首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have identified a class of transformed NIH3T3 mouse fibroblasts that arise at low frequencies in transfection experiments with DNA from both neoplastic and non-neoplastic cells and that may result from a low level of spontaneous transformation of NIH3T3 cells. DNA from the transformed cells was unable to transform NIH3T3 cells in a second cycle of transfection and, where examined, the cells showed no evidence for the uptake of the transfected DNA sequences. The results of Southern analyses demonstrate that a mouse homologue of the human met oncogene is amplified 4- to 8-fold in 7 of 10 lines of these transformed NIH3T3 mouse fibroblasts. The cells containing the amplified gene also exhibit at least a 20-fold overexpression of an 8.5-kb mRNA that is homologous to met. To test the hypothesis that met encodes a growth factor receptor, we examined the binding of platelet-derived growth factor, epidermal growth factor, insulin-like growth factor I and gastrin-releasing peptide to transformed and non-transformed NIH3T3 cells. The results show that there is no significant elevation of the binding of these growth factors to cells containing amplification and overexpression of met.  相似文献   

2.
Immortalization-upregulated protein 1 (IMUP-1) and immortalization-upregulated protein 2 (IMUP-2) genes have been recently cloned and are known to be involved in SV40-mediated immortalization. IMUP-1 and IMUP-2 genes were strongly expressed in various cancer cell lines and tumors, suggesting the possibility that they might be involved in tumorigenicity. To directly elucidate the functional role of IMUP-1 and IMUP-2 on neoplastic transformation and tumorigenicity, we stably transfected IMUP-1 and IMUP-2 into NIH/3T3 mouse fibroblast cells. Cellular characteristics of the neoplastic transformation were assessed by transformation foci, growth in soft agar, and tumor development in nude mice. We found that IMUP-1 and IMUP-2 overexpressing cells showed altered growth properties, anchorage-independent growth in soft agar and inducing tumor in nude mice. Furthermore, IMUP-1 and IMUP-2 transformants proliferated in reduced serum and shortened cell cycle. These results suggest that ectopic overexpression of IMUP-1 and IMUP-2 may play an important role in acquiring a transformed phenotype, tumorigenicity in vivo, and be related to cellular proliferation.  相似文献   

3.
Objectives: Dental follicle cells (DFCs) provide the origin of periodontal tissues, and Runx2 is essential for bone formation and tooth development. In this study, pluripotency of DFCs was evaluated and effects of Runx2 on them were investigated. Materials and methods: The DFCs were induced to differentiate towards osteoblasts, adipocytes or chondrocytes, and alizarin red staining, oil red O staining or alcian blue staining was performed to reveal the differentiated states. Bone marrow stromal cells (BMSCs) and primary mouse fibroblasts served as controls. DFCs were also infected with recombinant retroviruses encoding either full‐length Runx2 or mutant Runx2 without the VWRPY motif. Western blot analysis, real‐time real time RT‐PCR and in vitro mineralization assay were performed to evaluate the effects of full‐length Runx2 or mutant Runx2 on osteogenic/cementogenic differentiation of the cells. Results: The above‐mentioned staining methods demonstrated that DFCs were successfully induced to differentiate towards osteoblasts, adipocytes or chondrocytes respectively, confirming the existence of pluripotent mesenchymal stem cells in dental follicle tissues. However, staining intensity in DFC cultures was weaker than in BMSC cultures. Real‐time PCR analysis indicated that mutant Runx2 induced a more pronounced increase in expression levels of OC, OPN, Col I and CP23 than full‐length Runx2. Mineralization assay also showed that mutant Runx2 increased mineralization nodule formation more prominently than full‐length Runx2. Conclusions: Multipotent DFCs can be induced to differentiate towards osteoblasts, adipocytes or chondrocytes in vitro. Runx2 over‐expression up‐regulated expression levels of osteoblast/cementoblast‐related genes and in vitro enhanced osteogenic differentiation of DFCs. In addition, mutant Runx2‐induced changes in DFCs were more prominent than those induced by full‐length Runx2.  相似文献   

4.
Activation of two previously silent mouse hepatic genes has been investigated in hybrid cells between pseudodiploid mouse lymphoblastoma cells and hyperdiploid or hypertetraploid rat hepatoma cells. In this material, activation of the mouse albumin gene is a frequent event, whereas activation of mouse alpha-fetoprotein (AFP) occurs only in those cells that produce large amounts of albumin. Quantitative tests of hybrid populations for the activated proteins and their mRNAs revealed the expected sizes and structures: moreover, as in hepatoma cells, the amount of both rat and mouse albumin produced was directly proportional to the intracellular concentration of the corresponding mRNA. The cellular environment required for activation of the liver-specific genes was investigated by cell-by-cell analysis of each hybrid clone. Immunostaining for the presence of rat and mouse albumin and mouse AFP revealed unexpected heterogeneity in the phenotypes of the hybrid populations, which were found to contain cells that: (a) failed to express either of the proteins; (b) produced all three; (c) produced both rat and mouse albumin; or (d) produced rat albumin only. Karyotypic analysis indicated that the hybrid-cell phenotype depended on parental chromosome ratios rather than absolute numbers of chromosomes. It was found for albumin and mouse AFP that the fraction of immunostained cells was equal to the fraction of metaphases that contained a minimal rat-to-mouse chromosome ratio of 2.5 and 9, respectively. It is concluded that in those hybrids, expression of liver-specific genes is regulated by extinguishers, but in a dose-dependent fashion, suggesting the intervention of antagonistic activators from the rat hepatoma chromosomes.  相似文献   

5.
The rare inherited form of Parkinson's disease (PD), PARK5 , is caused by a missense mutation in ubiquitin carboxy-terminal hydrolase-L1 ( UCH-L1 ) gene, resulting in Ile93Met substitution in its gene product (UCH-L1Ile93Met). PARK5 is inherited in an autosomal-dominant mode, but whether the Ile93Met mutation gives rise to a gain-of-toxic-function or loss-of-function of UCH-L1 protein remains controversial. Here, we investigated the selective vulnerabilities of dopaminergic (DA) neurons in UCH-L1-transgenic (Tg) and spontaneous UCH-L1-null gracile axonal dystrophy mice to an important PD-causing insult, abnormal accumulation of α-synuclein (αSyn). Immunohistochemistry of midbrain sections of a patient with sporadic PD showed αSyn- and UCH-L1-double-positive Lewy bodies in nigral DA neurons, suggesting physical and/or functional interaction between the two proteins in human PD brain. Recombinant adeno-associated viral vector-mediated over-expression of αSyn for 4 weeks significantly enhanced the loss of nigral DA cell bodies in UCH-L1Ile93Met-Tg mice, but had weak effects in age-matched UCH-L1wild-type-Tg mice and non-Tg littermates. In contrast, the extent of αSyn-induced DA cell loss in gracile axonal dystrophy mice was not significantly different from wild-type littermates at 13-weeks post-injection. Our results support the hypothesis that PARK5 is caused by a gain-of-toxic-function of UCH-L1Ile93Met mutant, and suggest that regulation of UCH-L1 in nigral DA cells could be a future target for treatment of PD.  相似文献   

6.
The HMG-CoA reductase inhibitor, lovastatin, blocks targeting of the Rho and Ras families of small GTPases to their active sites by inhibiting protein prenylation. Control NIH3T3 cells, and those overexpressing human cyclin E protein were treated with lovastatin for 24 h to determine the effects of cyclin E overexpression on lovastatin-induced growth arrest and cell rounding. Lovastatin treatment (10 microM) of control 3T3 cells resulted in growth arrest at G1 accompanied by actin stress fiber disassembly, cell rounding, and decreased active RhoA from the membranous protein fraction. By contrast, in NIH3T3 cells overexpressing cyclin E, lovastatin did not cause loss of RhoA from the membrane (active) protein fraction, actin stress fiber disassembly, cell rounding or growth arrest within 24 h. Analysis of cell cycle proteins showed that 24 h of lovastatin treatment in the control cells caused an elevation in the levels of the cyclin-dependent kinase inhibitor p27(kip1), inhibition of both cyclin E- and cyclin A-dependent kinase activity, and decreased levels of hyperphosphorylated retinoblastoma protein (pRb). By contrast, lovastatin treatment of the cyclin E overexpressors did not suppress either cyclin E- or cyclin A-dependent kinase activity, nor did it alter the level of maximally phosphorylated pRb, despite increased levels of p27(kip1). However, by 72 h, the cyclin E overexpressors rounded up but remained attached to the substratum, indicating a delayed response to lovastatin. In contrast with lovastatin, inactivation of membrane-bound Rho proteins (i.e., GTP-bound RhoA, RhoB, RhoC) with botulinum C3 transferase caused cell rounding and G1 growth arrest in both cell types but did not inhibit cyclin E-dependent histone kinase activity in the cyclin E overexpressors. In addition, 24 h of cycloheximide treatment caused depletion of RhoA from the membrane (active) fraction in neo cells, but in the cells overexpressing cyclin E, RhoA remained in the active (membrane-associated) fraction. Our observations suggest that (1) RhoA activation occurs downstream of cyclin E-dependent kinase activation, and (2) overexpression of cyclin E decreased the turnover rate of active RhoA.  相似文献   

7.
We determined the mRNA levels and the activities in nuclear and non-nuclear fractions of protein phosphatase type 1 (PP1) and type 2A (PP2A) through the cell cycle in synchronized mouse NIH3T3 fibroblasts. The mRNA level for PP1 alpha was gradually elevated in late G1 phase, began to decrease in M phase, and reached the control level with entering into the next G1 phase. The mRNA level for PP2A was rapidly increased in early G1 phase, kept at the high level, and decreased after S phase. In nuclear fractions of cells, spontaneous activities of both PP1 and PP2A were gradually increased until M phase and rapidly decreased with entering the next G1 phase, while in non-nuclear fraction such dramatic alterations were not observed. Potential activities of PP1 in both fractions revealed by Co(2+)-trypsin treatment showed an oscillaion patterns similar to those of the spontaneous activities. These results strongly suggest that cell cycle dependent gene expressions and activities of PP1 and PP2A play roles in DNA synthesis and mitosis during the cell cycle.  相似文献   

8.
While the normal human erbB-2 gene is potently transforming when overexpressed in NIH 3T3 cells, its rat homolog, the neu gene, seems to acquire transforming properties only upon alteration of its coding sequence. In this study, we compared the effects of different levels of expression of normal erbB-2 and neu in NIH 3T3 cells. Our results revealed that the normal rat neu gene acts as a potent oncogene when sufficiently overexpressed in NIH 3T3 cells.  相似文献   

9.

Background

Insulin receptor substrate (IRS)-1 is associated with tumorigenesis; its levels are elevated in several human cancers. IRS-1 protein binds to several oncogene proteins. Oxidative stress and reactive oxygen species (ROS) are involved in the initiation and progression of cancers. Cancer cells produce greater levels of ROS than normal cells do because of increased metabolic stresses. However, excessive production of ROS kills cancer cells. Autophagy usually serves as a survival mechanism in response to stress conditions, but excessive induction of autophagy results in cell death. In addition to inducing necrosis and apoptosis, ROS induces autophagic cell death. ROS inactivates IRS-1 mediated signaling and reduces intracellular IRS-1 concentrations. Thus, there is a complex relationship between IRS-1, ROS, autophagy, and cancer. It is not fully understood how cancer cells grow rapidly and survive in the presence of high ROS levels.

Methods and results

In this study, we established mouse NIH/3T3 cells that overexpressed IRS-1, so mimicking cancers with increased IRS-1 expression levels; we found that the IRS-1 overexpressing cells grow more rapidly than control cells do. Treatment of cells with glucose oxidase (GO) provided a continuous source of ROS; low dosages of GO promoted cell growth, while high doses induced cell death. Evidence for GO induced autophagy includes increased levels of isoform B-II microtubule-associated protein 1 light chain 3 (LC3), aggregation of green fluorescence protein-tagged LC3, and increased numbers of autophagic vacuoles in cells. Overexpression of IRS-1 resulted in inhibition of basal autophagy, and reduced oxidative stress-induced autophagy and cell death. ROS decreased the mammalian target of rapamycin (mTOR)/p70 ribosomal protein S6 kinase signaling, while overexpression of IRS-1 attenuated this inhibition. Knockdown of autophagy-related gene 5 inhibited basal autophagy and diminished oxidative stress-induced autophagy and cell death.

Conclusion

Our results suggest that overexpression of IRS-1 promotes cells growth, inhibits basal autophagy, reduces oxidative stress-induced autophagy, and diminishes oxidative stress-mediated autophagy-dependent cell death. ROS-mediated autophagy may occur via inhibition of IRS-1/phosphatidylinositol 3-kinase/mTOR signaling. Our data afford a plausible explanation for IRS-1 involvement in tumor initiation and progression.  相似文献   

10.
The ability of purinergic agonists to induce Ca2+ responses has been tested in two lines of murine fibroblasts: normal NIH 3T3 fibroblasts and NIH 115.14, a clone expressing high levels [1] of the c-ras protooncogene. Both kinds of cells are responsive to ATP in the range 1 microM-1 mM; ADP and ATP gamma S are almost as potent as ATP, while AMP is unable to elicit a response. Ca2+ measurements performed in single cells by image analysis show great variability among cells but in each individual responding cell the Ca2+ rise occurs in an all-or-none fashion. The transient Ca2+ response does not depend on influx from the extracellular medium. Electrophysiological experiments reveal the activation of an outward current (at -50 mV) by ATP, probably due to Ca(2+)-activated K+ channels, confirming the absence of a substantial Ca2+ influx. Finally, stimulation by ATP produces a small but significant increase in the production of inositol phosphates. These results indicate that these cell lines possess purinergic receptors which are not integral membrane channels and which are coupled to InsP3 formation and may be therefore classified as P2Y.  相似文献   

11.
12.
Bone tissue homeostasis relies upon the ability of cells to detect and interpret extracellular signals that direct changes in tissue architecture. This study utilized a four-point bending model to create both fluid shear and strain forces (loading) during the time-dependent progression of MC3T3-E1 preosteoblasts along the osteogenic lineage. Loading was shown to increase cell number, alkaline phosphatase (ALP) activity, collagen synthesis, and the mRNA expression levels of Runx2, osteocalcin (OC), osteopontin, and cyclo-oxygenase-2. However, mineralization in these cultures was inhibited, despite an increase in calcium accumulation, suggesting that loading may inhibit mineralization in order to increase matrix deposition. Loading also increased fibroblast growth factor receptor-3 (FGFR3) expression coincident with an inhibition of FGFR1, FGFR4, FGF1, and extracellular signal-related kinase (ERK)1/2 phosphorylation. To examine whether these loading-induced changes in cell phenotype and FGFR expression could be attributed to the inhibition of ERK1/2 phosphorylation, cells were grown for 25 days in the presence of the MEK1/2 inhibitor, U0126. Significant increases in the expression of FGFR3, ALP, and OC were observed, as well as the inhibition of FGFR1, FGFR4, and FGF1. However, U0126 also increased matrix mineralization, demonstrating that inhibition of ERK1/2 phosphorylation cannot fully account for the changes observed in response to loading. In conclusion, this study demonstrates that preosteoblasts are mechanoresponsive, and that long-term loading, whilst increasing proliferation and differentiation of preosteoblasts, inhibits matrix mineralization. In addition, the increase in FGFR3 expression suggests that it may have a role in osteoblast differentiation.  相似文献   

13.
SURF-6 is a bona fide nucleolar protein comprising an evolutionary conserved family that extends from human to yeast. The expression of the mammalian SURF-6 has been recently found to be regulated during the cell cycle. In order to determine the importance of SURF-6 in mammalian cells, we applied the Tet-On system to regulate conditionally, in response to tetracycline, the expression of an antisense RNA (asRNA) that targets Surf-6 mRNA in mouse NIH/3T3 cells. Induced Surf-6 asRNA caused an effective depletion of SURF-6 protein resulted in cell death and in an apparent arrest in the G1 phase of the cell cycle. These results provide for the first time evidence that expression of SURF-6 is essential for mammalian cell viability, and suggest that SURF-6 might participate in the progression of cell cycle.  相似文献   

14.
Protein kinase C (PKC) isoforms play distinct roles in cellular functions. We have previously shown that ionizing radiation activates PKC isoforms (alpha, delta, epsilon, and zeta), however, isoform-specific sensitivities to radiation and its exact mechanisms in radiation mediated signal transduction are not fully understood. In this study, we showed that overexpression of PKC isoforms (alpha, delta, epsilon, and zeta) increased radiation-induced cell death in NIH3T3 cells and PKC epsilon overexpression was predominantly responsible. In addition, PKC epsilon overexpression increased ERK1/2 activation without altering other MAP-kinases such as p38 MAPK or JNK. Co-transfection of dominant negative PKC epsilon (PKC epsilon -KR) blocked both PKC epsilon -mediated ERK1/2 activation and radiation-induced cell death, while catalytically active PKC epsilon construction augmented these phenomena. When the PKC epsilon overexpressed cells were pretreated with PD98059, MEK inhibitor, radiation-induced cell death was inhibited. Co-transfection of the cells with a mutant of ERK1 or -2 (ERK1-KR or ERK2-KR) also blocked these phenomena, and co-transfection with dominant negative Ras or Raf cDNA revealed that PKC epsilon -mediated ERK1/2 activation was Ras-Raf-dependent. In conclusion, PKC epsilon -mediated ERK1/2 activation was responsible for the radiation-induced cell death.  相似文献   

15.
NIH3T3 cells transfected with c-H-ras and/or c-myc genes were examined for differences in drug sensitivity. The two transfectants used were NIH3T3-nm-1 (nm-1), pT22-3-nm-2. They were transfected with c-myc, c-myc plus activated c-H-ras, respectively. The relative resistances (IC50 values of transfectants/those of NIH3T3 cells) to cisplatin, adriamycin, 4-hydroperoxycyclophosphamide, melphalan, and CPT-11 were 2.1, 1.6, 4.7, 4.9, 1.6, respectively for nm-1 and 1.6, 2.2, 3.3, 9.1 and 2.2, respectively for nm-2. These results strongly suggest that the expression of the c-myc gene plays a role for the acquisition of drug resistance. The c-myc gene is believed to provide us an important clue for determining the mechanism of drug resistance.  相似文献   

16.
Uptake of 14C-labelled chlorhexidine diacetate (14C-CHA) by wild-type and envelope mutant strains of Escherichia coli and Pseudomonas aeruginosa was very rapid. Maximum uptake was observed within a contact time of 20 s with no additional binding on increased contact, and was concentration-dependent. In contrast to this rapid binding of 14C-CHA, bactericidal studies revealed that the lethal activity of low concentrations of unlabelled CHA was slow, although higher concentrations had a rapid effect. Comparison of a wild-type strain with its envelope mutants indicated that there was little difference in 14C-CHA uptake, in minimal inhibitory concentrations or in bactericidal activity. Azolectin was found to be an effective neutralising agent of biguanide action, but in in vitro agar tests and in reducing or removing the amount of 14C-CHA taken up by the cells.  相似文献   

17.
To determine the relationship between cellular uptake of cadmium and content of metallothionein, we measured uptake of 109Cd in cells that differed in content of metallothionein (MT). MT cells were derived from NIH/3T3 cells by transfection with a plasmid containing the genome of bovine papilloma virus and the mouse metallothionein-I gene, driven by the promotor for the glucose-regulated protein of 78 kDa. Control cells were similarly transfected with bovine papilloma virus-based plasmids with the gene for metallothionein inverted and thus separated from the promoter (TM), or deleted, along with the promoter (BPA). The number of copies of bovine papilloma virus-based plasmids was similar in MT, TM, and BPA cells, approximately 100 per cell. MT cells were more than 10 times more resistant to the lethal effect of cadmium than were the control cells. Synthesis of metallothionein was 15-fold greater in the MT cells than in the TM or BPA cells. The uptake of 109Cd by the cells enriched in metallothionein was 4-fold less than by the control cells. These data suggest that an increased content of metallothionein may protect some cells from the toxic effects of cadmium, in part, by diminishing uptake of the metal.  相似文献   

18.
Park JW  Kim S  Bahk YY 《Proteomics》2006,6(8):2433-2443
To elucidate an understanding into H-Ras protein network, we have established various oncogene H-Ras-expressing NIH/3T3 mouse embryonic fibroblast cell clones, which are expressing G12V H-Ras, G12R H-Ras, and G12V/T35S H-Ras proteins under the tight control of expression by an antibiotic doxycycline. Here we provide a catalog of proteome profiles in total cell lysate derived from the oncogenic and partial loss of function H-Ras-expressing NIH/3T3 cells. In this biological context, we compared total proteome changes by the combined methods of 2-DE, quantitative image analysis and MALDI-TOF-MS analysis both commonly in oncogenic and partial loss of function H-Ras expression system. Thus, we tried to dissect H-Ras signaling pathway, especially a downstream effector molecule, Raf in NIH/3T3 cells using proteomics tools. In this study, we centralized upon the proteome profile changes as common targets for oncogenic H-Ras and a partial loss of function H-Ras in the H-Ras-expressing cells. Thirteen protein spots were selected as what the staining intensities on the gels for 2-DE images from both kinds of cells were consistently changed in their protein expression level. Differentially regulated expression was further confirmed for some subsets of candidates by semiquantitative RT-PCR and Western blot analysis using specific antibodies. Taken together, our results obtained and present here show that the comparative analysis of proteome from oncogenic and partial loss of function H-Ras-expressing cells has yielded interpretable data to elucidate the protein network directly and/or indirectly.  相似文献   

19.
Abstract: Age-related changes in the expression of Na,K-ATPase α1- and α3-isoform mRNAs were analyzed by in situ hybridization in the Fischer-344 rat hippocampus. Quantification of signal density with cRNA probes in rat hippocampus at 3 months of age showed (a) α1 content is 1.5 times higher in granule than in pyramidal cell layers, whereas α3 content shows the opposite ratio and (b) α3 label is found in large clusters related to mossy cells and basket cells and in medium clusters corresponding to interneurons within the dendritic fields of CA1–3. In the 24-month-old rats as compared with the young animals, the α1 signal is increased more than sevenfold in the dendritic fields and is not significantly changed in perikaryal layers. The α3 signal is reduced about threefold ( p < 0.0001, ANOVA, n = 6) in perikaryal layers, is almost completely absent over the interneurons, basket cells, and mossy cells, and is not significantly changed in dendritic fields. These data indicate age-related, cell- and isoform-specific alterations in pretranslational regulation of Na,K-ATPase α isoforms. The striking changes in the dendritic fields, mossy cells, and GABAergic basket cells and interneurons may constitute early and sensitive markers for age-related alterations in hippocampal function, before cell loss.  相似文献   

20.
The role of ras oncogenes in cellular signalling pathways involving phospholipid breakdown was studied in untransfected and proto-H-ras and mutated H-, K- and N-ras transfected NIH/3T3 cells. When the cells were grown at low cell densities, all of the ras transfected cells had 2-4 fold higher diacylglycerol (DAG) levels compared to growing NIH/3T3 cells. At high cell densities, DAG levels decreased in the former and increased in contact inhibited NIH/3T3 cells. In this regard, only cells transformed by mutated cellular and viral H-ras oncogenes (but not by the H-ras proto-oncogene) had elevated DAG levels compared to contact inhibited NIH/3T3 cells. The basal levels of inositol phosphates in ras transfected cells were not significantly different from NIH/3T3 cells and did not vary with cell density. Thus, the elevated DAG levels are not a consequence of increased phosphoinositide hydrolysis. The latter was stimulated by serum and bombesin only in normal and proto-H-ras transfected cells. In contrast, stimulation by bradykinin was observed only in cells transformed by mutated cellular ras oncogenes. Furthermore, aluminum fluoride stimulated phosphoinositide breakdown in the latter cells indicating that there was no uncoupling of the G protein from phospholipase C. Treatment of ras transfected cells with dibutyryl cyclic AMP (DB-cAMP), which causes an inhibition of growth and a reversal of the transformed morphology, did not alter the basal levels of inositol phosphates, DB-cAMP, however, did lower DAG levels in some of the transformed cell lines, but elevated DAG levels in low density NIH/3T3 cells. These findings indicate that the ras gene product p21 is not involved in phosphoinositide hydrolysis and that DAG levels do not correlate with cell growth in either normal or ras transfected NIH/3T3 cells. Thus, p21 appears to alter cell growth through mechanism(s) independent of lipid signalling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号