptosis. Moreover, Bax translocation, cytochrome c release, and caspase 9 activation were blocked by the broad-spectrum caspase inhibitor, Z-VAD-fmk and the caspase 8-preferential inhibitor, Ac-IETD-CHO, suggesting that the mitochondria might participate in apoptosis by amplifying the upstream death signals. In conclusion, our results indicated that activation of caspase 8 or other caspase(s) by p53 triggered the membrane translocation of Bax and cytosolic release of cytochrome c, which might amplify the apoptotic signal by activating caspase 9 and its downstream caspases.  相似文献   

18.
Hsp70 overexpression can protect cells from stress-induced apoptosis. Our previous observation that Hsp70 inhibits cytochrome c release in heat-stressed cells led us to examine events occurring upstream of mitochondrial disruption. In this study we examined the effects of heat shock on the proapoptotic Bcl-2 family member Bax because of its central role in regulating cytochrome c release in stressed cells. We found that heat shock caused a conformational change in Bax that leads to its translocation to mitochondria, stable membrane association, and oligomerization. All of these events were inhibited in cells that had elevated levels of Hsp70. Hsp70 did not physically interact with Bax in control or heat-shocked cells, indicating that Hsp70 acts to suppress signals leading to Bax activation. Hsp70 inhibited stress-induced JNK activation and inhibition of JNK with SP600125 or by expression of a dominant negative mutant of JNK-blocked Bax translocation as effectively as Hsp70 overexpression. Hsp70 did not protect cells expressing a mutant form of Bax that has constitutive membrane insertion capability or cells treated with a small molecule activator of apoptosome formation, indicating that it is unable to prevent cell death after mitochondrial disruption and caspase activation have occurred. These results indicate that Hsp70 blocks heat-induced apoptosis primarily by inhibiting Bax activation and thereby preventing the release of proapoptotic factors from mitochondria. Hsp70, therefore, inhibits events leading up to mitochondrial membrane permeabilization in heat-stressed cells and thereby controls the decision to die but does not interfere with cell death after this event has occurred.  相似文献   

19.
Apoptosis is a phenomenon fundamental to higher eukaryotes and essential to mechanisms controlling tissue homeostasis. Bcl-2 family proteins tightly control this cell death program by regulating the permeabilization of the mitochondrial outer membrane and, hence, the release of cytochrome c and other proapoptotic factors. Mitochondrial apoptosis-induced channel (MAC) is the mitochondrial apoptosis-induced channel and is responsible for cytochrome c release early in apoptosis. MAC activity is detected by patch clamping mitochondria at the time of cytochrome c release. The Bcl-2 family proteins regulate apoptosis by controlling the formation of MAC. Depending on cell type and apoptotic inducer, Bax and/or Bak are structural component(s) of MAC. Overexpression of the antiapoptotic protein Bcl-2 eliminates MAC activity. The focus of this review is a biophysical characterization of MAC activity and its regulation by Bcl-2 family proteins, and ends with some discussion of therapeutic targets.  相似文献   

20.
We have previously shown that Bax translocation was crucial in TNFalpha or etoposide-induced apoptosis. Overexpression of Bax sensitized chronic myeloid leukemic K562 cells to etoposide-induced apoptosis. Treatment with TNF-related apoptosis-inducing ligand (TRAIL) induces a loss of mitochondrial membrane potential (DeltaPsim), cytochrome c release from mitochondria, activation of caspases-8, -9, and -3, and cleavage of Bid in the K562 cell line. Bax failed to sensitize K562 cells to TRAIL-induced apoptosis. TRAIL did not induce Bax expression and/or translocation from cytosol to mitochondria in the K562 cell line. However, 100 microM Z-VAD.fmk, a pan caspase inhibitor, completely blocked TRAIL-initiated mitochondrial alterations and cleavages of caspases and Bid. We propose that TRAIL-induced apoptosis in K562 cells is via Type I apoptotic signal pathway. Bax translocation is not essential for TRAIL-induced cytochrome c release and DeltaPsim collapse in the Type I cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号