首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Characterization of tobacco MADS-box genes involved in floral initiation   总被引:9,自引:0,他引:9  
Jang S  An K  Lee S  An G 《Plant & cell physiology》2002,43(2):230-238
  相似文献   

3.
The inflorescence meristem produces floral primordia that remain undifferentiated during the first stages of flower development. Genes controlling floral meristem identity include LEAFY (LFY), APETALA1 (AP1), CAULIFLOWER (CAL), LATE MERISTEM IDENTITY 1 (LMI1), SHORT VEGETATIVE PHASE (SVP) and AGAMOUS-LIKE24 (AGL24). The lfy mutant shows partial reversions of flowers into inflorescence shoot-like structures and this phenotype is enhanced in the lfy ap1 double mutant. Here we show that combining the lfy mutant with agl24 and svp single mutants or with the agl24 svp double mutant enhances the lfy phenotype and that the lfy agl24 svp triple mutant phenocopies the lfy ap1 double mutant. Analysis of the molecular interactions between LFY, AGL24 and SVP showed that LFY is a repressor of AGL24 and SVP, whereas LMI1 is a positive regulator of these genes. Moreover, AGL24 and SVP positively regulate AP1 and LFY by direct binding to their regulatory regions. Since all these genes are important for establishing floral meristem identity, regulatory loops are probably important to maintain the correct relative expression levels of these genes.  相似文献   

4.
5.
6.
7.
8.
The AGAMOUS (AG) gene is necessary for stamen and carpel development and is part of a monophyletic clade of MADS-box genes that also includes SHATTERPROOF1 (SHP1), SHP2, and SEEDSTICK (STK). Here, we show that ectopic expression of either the STK or SHP gene is sufficient to induce the transformation of sepals into carpeloid organs bearing ovules. Moreover, the fact that these organ transformations occur when the STK gene is expressed ectopically in ag mutants shows that STK can promote carpel development in the absence of AG activity. We also show that STK, AG, SHP1, and SHP2 can form multimeric complexes and that these interactions require the SEPALLATA (SEP) MADS-box proteins. We provide genetic evidence for this role of the SEP proteins by showing that a reduction in SEP activity leads to the loss of normal ovule development, similar to what occurs in stk shp1 shp2 triple mutants. Together, these results indicate that the SEP proteins, which are known to form multimeric complexes in the control of flower organ identity, also form complexes to control normal ovule development.  相似文献   

9.
10.
11.
12.
13.
Gregis V  Sessa A  Colombo L  Kater MM 《The Plant cell》2006,18(6):1373-1382
Loss-of-function alleles of AGAMOUS-LIKE24 (AGL24) and SHORT VEGETATIVE PHASE (SVP) revealed that these two similar MADS box genes have opposite functions in controlling the floral transition in Arabidopsis thaliana, with AGL24 functioning as a promoter and SVP as a repressor. AGL24 promotes inflorescence identity, and its expression is downregulated by APETALA1 (AP1) and LEAFY to establish floral meristem identity. Here, we combine the two mutants to generate the agl24 svp double mutant. Analysis of flowering time revealed that svp is epistatic to agl24. Furthermore, when grown at 30 degrees C, the double mutant was severely affected in flower development. All four floral whorls showed homeotic conversions due to ectopic expression of class B and C organ identity genes. The observed phenotypes remarkably resembled the leunig (lug) and seuss (seu) mutants. Protein interaction studies showed that dimers composed of AP1-AGL24 and AP1-SVP interact with the LUG-SEU corepressor complex. We provide genetic evidence for the role of AP1 in these interactions by showing that the floral phenotype in the ap1 agl24 svp triple mutant is significantly enhanced. Our data suggest that MADS box proteins are involved in the recruitment of the SEU-LUG repressor complex for the regulation of AGAMOUS.  相似文献   

14.
G N Drews  J L Bowman  E M Meyerowitz 《Cell》1991,65(6):991-1002
We characterized the distribution of AGAMOUS (AG) RNA during early flower development in Arabidopsis. Mutations in this homeotic gene cause the transformation of stamens to petals in floral whorl 3 and of carpels to another ag flower in floral whorl 4. We found that AG RNA is present in the stamen and carpel primordia but is undetectable in sepal and petal primordia throughout early wild-type flower development, consistent with the mutant phenotype. We also analyzed the distribution of AG RNA in apetela2 (ap2) mutant flowers. AP2 is a floral homeotic gene that is necessary for the normal development of sepals and petals in floral whorls 1 and 2. In ap2 mutant flowers, AG RNA is present in the organ primordia of all floral whorls. These observations show that the expression patterns of the Arabidopsis floral homeotic genes are in part established by regulatory interactions between these genes.  相似文献   

15.
16.
17.
18.
19.
20.
Although MADS-box genes involved in flower and fruit development have been well characterized, the function of MADS-box genes expressed in vegetative structures has yet to be explored. At least seven members of this family are grouped in clades of genes that are preferentially expressed in roots of Arabidopsis thaliana (L.) Heynh.. We report here the cloning of the AGL21 MADS-box gene, which belongs to the ANR1 clade, and the mRNA in situ expression patterns of this and two other root MADS-box genes. AGL17 appears to be a lateral root cap marker in the root tip, and towards the elongation zone this gene is expressed in the epidermal cells. AGL21 is highly expressed in lateral root primordia and it has a punctate expression pattern in the primary root meristem. AGL12 also has a punctate expression pattern in the primary root meristem. AGL12 and AGL21 are also expressed in the central cylinder of differentiated roots and both are expressed in developing embryos. This study, combined with previous phylogenetic analyses, indicates that these MADS-box genes may play distinct regulatory roles during root development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号