共查询到20条相似文献,搜索用时 0 毫秒
1.
The specific targeting of precursor proteins synthesized in the cytosol to various cell organelles is a central aspect of intracellular protein traffic. Several hundred different proteins are imported from the cytosol into the mitochondria. Recent studies have identified the mitochondrial outer membrane proteins MOM19, MOM72, MOM38 (approximately ISP42) and p32 which have a role in initial steps of protein import. The first three components are present in a multi-subunit complex that catalyses recognition and membrane insertion of precursor proteins. 相似文献
3.
Disrupted yeast mitochondria can import precursor proteins directly through their inner membrane 总被引:11,自引:6,他引:11 下载免费PDF全文
Import of precursor proteins into the yeast mitochondrial matrix can occur directly across the inner membrane. First, disruption of the outer membrane restores protein import to mitochondria whose normal import sites have been blocked by an antibody against the outer membrane or by a chimeric, incompletely translocated precursor protein. Second, a potential- and ATP-dependent import of authentic or artificial precursor proteins is observed with purified inner membrane vesicles virtually free of outer membrane components. Third, import into purified inner membrane vesicles is insensitive to antibody against the outer membrane. Thus, while outer membrane components are clearly required in vivo, the inner membrane contains a complete protein translocation system that can operate by itself if the outer membrane barrier is removed. 相似文献
4.
How are proteins imported into mitochondria? 总被引:38,自引:0,他引:38
5.
A new specific endopeptidase that cleaves eukaryotic precursor proteins has been found in Escherichia coli K but not in E. coli B strains. After purification, protein sequencing and Western blotting, the endopeptidase was shown to be identical with E. coli outer membrane protein OmpP [Kaufmann, A., Stierhof, Y.-D. & Henning, U. (1994) J. Bacteriol. 176, 359-367]. Further characterization of enzymatic properties of the new peptidase was performed. Comparison of the cleavage specificities of the newly found endopeptidase and that of rat mitochondrial processing peptidase (MPP) showed that patterns of proteolytic cleavage on the investigated precursor proteins by both enzymes are similar. By using three mitochondrial precursor proteins, the specificity assigned to OmpP previously, a cleavage position between two basic amino-acid residues, was extended to a three amino-acid recognition sequence. Positions +1 to +3 of this extended recognition site consist of an amino-acid residue with a small aliphatic side chain such as alanine or serine, a large hydrophobic residue such as leucine or valine followed by an arginine residue. Additionally, structural motifs of the substrate seem to be required for OmpP cleavage. 相似文献
6.
Ito A 《Biochemical and biophysical research communications》1999,259(3):611-616
The Csk Homologous Kinase (CHK) has been shown to have an enzymatic activity similar to the tyrosine kinase Csk in that it down-regulates Src family kinase activity by causing phosphorylation of the Src C-terminal tyrosine residue. In megakaryocytic Mo7e cells, CHK associates with a specific phosphotyrosine juxtamembrane sequence of the SCF/KL-activated c-Kit receptor. Here, we show that in Mo7e cells, the major Src family kinase activity is p53/56(Lyn). Studies using immobilized c-Kit phosphopeptides show that Lyn is able to specifically associate with the tyrosine-phosphorylated juxtamembrane 568Y*VY*IDPT sequence of c-Kit which has previously been shown to associate with CHK. In cells over-expressing CHK by means of a recombinant vaccinia virus, we observed an elimination of the SCF/KL-stimulated Lyn kinase peak of activity observed at 2-5 minutes in cells infected with the helper T7-expressing vaccinia virus by itself. Examination of total tyrosine phosphorylation by Western blotting showed that over-expression of CHK resulted in a reduction in the levels of tyrosine phosphorylations in the range of 50-60 kDa, but had no apparent effect on c-Kit autophosphorylation. Taken together, these findings show that CHK is able to down-regulate SCF/KL-stimulated Lyn activity in megakaryocytes. 相似文献
7.
8.
Glomerular basement membrane proteoglycans are derived from a large precursor 总被引:7,自引:6,他引:7 下载免费PDF全文
D J Klein D M Brown T R Oegema P E Brenchley J C Anderson M A Dickinson E A Horigan J R Hassell 《The Journal of cell biology》1988,106(3):963-970
The basement membrane heparan sulfate proteoglycan produced by the Englebreth-Holm-Swarm (EHS) tumor and by glomeruli were compared by immunological methods. Antibodies to the EHS proteoglycan immunoprecipitated a single precursor protein (Mr = 400,000) from [35S]methionine-pulsed glomeruli, the same size produced by EHS cells. These antibodies detected both heparan sulfate proteoglycans and glycoproteins in extracts of unlabeled glomeruli and glomerular basement membrane. The proteoglycans contained core proteins of varying size (Mr = 150,000 to 400,000) with a Mr = 250,000 species being predominant. The glycoproteins are fragments of the core protein which lack heparan sulfate side chains. Antibodies to glomerular basement membrane proteoglycan immunoprecipitated the precursor protein (Mr = 400,000) synthesized by EHS cells and also reacted with most of the proteolytic fragments of the EHS proteoglycan. This antibody did not, however, react with the P44 fragment, a peptide situated at one end of the EHS proteoglycan core protein. These data suggest that the glomerular basement membrane proteoglycan is synthesized from a large precursor protein which undergoes specific proteolytic processing. 相似文献
9.
Envelope membrane proteins that interact with chloroplastic precursor proteins. 总被引:18,自引:5,他引:18 下载免费PDF全文
The post-translational transport of cytoplasmically synthesized precursor proteins into chloroplasts requires proteins in the envelope membranes. To identify some of these proteins, label transfer cross-linking was performed using precursor to the small subunit of ribulose-1,5-bisphosphate carboxylase (prSSU) that was blocked at an early stage of the transport process. Two envelope proteins were identified: an 86-kD protein and a 75-kD protein, both present in the outer membrane. Labeling of both proteins required prSSU and could not be accomplished with SSU lacking a transit peptide. Labeling of the 75-kD protein occurred only when low levels of ATP were present, whereas labeling of the 86-kD protein occurred in the absence of exogenous ATP. Although both labeled proteins were identified as proteins of the outer envelope membrane, the labeled form of the 75-kD protein could only be detected in fractions containing mixed envelope membranes. Based on these observations, we propose that prSSU first binds in an ATP-independent fashion to the 86-kD protein. The energy-requiring step is association with the 75-kD protein and assembly of a translocation contact site between the inner and outer membrane of the chloroplastic envelope. 相似文献
10.
Import pathways of precursor proteins into mitochondria: multiple receptor sites are followed by a common membrane insertion site 总被引:11,自引:9,他引:11 下载免费PDF全文
《The Journal of cell biology》1988,107(6):2483-2490
The precursor of porin, a mitochondrial outer membrane protein, competes for the import of precursors destined for the three other mitochondrial compartments, including the Fe/S protein of the bc1- complex (intermembrane space), the ADP/ATP carrier (inner membrane), subunit 9 of the F0-ATPase (inner membrane), and subunit beta of the F1- ATPase (matrix). Competition occurs at the level of a common site at which precursors are inserted into the outer membrane. Protease- sensitive binding sites, which act before the common insertion site, appear to be responsible for the specificity and selectivity of mitochondrial protein uptake. We suggest that distinct receptor proteins on the mitochondrial surface specifically recognize precursor proteins and transfer them to a general insertion protein component (GIP) in the outer membrane. Beyond GIP, the import pathways diverge, either to the outer membrane or to translocation contact-sites, and then subsequently to the other mitochondrial compartments. 相似文献
11.
ORMDL proteins are a conserved new family of endoplasmic reticulum membrane proteins 总被引:1,自引:0,他引:1
Hjelmqvist L Tuson M Marfany G Herrero E Balcells S Gonzàlez-Duarte R 《Genome biology》2002,3(6):research0027.1-research002716
Background
Annotations of completely sequenced genomes reveal that nearly half of the genes identified are of unknown function, and that some belong to uncharacterized gene families. To help resolve such issues, information can be obtained from the comparative analysis of homologous genes in model organisms. 相似文献12.
The mechanism by which yeast 20 S proteasomes are imported into the nucleus is still unresolved. Here, we provide the first evidence that 20 S proteasomes are imported as precursor complexes into the nucleus. By using the srp1-49 mutant which is deficient in nuclear import of cargos with classical nuclear localization sequences (cNLS), we show that proteasome precursor complexes associate with importin/karyopherin alphabeta, the cNLS receptor, and that they accumulate inside the cytoplasm. Reconstitution assays revealed that only precursor complexes are targeted to the nuclear envelope (NE) by karyopherin alphabeta. In support, the green fluorescent protein (GFP)-labelled maturation factor Ump1, marking precursor complexes, mainly localizes to the nucleus and around the NE. Our data suggest that nuclear 20 S proteasomes are finally matured inside the nucleus. 相似文献
13.
14.
15.
Jamshad M Lin YP Knowles TJ Parslow RA Harris C Wheatley M Poyner DR Bill RM Thomas OR Overduin M Dafforn TR 《Biochemical Society transactions》2011,39(3):813-818
In order to study the structure and function of a protein, it is generally required that the protein in question is purified away from all others. For soluble proteins, this process is greatly aided by the lack of any restriction on the free and independent diffusion of individual protein particles in three dimensions. This is not the case for membrane proteins, as the membrane itself forms a continuum that joins the proteins within the membrane with one another. It is therefore essential that the membrane is disrupted in order to allow separation and hence purification of membrane proteins. In the present review, we examine recent advances in the methods employed to separate membrane proteins before purification. These approaches move away from solubilization methods based on the use of small surfactants, which have been shown to suffer from significant practical problems. Instead, the present review focuses on methods that stem from the field of nanotechnology and use a range of reagents that fragment the membrane into nanometre-scale particles containing the protein complete with the local membrane environment. In particular, we examine a method employing the amphipathic polymer poly(styrene-co-maleic acid), which is able to reversibly encapsulate the membrane protein in a 10?nm disc-like structure ideally suited to purification and further biochemical study. 相似文献
16.
17.
18.
Specific antibodies to human glycophorin A and spectrin were used to study the expression of these membrane proteins in normal and pathologic human bone marrow. In immunofluorescence experiments spectrin and glycophorin A are found in 50–60% of the nucleated cells in normal bone marrow. These two proteins are expressed at all stages of red cell differentiation and can be traced at least to the earliest morphologically recognizable nucleated red cell precursor, the proerythroblast; the two proteins are specific for cells of the red cell series and are not found to be expressed in lymphocytic, granulocytic cells or platelets. These conclusions were drawn from studies on bone marrow in patients with a temporary block in erythropoiesis at the level of stem cells or of the pronormoblast. Bone marrow from these individuals either lacked all nucleated cells stainable for glycophorin A and spectrin or contained only pronormoblasts. Similar findings were obtained on spleen cells from mice which were made severely anemic by multiple injections with N-acetyl-phenylhydrazine. Antibodies to a sialoglycoprotein isolated from mouse red cell membranes stain 70–80% of all cells in the spleen of anemic animals, while only 1–2% of such cells are seen in the spleen of normal animals. Spectrin and glycophorin A could be labeled metabolically and isolated using specific antibodies. The human tumor cell line K562 expresses both membrane proteins, but induction experiments with various agents thus far have failed to change their expression. 相似文献
19.
Ulf Einsfelder Peter Brendel Ulrike Müller Walter Volknandt 《Journal of neurochemistry》2013,127(1):48-56
The amyloid precursor protein (APP) and its mammalian homologs, APLP1, APLP2, have been allocated to an organellar pool residing in the Golgi apparatus and in endosomal compartments, and in its mature form to a cell surface‐localized pool. In the brain, all APPs are restricted to neurons; however, their precise localization at the plasma membrane remained enigmatic. Employing a variety of subcellular fractionation steps, we isolated two synaptic vesicle (SV) pools from rat and mouse brain, a pool consisting of synaptic vesicles only and a pool comprising SV docked to the presynaptic plasma membrane. Immunopurification of these two pools using a monoclonal antibody directed against the 12 membrane span synaptic vesicle protein2 (SV2) demonstrated unambiguously that APP, APLP1 and APLP2 are constituents of the active zone of murine brain but essentially absent from free synaptic vesicles. The specificity of immunodetection was confirmed by analyzing the respective knock‐out animals. The fractionation experiments further revealed that APP is accumulated in the fraction containing docked synaptic vesicles. These data present novel insights into the subsynaptic localization of APPs and are a prerequisite for unraveling the physiological role of all mature APP proteins in synaptic physiology.
20.
Translocation of secretory proteins across the microsomal membrane occurs through an environment accessible to aqueous perturbants 总被引:63,自引:0,他引:63
We have characterized the association of a nascent secretory protein with the microsomal membrane at two distinct stages in cell-free synthesis and translocation. Stage one corresponded to a nascent chain of approximately 70 residues generated via elongation arrest by the signal recognition particle (SRP). Binding to microsomal membranes occurred independently of chain elongation and required SRP receptor. Following binding, the 70-mer remained attached to the membrane after extraction of the ribosome. However, protein denaturants (4 M urea or alkaline pH) extracted the 70-mer from the membrane. Stage two of synthesis corresponded to nascent chains of approximately 158 residues generated by oligonucleotide-mediated hybrid arrest of translation. Again, these partially translocated nascent chains were extracted by 4 M urea. Therefore, the initial interaction of the signal sequence with the membrane as well as subsequent chain conductance occur in a microenvironment that is accessible to aqueous reagents. Thus, both processes probably require integral membrane proteins. 相似文献