首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 397 毫秒
1.
The acute phase response (APR) is responsible for great changes in protein and lipid metabolism. For example, marked changes are observed in the metabolism of fatty acids, triglycerides, cholesterol and sphingolipids. Those lipids are partly recovered in the lipoproteins and subsequently in the plasma. Beside these lipid families, nothing is known about phospholipids and their synthesis in endomembranes during the APR. Our studies show that phosphatidylserine synthesis is stimulated during the APR and that this lipid is increased in the endoplasmic reticulum (ER) and the ER-derived vesicles.  相似文献   

2.
The intracellular protozoan Toxoplasma gondii lacks a de novo mechanism for cholesterol synthesis and therefore must scavenge this essential lipid from the host environment. In this study, we demonstrated that T. gondii diverts cholesterol from low-density lipoproteins for cholesteryl ester synthesis and storage in lipid bodies. We identified and characterized two isoforms of acyl-CoA:cholesterol acyltransferase (ACAT)-related enzymes, designated TgACAT1alpha and TgACAT1beta in T. gondii. Both proteins are coexpressed in the parasite, localized to the endoplasmic reticulum and participate in cholesteryl ester synthesis. In contrast to mammalian ACAT, TgACAT1alpha and TgACAT1beta preferentially incorporate palmitate into cholesteryl esters and present a broad sterol substrate affinity. Mammalian ACAT-deficient cells transfected with either TgACAT1alpha or TgACAT1beta are restored in their capability of cholesterol esterification. TgACAT1alpha produces steryl esters and forms lipid bodies after transformation in a Saccharomyces cerevisiae mutant strain lacking neutral lipids. In addition to their role as ACAT substrates, host fatty acids and low-density lipoproteins directly serve as Toxoplasma ACAT activators by stimulating cholesteryl ester synthesis and lipid droplet biogenesis. Free fatty acids significantly increase TgACAT1alpha mRNA levels. Selected cholesterol esterification inhibitors impair parasite growth by rapid disruption of plasma membrane. Altogether, these studies indicate that host lipids govern neutral lipid synthesis in Toxoplasma and that interference with mechanisms of host lipid storage is detrimental to parasite survival in mammalian cells.  相似文献   

3.
Hepatic triacylglycerol levels are governed through synthesis, degradation and export of this lipid. Here we demonstrate that enforced expression of hepatic lipase in the endoplasmic reticulum in McArdle RH7777 hepatocytes resulted in a significant decrease in the incorporation of fatty acids into cellular triacylglycerol and cholesteryl ester accompanied by attenuation of secretion of apolipoprotein B-containing lipoproteins. Hepatic lipase-mediated depletion of intracellular lipid storage increased the expression of peroxisome proliferator-activated receptor α and its target genes and augmented oxidation of fatty acids. These data show that 1) hepatic lipase is active in the endoplasmic reticulum and 2) intracellular hepatic lipase modulates cellular lipid metabolism and lipoprotein secretion.  相似文献   

4.
The acute effects of the PCB (polychlorinated biphenyls) mixture (Aroclor 1254) on microsomal enzymes and on synthesis and turnover of microsomal and cytoplasmic lipids of rat liver were investigated. Six daily i.p. injections of 25 and 50 mg PCB/kg body weight resulted in increased liver weight and liver to body weight ratios. When compared to controls PCB treatment resulted in a six-fold increase in amount of cytochrome P-450. Activities of NADPH-cytochrome c reductase, ethylmorphine demethylase and inosine diphosphatase were increased whereas glucose-6-phosphatase values were decreased by PCB exposure. Analysis of liver homogenate and microsomal fraction revealed an increase in lipid in PCB-exposed animals. Phospholipids, cholesterol and triglyceride were significantly increased after PCB exposure; however, the greatest percentage increase was seen in the triglyceride pool. The finding of an increase in microsomal triglyceride to phospholipid ratios with exposure to PCB is suggestive of an increase in membrane-enclosed lipid (liposomes). Studies with labelled glycerol indicated that the PCB-induced fatty liver resulted from increased half life but not increased synthesis of liver lipid moieties. The rate of incorporation of leucine into microsomal membrane and albumin was somewhat enhanced in rats exposed to PCB indicative of increased protein synthesis. Morphological studies showed increased occurrence of lipid material, both in cytoplasmic droplets and within rough and smooth-surfaced endoplasmic reticulum. Proliferation of smooth endoplasmic reticulum and flattened Golgi cisternae with no secretion granules containing lipoprotein particles characterized the liver from animals exposed for 6 days. The increase in lipid within membranes of the endoplasmic reticulum together with the flattened Golgi lacking typical secretory vesicles indicates a defect in transport of lipoproteins from the endoplasmic reticulum to the Golgi apparatus and may be the cause of the PCB-induced fatty liver.  相似文献   

5.
Due to the absence of microsomal triglyceride transfer protein (MTP), Chinese hamster ovary (CHO) cells lack the ability to translocate apoB into the lumen of the endoplasmic reticulum, causing apoB to be rapidly degraded by an N-acetyl-leucyl-leucyl-norleucinal-inhibitable process. The goal of this study was to examine if expression of MTP, whose genetic deletion is responsible for the human recessive disorder abetalipoproteinemia, would recapitulate the lipoprotein assembly pathway in CHO cells. Unexpectedly, expression of MTP mRNA and protein in CHO cells did not allow apoB-containing lipoproteins to be assembled and secreted by CHO cells expressing apoB53. Although expression of MTP in cells allowed apoB to completely enter the endoplasmic reticulum, it was degraded by a proteolytic process that was inhibited by dithiothreitol (1 mM) and chloroquine (100 microM), but resistant to N-acetyl-leucyl-leucyl-norleucinal. In marked contrast, coexpression of the liver-specific gene product cholesterol 7alpha-hydroxylase with MTP resulted in levels of MTP lipid transfer activity that were similar to those in mouse liver and allowed intact apoB53 to be secreted as a lipoprotein particle. These data suggest that, although MTP-facilitated lipid transport is not required for apoB translocation, it is required for the secretion of apoB-containing lipoproteins. We propose that, in CHO cells, MTP plays two roles in the assembly and secretion of apoB-containing lipoproteins: 1) it acts as a chaperone that facilitates apoB53 translocation, and 2) its lipid transfer activity allows apoB-containing lipoproteins to be assembled and secreted. Our results suggest that the phenotype of the cell (e.g. expression of cholesterol 7alpha-hydroxylase by the liver) may profoundly influence the metabolic relationships determining how apoB is processed into lipoproteins and/or degraded.  相似文献   

6.
Cholesteryl ester transfer protein (CETP) transfers cholesteryl ester (CE) and triglyceride (TG) between lipoproteins in plasma. However, short term suppression of CETP biosynthesis in cells alters cellular cholesterol homeostasis, demonstrating an intracellular role for CETP as well. The consequences of chronic CETP deficiency in lipid-storing cells normally expressing CETP have not been reported. Here, SW872 adipocytes stably expressing antisense CETP cDNA and synthesizing 20% of normal CETP were created. CETP-deficient cells had 4-fold more CE but an approximately 3-fold decrease in cholesterol biosynthesis. This phenotype of cholesterol overload is consistent with the observed 45% reduction in low density lipoprotein receptor and 2.5-fold increase in ABCA1 levels. However, cholesterol mass in CETP-deficient adipocytes was actually reduced. Strikingly, CETP-deficient adipocytes stored <50% of normal TG, principally reflecting reduced synthesis. The hydrolysis of cellular CE and TG in CETP-deficient cells was reduced by >50%, although hydrolase/lipase activity was increased 3-fold. Notably, the incorporation of recently synthesized CE and TG into lipid storage droplets in CETP-deficient cells was just 40% of control, suggesting that these lipids are inefficiently transported to droplets where the hydrolase/lipase resides. The capacity of cellular CETP to transport CE and TG into storage droplets was directly demonstrated in vitro. Overall, chronic CETP deficiency disrupts lipid homeostasis and compromises the TG storage function of adipocytes. Inefficient CETP-mediated translocation of CE and TG from the endoplasmic reticulum to their site of storage may partially explain these defects. These studies in adipocytic cells strongly support a novel role for CETP in intracellular lipid transport and storage.  相似文献   

7.
The relationship between the neutral lipid and phospholipid metabolism and some structure-function peculiarities of regenerating rat liver endoplasmic reticulum membranes (13 hours after surgery, i.e., corresponding to the G1-period of the cell cycle) was studied. There was an increase in the degree of the endoplasmic reticulum membrane development and the nonesterified fatty acid (NFA) and triglyceride (TG) content in regenerating rat liver microsomes. The relative specific radioactivity of neutral lipid and phospholipid fractions in regenerating rat liver microsomes was lower than in control animals, presumably due to the high rate of the microsomal lipid exchange in the regenerating liver with other cell organelles. The changes in the lipid content and rate of their metabolism in the regenerating rat liver were associated with the increase in the membrane microviscosity and the decrease in the activity of the membrane-bound enzyme (glucose-6-phosphatase). The differences in the time-dependent changes in the synthesis and metabolism of lipids in the NFA and TG fractions may be regarded as an endogenous factor determining the structure-function peculiarities of endoplasmic reticulum membranes.  相似文献   

8.
The effects of a 7-day infusion with mevinolin, a potent competitive inhibitor of hydroxy-methylglutaryl coenzyme A (HMG-CoA) reductase, on the adrenal zona fasciculata were examined in normal and dexamethasone/ACTH-treated rats. In both groups of animals, the drug caused a lowering in plasma and intra-adrenal cholesterol concentrations, as well as a slight decrease in the blood level of corticosterone. Morphometry of zona fasciculata cells showed that specific mevinolin-induced changes (i.e. those occurring in both groups of rats and therefore not due to enhanced release of ACTH following decrease in circulating corticosterone) are severe lipid-droplet depletion and a conspicuous increase in smooth endoplasmic reticulum (SER) and peroxisomes. The hypothesis is discussed that these morphological changes express a compensatory response of zona fasciculata cells to counteract the mevinolin-induced inhibition of cholesterol synthesis in both liver and adrenal cortex.  相似文献   

9.
We have shown, in a previous publication, that nontoxic concentrations of hexadecylphosphocholine exert an antiproliferative effect on HepG2 cells. Hexadecylphosphocholine also interferes with the biosynthesis of cholesterol and phosphatidylcholine. We have now extended our studies to try to establish the molecular mechanism by which hexadecylphosphocholine disrupts cholesterol homeostasis. Using radiolabelled substrates we determined the effect of hexadecylphosphocholine on cholesterol synthesis, the destiny of cholesterol from low-density lipoprotein and the transport of cholesterol between the plasma membrane and the endoplasmic reticulum. Protein levels and gene expression of the main proteins involved in cholesterol homeostasis were analysed by western blotting and RT-PCR, respectively. HepG2 cells exposed to hexadecylphosphocholine showed an increase in cholesterol biosynthesis when acetate, but not mevalonate, was used as a substrate. The activity of 3-hydroxy-3-methylglutaryl-CoA reductase (EC 1.1.1.34) and low-density lipoprotein receptor, as well as the corresponding mRNA expression, increased after 24 h of treatment with hexadecylphosphocholine. Cholesteryl linoleate in low-density lipoprotein uptake and further hydrolysis of these esters increased but the cholesterol esterification was reduced after 6 h of treatment with alkylphosphocholine. Cholesterol transport from the plasma membrane to the endoplasmic reticulum was impaired by hexadecylphosphocholine. In conclusion, hexadecylphosphocholine interfered with the transport of cholesterol from the cell surface to the endoplasmic reticulum, leading to a depletion of cholesterol in the endoplasmic reticulum and a deregulation of cholesterol biosynthesis. The accumulation of cholesterol within the cell and the reduction in phosphatidylcholine synthesis produces an alteration in the phosphatidylcholine/cholesterol ratio that may well be responsible for the antiproliferative activity exhibited by hexadecylphosphocholine in HepG2 cells.  相似文献   

10.
Lipid droplets (LDs) form from the endoplasmic reticulum (ER) and grow in size by obtaining triacylglycerols (TG). Triacylglycerol hydrolase (TGH), a lipase residing in the ER, is involved in the mobilization of TG stored in LDs for the secretion of very-low-density lipoproteins. In this study, we investigated TGH-mediated changes in cytosolic LD dynamics. We have found that TGH deficiency resulted in decreased size and increased number of LDs in hepatocytes. Using fluorescent fatty acid analogues to trace LD formation, we observed that TGH deficiency did not affect the formation of nascent LDs on the ER. However, the rate of lipid transfer into preformed LDs was significantly slower in the absence of TGH. Absence of TGH expression resulted in increased levels of membrane diacylglycerol and augmented phospholipid synthesis, which may be responsible for the delayed lipid transfer. Therefore, altered maturation (growth) rather than nascent formation (de novo synthesis) may be responsible for the observed morphological changes of LDs in TGH-deficient hepatocytes.  相似文献   

11.
Regulation of gene expression by SREBP and SCAP   总被引:22,自引:0,他引:22  
  相似文献   

12.
The transfer of triglyceride from sites of synthesis in the endoplasmic reticulum to cytoplasmic lipid droplets and nascent VLDL (very low density lipoproteins) in rat liver in vivo has been examined with [3H]glycerol, cell fractionation, and electron microscopy. Rates of mass transfer of newly synthesized triglyceride were estimated from the specific radioactivity of triglyceride present in microsomal membranes and the radioactivity observed in recipient triglyceride pools. Fasting decreased the transfer of triglyceride to nascent VLDL without affecting transfer to lipid droplets. Stimulation of triglyceride synthesis with 2-tetradecylglycidic acid (TDGA) increased transfer of triglyceride to nascent VLDL 5-fold, and to lipid droplets 14-fold, 1 hr after TDGA administration. Triglyceride transfer to nascent VLDL was increased 6-fold, and to lipid droplets 37-fold, above control rates 6 hr following TDGA treatment, indicative of saturation of triglyceride assembly into nascent VLDL and storage of excess triglyceride in lipid droplet reservoirs. These liver triglyceride pools were concurrently expanded and electron microscopy demonstrated more abundant VLDL particles in the endoplasmic reticulum together with a proliferation of lipid droplets in hepatocytes. TDGA progressively decreased hepatic sn-glycerol-3-phosphate in fasting rats while triglyceride synthesis increased, indicating that sn-glycerol-3-phosphate does not limit the rate of triglyceride synthesis in this metabolic state. Results implicate triglyceride transfer from endoplasmic reticulum membranes to nascent VLDL as a regulated determinant of hepatic VLDL assembly and VLDL triglyceride secretion in vivo.  相似文献   

13.
Cultured keratinocytes and squamous carcinoma cells provide a useful model system for studying the processes involved in the regulation of differentiation, as the differentiation capacity of the cells can be modulated experimentally by changing the extracellular calcium concentration. Furthermore, the squamous carcinoma cell lines exhibit a defect in their differentiation capacity which they express to different extents. In this paper, the effect of external lipoproteins has been studied on lipid synthesis in normal keratinocytes and three squamous carcinoma cell (SCC) lines which showed a decreasing capacity to differentiate in the order of normal keratinocytes greater than SCC-12F2 greater than SCC-15 greater than SCC-4. The ability of the cells to form cornified envelopes was taken as a measure of differentiation capacity. The rate of total lipid synthesis as well as the phospholipid-neutral lipid ratio decreased in the order SCC-4 greater than SCC-15 greater than SCC-12F2 greater than or equal to normal keratinocytes, clearly correlating with the differentiation capacity of the cells. Because of the high rate of phospholipid synthesis and the low rate of ceramide synthesis, it is concluded that, under these in vitro conditions used, the maturation of keratinocytes proceeds to a lesser extent than that seen under in vivo conditions. In proliferating cells, in which the low-density lipoprotein (LDL) receptor is operative to a high extent, the rate of lipogenesis, especially that of neutral lipids, responded dramatically to changes of extracellular lipoprotein concentration. In the presence of lipoproteins a marked decrease of cholesterol and triacylglycerol synthesis and an increase of cholesterol ester synthesis has been observed. On the other hand, in differentiating cells lipogenesis appeared to be independent of extracellular lipoproteins, due to the absence of the LDL uptake mechanism, the only exception being the synthesis of triacylglycerols, the rate of which could be modulated to a certain extent by extracellular lipoproteins. The results presented here demonstrate a close inverse relationship between the regulation of lipogenesis by extracellular lipoproteins and the ability of the cells to differentiate.  相似文献   

14.
We studied cholesterol synthesis from [14C]acetate, cholesterol esterification from [14C]oleate, and cellular cholesterol and cholesteryl ester levels after incubating cells with apoE-free high density lipoproteins (HDL) or low density lipoproteins (LDL). LDL suppressed synthesis by up to 60%, stimulated esterification by up to 280%, and increased cell cholesteryl ester content about 4-fold. Esterification increased within 2 h, but synthesis was not suppressed until after 6 h. ApoE-free HDL suppressed esterification by about 50% within 2 h. Cholesterol synthesis was changed very little within 6 h, unless esterification was maximally suppressed; synthesis was then stimulated about 4-fold. HDL lowered cellular unesterified cholesterol by 13-20% within 2 h and promoted the removal of newly synthesized cholesterol and cholesteryl esters. These changes were transient; by 24 h, both esterification and cellular unesterified cholesterol returned to control levels, and cholesteryl esters increased 2-3-fold. HDL core lipid was taken up selectively from 125I-labeled [3H]cholesteryl ester- and ether-labeled HDL. LDL core lipid uptake was proportional to LDL apoprotein uptake. The findings suggest that 1) the cells respond initially to HDL or LDL with changes in esterification, and 2) HDL mediates both the removal of free cholesterol from the cell and the delivery of HDL cholesteryl esters to the cell.  相似文献   

15.
《The Journal of cell biology》1984,99(6):1917-1926
To study the assembly of newly synthesized lipids with apoprotein A1, we administered [2-3H]glycerol to young chickens and determined the hepatic intracellular sites of lipid synthesis and association of nascent lipids with apoprotein A1. [2-3H]glycerol was rapidly incorporated into hepatic lipids, reaching maximal levels at 5 min, and this preceded the appearance of lipid radioactivity in the plasma. The liver was fractionated into rough and smooth endoplasmic reticulum and Golgi cell fractions. The isolated cell fractions were further subfractionated into membrane and soluble (content) fractions by treatment with 0.1 M Na2CO3, pH 11.3. At various times, the lipid radioactivity was measured in each of the intracellular organelles, in immunoprecipitable apoprotein A1, and in materials that floated at buoyant densities similar to those of plasma lipoproteins. Maximal incorporation occurred at 1 min in the rough endoplasmic reticulum, at 3-5 min in the smooth endoplasmic reticulum, and at 5 min in the Golgi cell fractions. The majority (66-93%) of radioactive glycerol was incorporated into triglycerides with smaller (4-27%) amounts into phospholipids. About 80% of the lipid radioactivity in the endoplasmic reticulum and 70% of that in the Golgi cell fractions was in the membranes. The radioactive lipids in the content subfraction were distributed in various density classes with most nascent lipids floating at a density less than or equal to 1.063 g/ml. Apoprotein A1 from the Golgi apparatus, obtained by immunoprecipitation, contained sixfold more nascent lipids than did that from the endoplasmic reticulum. These data indicate that [2-3H]glycerol is quickly incorporated into lipids of the endoplasmic reticulum and the Golgi cell fractions, that most of the nascent lipids are conjugated with apoproteins A1 in the Golgi apparatus, and that very little association of nascent lipid to apoprotein A1 occurs in the endoplasmic reticulum.  相似文献   

16.
Secretion of hepatic apoB lipoproteins removes excess triglyceride from the liver. However, the mechanism by which synthesis of apoB, which occurs on the rough endoplasmic reticulum, is coordinated with synthesis of triglyceride, which takes place in the smooth endoplasmic reticulum, is not known. To examine this question, we have manipulated intracellular synthesis of triglyceride and cholesteryl ester in HepG2 cells and determined the impact of these maneuvers on apoB secretion. Since cholesteryl ester is the only major lipid class synthesized in the rough endoplasmic reticulum, our hypothesis was that, in response to a fatty acid challenge, synthesis of cholesteryl ester rather than synthesis of triglyceride would be the immediate trigger to apoB secretion. Oleate complexed to bovine serum albumin caused intracellular triglyceride synthesis to increase 6-fold and cholesteryl ester synthesis to increase almost 3-fold, while apoB secretion into the medium increased by 2.5-fold (P less than 0.0125) at all time points between 4 and 24 h. Addition of acylation stimulating protein to the medium further stimulated both triglyceride and cholesteryl ester synthesis (58% and 108%, respectively) above oleate alone and this resulted in a 50% increase in apoB secretion (P less than 0.0025). By contrast, both progesterone and 2-bromooctanoate inhibited triglyceride and cholesteryl ester synthesis and these effects were associated with reduced apoB secretion. Lovastatin inhibited cholesteryl ester synthesis (45%, P less than 0.0025); however, at the doses used, triglyceride formation was unaffected. Under these circumstances, apoB secretion was reduced by 25% (P less than 0.05). Similarly, 58-035 (an inhibitor of acyl CoA:cholesterol acyltransferase) on the one hand reduced cholesteryl ester synthesis markedly (59%, P less than 0.005), but on the other increased triglyceride synthesis though not statistically significantly (65%, P NS), and again this resulted in decreased apoB secretion (25%, P less than 0.005). Control experiments established that changes in low density lipoprotein catabolism did not contribute importantly to the quantity of apoB in the medium. Taken together, the data indicate that, at least in HepG2 cells, there are parallel changes in cholesteryl ester synthesis and apoB secretion and suggest that it is cholesteryl ester synthesis, not triglyceride synthesis, that is the immediate regulator of apoB secretion when these cells are exposed to an increased influx of fatty acids. However, alternative or additional regulatory mechanisms, such as, for example, a role for acylation of apoB, are not excluded by these studies.  相似文献   

17.
Rats were treated with inducers of peroxisomes, mitochondria and the endoplasmic reticulum, as well as receiving diets and drug known to influence the mevalonate pathway. Treatment with clofibrate and 2-diethylhexylphthalate (DEHP) increased microsomal and mitochondrial ubiquinone contents, but a decrease was observed in lysosomes. In vivo labeling of this lipid with [3H]mevalonate was also elevated. The amount of cholesterol did not change upon exposure to these inducers of peroxisomes and mitochondria, but its rate of labeling was decreased. The concentration of dolichol increased only after treatment with DEHP and only in lysosomes. The inducers of the endoplasmic reticulum phenobarbital, 3-methylcholanthrene and N-nitrosodiethylamine enhanced the rate of ubiquinone synthesis and exposure to the latter two substances also elevated the amount of this lipid in microsomes. A cholesterol-rich diet increased the labeling of ubiquinone and decreased cholesterol labeling, while cholestyramine treatment had opposite effects on lipid labeling in both microsomes and mitochondria. The results demonstrate that the ubiquinone contents of the various membranes of hepatocytes change in a characteristic manner under the influence of inducers and dietary factors. Clearly, the level of ubiquinone and its biosynthesis are regulated separately from those of the other products of the mevalonate pathway, cholesterol and dolichol.  相似文献   

18.
Collagen production by rat liver fat-storing cells in primary culture   总被引:3,自引:0,他引:3  
Morphological changes, proliferation and collagen synthesis of fat-storing cells (FSC) in primary culture were examined. FSC, isolated from rats treated with vitamin A, showed numerous large lipid droplets in the cytoplasm and positive desmin staining. After 4-7 days culture, these cells were transformed into fibroblast-like cells with a gradual depletion of lipid droplets and with abundant well-developed rough endoplasmic reticulum. The proliferation analysis revealed that DNA synthesis preceded the increase of cell number. Enhancement of the collagen synthesis by FSC were associated with the morphological change of the cells. Quantitative analysis revealed that these cells produced mainly type I collagen (84%) and a small amount of type III collagen (16%).  相似文献   

19.
20.
Anorexia nervosa is a model of simple starvation accompanied by secondary hyperlipoproteinemia. The pattern of plasma fatty acids influences the levels of plasma lipids and lipoproteins. The concentration of plasma lathosterol is a surrogate marker of cholesterol synthesis de novo, concentrations of campesterol and beta-sitosterol reflect resorption of exogenous cholesterol. The aim of the study was to evaluate fatty acids in plasma lipid classes and their relationship to plasma lipids, lipoproteins, cholesterol precursors and plant sterols. We examined 16 women with anorexia nervosa and 25 healthy ones. Patients with anorexia nervosa revealed increased concentrations of total cholesterol, triglycerides, HDL-cholesterol, campesterol and beta-sitosterol. Moreover, a decreased content of n-6 polyunsaturated fatty acids was found in all lipid classes. These changes were compensated by an increased content of monounsaturated fatty acids in cholesteryl esters, saturated fatty acids in triglycerides and both monounsaturated and saturated fatty acids in phosphatidylcholine. The most consistent finding in the fatty acid pattern concerned a decreased content of linoleic acid and a raised content of palmitoleic acid in all lipid classes. The changes of plasma lipids and lipoproteins in anorexia nervosa are the result of complex mechanisms including decreased catabolism of triglyceride-rich lipoproteins, normal rate of cholesterol synthesis and increased resorption of exogenous cholesterol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号