首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When either the F' lac or the F'Cm plasmid was transferred from Escherichia coli into Pasteurella pseudotuberculosis, the P. pseudotuberculosis (F') strains isolated formed plaques with both ribonucleic acid (RNA)-containing and deoxyribonucleic acid-containing male-specific phages. In contrast, strains of P. pestis harboring E. coli (F') plasmids did not form plaques with male-specific phages, although such strains permitted limited multiplication of phage MS2. The adsorption and burst size of MS2 were approximately the same in both species of Pasteurella, but the per cent of adsorbed MS2 that produced infective centers was much lower in P. pestis than it was in P. pseudotuberculosis. By use of a sib-selection technique of P. pestis (F') cells, we isolated a single clone that could form MS2 plaques. (32)P-labeled MS2 adsorbed equally to and its RNA penetrated equally into both the typical MS2-nonpermissive P. pestis cells and the MS2-permissive P. pestis cells. No host modification occurred after growth of MS2 in Pasteurella. Our data suggest that typical strains of P. pestis inhibit the intracellular development of phage MS2.  相似文献   

2.
Lysogenic Conversion of Pasteurella by Escherichia coli Bacteriophage P1 CM   总被引:3,自引:0,他引:3  
Bacteriophage P1 CM can convert Pasteurella pestis or P. pseudotuberculosis to chloramphenicol resistance and phage restriction, but no viable phage was induced from converted Pasteurella strains.  相似文献   

3.
Current methods of identifying Pasteurella pestis rely heavily on tests specific for detecting fraction I, the envelope antigen. Pesticin I, a bacteriocin inhibitory for P. pseudotuberculosis, has been demonstrated in nearly all tested strains isolated from human infections. The results of using this characteristic as an identifying trait for P. pestis were compared with results reported for detecting fraction I by fluorescent-antibody and antiserum-agar techniques. Data indicate that, although certain atypical strains of P. pestis fail to react in one system or the other, a combination of these tests provides positive identification in all cases. Detection of P. pestis in contaminated materials is greatly facilitated, and the simplicity of this test makes it a valuable tool in the study of plague infections and an important adjunct to methods currently in use. The use of the pesticin I assay is not intended to replace other accepted techniques, but rather to supplement them and increase the effectiveness of plague investigation.  相似文献   

4.
A numerical taxonomic study of Actinobacillus, Pasteurella and Yersinia   总被引:3,自引:0,他引:3  
A numerical taxonomic study of strains of Actinobacillus, Pasteurella and Yersinia, with some allied bacteria, showed 23 reasonably distinct groups. These fell into three major areas. Area A contained species of Actinobacillus and Pasteurella: A. suis, A. equuli, A. lignieresii, P. haemolytica biovar A, P. haemolytica biovar T, P. multocida, A. actinomycetemcomitans, 'P. bettii', 'A. seminis', P. ureae and P. aerogenes. Also included in A was a composite group of Pasteurella pneumotropica and P. gallinarum, together with unnamed groups referred to as 'BLG', 'Mair', 'Ross' and 'aer-2'. Area B contained species of Yersinia: Y. enterocolitica, Y. pseudotuberculosis, Y. pestis and a group 'ent-b' similar to Y. enterocolitica. Area C contained non-fermenting strains: Y. philomiragia, Moraxella anatipestifer and a miscellaneous group 'past-b'. There were also a small number of unnamed single strains.  相似文献   

5.
The evolution of flea-borne transmission in Yersinia pestis   总被引:3,自引:0,他引:3  
Transmission by fleabite is a recent evolutionary adaptation that distinguishes Yersinia pestis, the agent of plague, from Yersinia pseudotuberculosis and all other enteric bacteria. The very close genetic relationship between Y. pestis and Y. pseudotuberculosis indicates that just a few discrete genetic changes were sufficient to give rise to flea-borne transmission. Y. pestis exhibits a distinct infection phenotype in its flea vector, and a transmissible infection depends on genes that are specifically required in the flea, but not the mammal. Transmission factors identified to date suggest that the rapid evolutionary transition of Y. pestis to flea-borne transmission within the last 1,500 to 20,000 years involved at least three steps: acquisition of the two Y. pestis-specific plasmids by horizontal gene transfer; and recruitment of endogenous chromosomal genes for new functions. Perhaps reflective of the recent adaptation, transmission of Y. pestis by fleas is inefficient, and this likely imposed selective pressure favoring the evolution of increased virulence in this pathogen.  相似文献   

6.
Metabolism of Carbohydrates by Pasteurella pseudotuberculosis   总被引:3,自引:2,他引:1  
Cell-free extracts of Pasteurella pseudotuberculosis and P. pestis catalyzed a rapid and reversible exchange of electrons between pyridine nucleotides. Although the extent of this exchange approximated that promoted by the soluble nicotinamide adenine dinucleotide (phosphate) transhydrogenase of Pseudomonas fluorescens, the reaction in the pasteurellae was associated with a particulate fraction and was not influenced by adenosine-2'-monophosphate. The ability of P. pseudotuberculosis to utilize this system for the maintenance of a large pool of nicotinamide adenine dinucleotide phosphate could not be correlated with significant participation of the Entner-Doudoroff path or catabolic use of the hexose-monophosphate path during metabolism of glucose. As judged by the distribution of radioactivity in metabolic pyruvate, glucose and gluconate were fermented via the Embden-Meyerhof and Entner-Doudoroff paths, respectively. With the exception of hexosediphosphatase, all enzymes of the three paths were detected, although little or no gluconokinase or phosphogluconate dehydrase was present unless the organisms were cultivated with gluconate. The significance of these findings is discussed with respect to the regulation of carbohydrate metabolism in the pasteurellae, related enteric bacteria, and P. fluorescens.  相似文献   

7.
On the basis of Yersinia pseudotuberculosis strain YPIII the isogenic variants containing the different combinations of 47 Md plasmids from Yersinia pestis or Yersinia pseudotuberculosis cells with the 6 Md pYP plasmid from Yersinia pestis EV (intact or having impaired the pla gene determining the synthesis of plasmocoagulase). The degradation of the secreted proteins encoded by the 47 Md plasmids of Yersinia pestis and Yersinia pseudotuberculosis in the cells harbouring the 6Md pYP plasmid has been registered. Yersinia pseudotuberculosis strain YPIII carrying its own 47Md and pYP plasmids also contained no YOP1 protein, in contract to the parent strain. The damage of the pla gene eliminated the destructive effect on the outer membrane proteins. Imposition of the 47Md and 6Md plasmids from Yersinia pestis in Yersinia pseudotuberculosis cells may be used for obtaining and study of the physiological role of low molecular mass proteins resulting from proteolysis of proteins encoded by the 47Md virulence plasmid of Yersinia.  相似文献   

8.
Yersinia pestis, the agent of plague, is usually transmitted by fleas. To produce a transmissible infection, Y. pestis colonizes the flea midgut and forms a biofilm in the proventricular valve, which blocks normal blood feeding. The enteropathogen Yersinia pseudotuberculosis, from which Y. pestis recently evolved, is not transmitted by fleas. However, both Y. pestis and Y. pseudotuberculosis form biofilms that adhere to the external mouthparts and block feeding of Caenorhabditis elegans nematodes, which has been proposed as a model of Y. pestis-flea interactions. We compared the ability of Y. pestis and Y. pseudotuberculosis to infect the rat flea Xenopsylla cheopis and to produce biofilms in the flea and in vitro. Five of 18 Y. pseudotuberculosis strains, encompassing seven serotypes, including all three serotype O3 strains tested, were unable to stably colonize the flea midgut. The other strains persisted in the flea midgut for 4 weeks but did not increase in numbers, and none of the 18 strains colonized the proventriculus or produced a biofilm in the flea. Y. pseudotuberculosis strains also varied greatly in their ability to produce biofilms in vitro, but there was no correlation between biofilm phenotype in vitro or on the surface of C. elegans and the ability to colonize or block fleas. Our results support a model in which a genetic change in the Y. pseudotuberculosis progenitor of Y. pestis extended its pre-existing ex vivo biofilm-forming ability to the flea gut environment, thus enabling proventricular blockage and efficient flea-borne transmission.  相似文献   

9.
Pasteurella pseudotuberculosis, containing the Escherichia coli plasmid F'lac, transferred its chromosome in an oriented manner to each of five multiply auxotrophic strains of P. pseudotuberculosis. In a mating system containing gelatin, glucose, and phosphate buffer, a maximum of 0.02% of the donor cells transferred lead markers. The donor population was counterselected with nalidixic acid. We established the entry time of seven markers as follows: proline (11 min); arginine (14 min); histidine (14 min); threonine (25 min); lysine (50 min); tyrosine (67 min); and tryptophan (77 min). However, an analysis of the inheritance of unselected markers did not support the simplest assumption that the chromosome was transferred as Origin... pro... arg his... thr... lys... tyr... trp.... The markers common to all five recipients, arg and his, were closely linked, but of the five other markers, each unique to a different recipient strain, only trp was linked to arg and his. Our data suggest that the Pasteurella chromosome is transferred in more than one linkage group.  相似文献   

10.
One of the most virulent and feared bacterial pathogens is Yersinia pestis, the aetiologic agent of bubonic plague. Characterization of the O-antigen gene clusters of 21 serotypes of Yersinia pseudotuberculosis and the cryptic O-antigen gene cluster of Y. pestis showed that the plague bacillus is most closely related to and has evolved from Y. pseudotuberculosis serotype O:1b. The nucleotide sequences of both gene clusters (about 20.5 kb each) were determined and compared to identify the differences that caused the silencing of the Y. pestis gene cluster. At the nucleotide sequence level, the loci were 98.9% identical and, of the 17 biosynthetic genes identified from the O:1b gene cluster, five were inactivated in the Y. pestis cluster, four by insertions or deletions of one nucleotide and one by a deletion of 62 nucleotides. Apparently, the expression of the O-antigen is not beneficial for the virulence or to the lifestyle of Y. pestis and, therefore, as one step in the evolution of Y. pestis, the O-antigen gene cluster was inactivated.  相似文献   

11.
A study of the structural and regulatory genes, determining rhamnose fermentation, that are located in the rha locus of the chromosome of Yersinia pestis main and non-main subspecies and of Yersinia pseudotuberculosis of serogroups I-III was performed. The nucleotide sequence of Y. pestis main subspecies differs substantially from those of non-main subspecies and Y. pseudotuberculosis by the presence of a nucleotide substitution in 671 bp location of rhaS gene resulting presumably in the Y. pestis non-main subsp inability to utilize rhamnose. This results in incapability of Y. pestis non-main subspecies to utilize rhamnose. Other nucleotide substitutions found in Y. pestis non-main subspecies strains influence only upon expression efficiency of this diagnostic criterion.  相似文献   

12.
Photorhabdus luminescens toxin complex (Tc) has been characterized as a potent three-component insecticidal protein complex. Homologues of genes encoding P. luminescens Tc components have been identified in several other enterobacteria and in Gram-positive bacteria, showing these genes are widespread in bacteria. In particular, tc gene homologues have been identified in Yersinia enterocolitica, Yersinia pseudotuberculosis and Yersinia pestis and may have a role in Y. pestis evolution. Y. enterocolitica tc genes have been shown to be active against Manduca sexta larvae. Here, we demonstrate that expression optimization is essential to obtain bioactive P. luminescens Tc proteins and demonstrate that TcaAB and TcdB + TccC are stand-alone toxins against a M. sexta insect model. Moreover, we report that Y. pseudotuberculosis IP32953 Tc proteins are also toxic to M. sexta larvae but do not cross-potentiate as P. luminescens Tc components.  相似文献   

13.
We show that Yersinia pestis and pesticin-sensitive isolates of Y. pseudotuberculosis possess a common 34 kbp DNA region that has all the hallmarks of a pathogenicity island and is inserted into different asparaginyl tRNA genes at different chromosomal locations in each species. This pathogenicity island (YP-HPI) is marked by IS 100 , has a G + C content different from its host, is flanked by 24 bp direct repeats, encodes a putative, P4-like integrase and contains the iron uptake virulence genes from the pgm locus of Y. pestis . These findings indicate independent horizontal acquisition of this island by Y. pestis and Y. pseudotuberculosis . The two YP-HPI locations and their possession of an integrase gene support a model of site-specific integration of the YP-HPI into these bacteria.  相似文献   

14.
Pathogenicity islands (PAIs) have been identified in several bacterial species. A PAI called high-pathogenicity island (HPI) and carrying genes involved in iron acquisition (yersiniabactin system) has been previously identified in Yersinia enterocolitica and Yersinia pestis . In this study, the HPI of the third species of Yersinia pathogenic for humans, Y. pseudotuberculosis , has been characterized. We demonstrate that the HPI of strain IP32637 has a physical and genetic map identical to that of Y. pestis . A gene homologous to the bacteriophage P4 integrase gene is located downstream of the asn tRNA locus that borders the HPI of strain IP32637. This int gene is at the same position on the HPI of all three pathogenic Yersinia species. However, in contrast to Y. pestis 6/69, the HPI of Y. pseudotuberculosis IP32637 is not invariably adjacent to the pigmentation segment and can be inserted at a distance ≥ 190 kb from this segment. Also, in contrast to Y. pestis and Y. enterocolitica , the HPI of Y. pseudotuberculosis IP32637 can precisely excise from the chromosome, and, strikingly, it can be found inserted in any of the three asn tRNA loci present on the chromosome of this species, one of which is adjacent to the pigmentation segment. The pigmentation segment, which is present in Y. pestis but not in Y. enterocolitica , is also present and well conserved in all strains of Y. pseudotuberculosis studied. In contrast, the presence and size of the HPIs vary depending on the serotype of the strain: an entire HPI is found in strains of serotypes I only, a HPI with a 9 kb truncation in its left-hand part that carries the IS 100 sequence and the psn and ybtE genes characterizes the strains of serotype III, and no HPI is found in strains of serotypes II, IV and V.  相似文献   

15.
为观察环介导等温扩增(loop-mediated isothermal amplification,LAMP)技术能否适用于我国不同疫源地鼠疫耶尔森菌所有基因组型的检测,本研究建立了一种基于3a靶序列设计特异性引物快速检测鼠疫耶尔森菌的LAMP方法.选择分离自我国11个鼠疫自然疫源地的65株野生代表性鼠疫耶尔森菌株,同...  相似文献   

16.
Specific activities and electrophoretic mobilities of glucose-6-phosphate dehydrogenase and phosphogluconate dehydrogenase were determined in 38 isolates of the family Enterobacteriaceae and in 10 isolates of the related Pasteurella. The deficiency of glucose-6-phosphate dehydrogenase in P. pestis was verified. Enzymes obtained from different strains of the same species exhibited an unexpected degree of heterogeneity. For example, 8 and 11 apparent variants of glucose-6-phosphate dehydrogenase and phosphogluconate dehydrogenase, respectively, were found in 14 strains of Escherichia coli. Although similar frequencies of heterogeneity were noted in 7 strains of P. pseudotuberculosis, 5 species of Shigella, and 8 species of Salmonella, differences in mobility were generally small in comparison with those observed between strains of E. coli. Values obtained for the pasteurellae, shigellae, and salmonellae, thus fell within narrow ranges that may prove typical for the genera. However, most of these ranges, as well as many values observed for single species of other genera, were overlapped by the wide range recorded for E. coli. The significance of this observation was discussed with respect to the relative age and taxonomic position of the organisms in question. The method could be used to distinguish between most wild-type strains of the same species and should thus facilitate investigations of genetic transfer and epidemiology.  相似文献   

17.
Two children developed erythema nodosum due to Pasteurella pseudotuberculosis. Neither case showed typical signs of P. pseudotuberculosis infection, but this cause was shown by positive agglutination tests. It is suggested that this organism is a more common cause of erythema nodosum than is at present recognized.  相似文献   

18.
19.
Consequences of aspartase deficiency in Yersinia pestis.   总被引:2,自引:0,他引:2       下载免费PDF全文
Growing cells of Yersinia pseudotuberculosis, but not those of closely related Yersinia pestis, rapidly destroyed exogenous L-aspartic and L-glutamic acids, thus prompting a comparative study of dicarboxylic amino acid catabolism. Rates of amino acid metabolism by resting cells of both species were determined at pH 5.5, 7.0, and 8.5. Regardless of pH, Y. pseudotuberculosis destroyed L-glutamic acid, L-glutamine, L-aspartic acid, and L-asparagine at rates greater than those observed for Y. pestis. Although rates of proline degardation were similar, its metabolism by Y. pestis at pH 8.5 resulted in excretion of glutamic and aspartic acids. Similarly, Y. pestis excreted aspartic acid when incubated with L-glutamic acid (pH 8.5) or L-asparagine (pH 5.5, 7.0, and 8.5). Aspartase activity was not detected in extracts of 10 strains of Y. pestis but was present in all 11 isolates of Y. pseudotuberculosis. The latter contained significantly more glutaminase, asparaginase, and L-glutamate-oxalacetate transminase activity than did extracts of Y. pestis; specific activities of L-glutamate dehydrogenase and alpha-ketoglutarate dehydrogenase were similar. The observed differences in dicarboxylic amino acid metabolism are traceable to asparatase deficiency in Y. pestis and may account for the slow doubling time of this organism relative to Y. pseudotuberculosis.  相似文献   

20.
The authors present published data and their own findings on the relationship between Yersinia pestis and Y. pseudotuberculosis and on the origination of Y. pestis from Y. pseudotuberculosis. Study of microbiological and biochemical characteristics, external membrane protein spectra, and stability of chromosomal region of pigmentation brought the authors to a hypothesis that Y. pestis minor subspecies (ssp. caucasica, altaica, hissarica, ulegeica) which are characterized by selective virulence occupy an intermediate position between Y. pseudotuberculosis and basic species of Y. pestis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号