首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S-Allylcysteine (SAC), the most abundant organosulfur compound in aged garlic extract, has multifunctional activity via different mechanisms and neuroprotective effects that are exerted probably via its antioxidant or free radical scavenger action. The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mouse has been the most widely used model for assessing neuroprotective agents for Parkinson's disease. 1-Methyl-4-phenylpyridinium (MPP+) is the stable metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, and it causes nigrostriatal dopaminergic neurotoxicity. Previous studies suggest that oxidative stress, via free radical production, is involved in MPP+-induced neurotoxicity. Here, we report on the neuroprotective effect of SAC against oxidative stress induced by MPP+ in the striatum of C57BL/6J mice. Mice were pretreated with SAC (125 mg/kg ip) daily for 17 days, followed by administration of MPP+ (0.72 mg/kg icv), and were sacrificed 24 h later to evaluate lipid peroxidation, different antioxidant enzyme activities, spontaneous locomotor activity and dopamine (DA) content. MPP+ administration resulted in a significant decrease in DA levels in the striatum. Mice receiving SAC (125 mg/kg ip) had significantly attenuated MPP+-induced loss of striatal DA levels (32%). The neuroprotective effect of SAC against MPP+ neurotoxicity was associated with blocked (100% of protection) of lipid peroxidation and reduction of superoxide radical production — indicated by an up-regulation of Cu-Zn-superoxide dismutase activity — both of which are indices of oxidative stress. Behavioral analyses showed that SAC improved MPP+-induced impairment of locomotion (35%). These findings suggest that in mice, SAC attenuates MPP+-induced neurotoxicity in the striatum and that an antioxidant effect against oxidative stress may be partly responsible for its observed neuroprotective effects.  相似文献   

2.
Altered glial function in the substantia nigra in Parkinson's disease may lead to the release of toxic substances that cause dopaminergic cell death or increase neuronal vulnerability to neurotoxins. To investigate this concept, we examined the effects of subjecting astrocytes to lipopolysaccharide (LPS)-induced activation alone or combined with L-buthionine-[S,R]-sulfoximine-induced glutathione depletion or inhibition of complex I activity by 1-methyl-4-phenylpyridinium (MPP+) on the viability of primary ventral mesencephalic neurones or susceptibility to MPP+ and 6-hydroxydopamine (6-OHDA) in co-cultures. LPS-activated astrocytes caused neuronal death in a time-dependent manner, but glutathione-depleted or complex I-inhibited astrocytes had no effect on neuronal viability. The neurotoxicity of LPS-activated astrocytes was inhibited by the inducible nitric oxide synthase inhibitor aminoguanidine, by the nitric oxide scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, and by reduced glutathione (GSH). MPP+-induced neuronal death was greater in ventral mesencephalic cultures previously cultured with LPS-activated, glutathione-depleted, or complex I-inhibited astrocytes compared with co-cultures containing normal astrocytes. The increased neuronal susceptibility to MPP+ caused by LPS-activated or complex I-inhibited astrocytes and glutathione-depleted astrocytes was inhibited by the NMDA/glutamate antagonist MK-801 and by GSH, respectively. Neuronal death caused by 6-OHDA was increased in ventral mesencephalic cultures previously cultured with LPS-activated and glutathione-depleted, but not complex I-inhibited astrocytes, compared with co-cultures containing normal astrocytes. Treatment of co-cultures with GSH prevented the increased neuronal susceptibility to 6-OHDA. These findings suggest that glial dysfunction may cause neuronal death or render neurones susceptible to toxic insults via a mechanism involving the release of free radicals and glutamate. Such a mechanism may play a role in the development or progression of nigrostriatal degeneration in Parkinson's disease.  相似文献   

3.
Cultures of dissociated embryonic rat mesencephalic cells were exposed to 10 microM 1-methyl-4-phenylpyridinium (MPP+), a concentration shown earlier to result in loss of greater than 85% of tyrosine hydroxylase (TH)-positive neurons without affecting the total number of cells observed by phase-contrast microscopy. To characterize better the selectivity of the toxic action of MPP+, other parameters were measured reflecting survival and function of dopaminergic or nondopaminergic neurons. Exposure of cultures to 10 microM MPP+ for 48 h reduced TH activity to 11% of control values without reducing protein levels. [3H]Dopamine uptake was reduced to less than 4% of control values, whereas the uptake of gamma-[3H]aminobutyric acid ([3H]GABA) was not affected in these cultures. This same treatment failed to reduce the number of cholinergic cells visualized in septal cultures and did not affect either choline acetyltransferase activity or high-affinity choline uptake. To assess for possible recovery of dopaminergic neurons, cultures were exposed to 10, 1.0, or 0.1 microM MPP+ for 48 h and then kept for up to 6 days in MPP(+)-free medium. After exposure to 10 microM MPP+, the number of TH-positive neurons, their neurite density, TH activity, and [3H]dopamine uptake remained at constant, reduced levels throughout the period of observation after termination of exposure, whereas GABA uptake remained normal. Treatment with lower concentrations of MPP+, i.e., 1.0 and 0.1 microM, induced less pronounced dopaminergic toxic effects. However, no recovery was seen after posttreatment incubation in toxin-free medium. These findings provide evidence that MPP+ treatment results in highly selective and irreversible toxicity for cultured dopaminergic neurons.  相似文献   

4.
Abstract: The effects of 1-methyl-4-phenylpyridinium (MPP+) on the oxygen consumption, ATP production, H2O2 production, and mitochondrial NADH-CoQ1 reductase (complex I) activity of isolated rat brain mitochondria were investigated. Using glutamate and malate as substrates, concentrations of 10–100 µ M MPP+ had no effect on state 4 (−ADP) respiration but decreased state 3 (+ADP) respiration and ATP production. Incubating mitochondria with ADP for 30 min after loading with varying concentrations of MPP+ produced a concentration-dependent decrease in H2O2 production. Incubation of mitochondria with ADP for 60 min after loading with 100 µ M MPP+ caused no loss of complex I activity after washing of MPP+ from the mitochondrial membranes. These data are consistent with MPP+ initially binding specifically to complex I and inhibiting both the flow of reducing equivalents and the production of H2O2 by the mitochondrial respiratory chain, without irreversibly damaging complex I. However, mitochondria incubated with H2O2 in the presence of Cu2+ ions showed decreased complex I activity. This study provides additional evidence that cellular damage initiated by MPP+ is due primarily to energy depletion caused by specific binding to complex I, any increased damage due to free radical production by mitochondria being a secondary effect.  相似文献   

5.
Abstract: The mode of cell death in Parkinson's disease (PD) substantia nigra is uncertain. However, evidence is accumulating that certain of the biochemical abnormalities present in PD nigra at the time of death may precipitate apoptosis. We have investigated the mode of death induced by complex I inhibition of dopaminergic cell cultures, and our results suggest that both 1-methyl-4-phenylpyridinium and rotenone cause apoptosis at low concentrations and necrosis at high concentrations. This dose-dependent shift in the mode of cell death induced by these mitochondrial toxins may have important implications for the mechanism of neuronal cell death in PD.  相似文献   

6.
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a contaminant found in a synthetic illicit drug, can elicit in humans and monkeys a severe extrapyramidal syndrome similar to Parkinson's disease. It also induces alterations of the dopamine (DA) pathways in rodents. MPTP neurotoxicity requires its enzymatic transformation into 1-methyl-4-phenylpyridinium (MPP+) by monoamine oxidase followed by its concentration into target cells, the DA neurons. Here, we show that mesencephalic glial cells from the mouse embryo can take up MPTP in vitro, transform it into MPP+, and release it into the culture medium. MPTP is not taken up by neurons from either the mesencephalon or the striatum in vitro (8 days in serum-free conditions). However, mesencephalic neurons in culture revealed a high-affinity uptake mechanism for the metabolite MPP+, similar to that for DA. The affinity (Km) for DA uptake is fivefold higher than that for MPP+ (0.2 and 1.1 microM, respectively), whereas the number of uptake sites for MPP+ is double (Vmax = 25 and 55 pmol/mg of protein/min for DA and MPP+, respectively). Mazindol, a DA uptake inhibitor, blocks the uptake of DA and MPP+ equally well under these conditions. Moreover, by competition experiments, the two molecules appear to use the same carrier(s) to enter DA neurons. Small concentrations of MPP+ are also taken up by striatal neurons in vitro. The amount taken up represented less than 10% of the MPP+ uptake in mesencephalic neurons. Depolarization induced by veratridine released comparable proportions of labeled DA and MPP+ from mesencephalic cultures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Cynomolgus monkeys received intracarotid injections of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to produce a chronic unilateral model of parkinsonism. Extensive dopamine (DA) depletion was observed in the caudate nucleus and putamen on the side ipsilateral to the injection and this was associated with contralateral tremor, rigidity, and bradykinesia. A dose of 1.25 mg of MPTP caused ipsilateral DA loss of 99.4% in the caudate nucleus, 99.8% in the putamen, and 74.2% in the nucleus accumbens. A dose of 2.5 mg caused ipsilateral DA depletion of 99.3% in the caudate nucleus, 99.5% in putamen, and 90.1% in the nucleus accumbens. The unilateral aspect of the lesion was dose sensitive, with the 2.5-mg dose causing bilateral asymmetric DA depletion. Tissue concentrations of serotonin were not affected by the toxin. These findings confirm that intracarotid injection of MPTP may produce a useful primate model of hemiparkinsonism that can be associated with selective unilateral DA depletion when the appropriate dose of toxin is used.  相似文献   

8.
Abstract: The neurotoxin N -methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) causes, via its metabolite 1-methyl-4-phenylpyridinium (MPP+), parkinsonism in humans, monkeys, and mice but not in rats. When incubated with mouse brain homogenates, [3H]-MPP+ is recovered in relatively large concentrations in the brain cell nucleus. Although isolated cell nuclei from rat and mouse brain contain uptake systems for dopamine (DA), only brain cell nuclei from mice avidly take up [3H]MPP+. This nuclear uptake is ATP dependent and can be blocked by ouabain and Nethylmaleimide. It is not, however, affected by neuronal and vesicular blockers such as benztropine. mazindol, and reserpine. Selective uptake of MPP+ into brain cell nuclei may provide a new avenue for future investigation into the complex modes of action of the neurotoxin MPTP.  相似文献   

9.
Glutamate receptors belonging to the subclass specifically activated by alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) were solubilized from rat forebrain membranes with Triton X-100 and partially purified through a series of three chromatographic steps. Specific [3H]AMPA binding increased 30-60-fold during the isolation procedure. A protein band recognized by antibodies against specific amino acid sequences of the glutamate receptor-A subunit was enriched with each purification step; the molecular mass of this band (105 kDa) corresponded to that of cloned AMPA receptor subunits. Photoaffinity labeling of forebrain membranes with 6-cyano-7-[3H]nitroquinoxaline-2,3-dione, a specific antagonist of the AMPA receptor, labeled a single band that comigrated with the immunolabeled protein. On reconstitution of the partially purified material into bilayer patches, single-channel current fluctuations were elicited by 300 nM AMPA and blocked by 1 microM 6,7-dinitroquinoxaline-2,3-dione.  相似文献   

10.
Dopaminergic neurons in cultures of dissociated cells from fetal rat mesencephalon were exposed to the principal metabolite of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 1-methyl-4-phenyl-pyridinium ion (MPP+), and several of its structural analogues. At concentrations between 0.01 and 0.1 microM, MPP+ inhibited catecholamine accumulation as visualized by cytofluorescence. Between 0.1 and 10.0 microM, MPP+ resulted in disappearance of tyrosine hydroxylase immunoreactivity without affecting other cells in the cultures. At concentrations higher than 10 microM, MPP+ was toxic to all cells present in the cultures. The effect of low concentrations of MPP+ on catecholamine cytofluorescence of the dopaminergic neurons was partially reversible. The intermediate concentrations produced irreversible structural changes of tyrosine hydroxylase-positive cells, resulting in complete disappearance of these neurons. The morphological changes were specific to the dopaminergic neurons and were not evident in other cells viewed with phase contrast microscopy. Of the structural analogues tested, the 1-ethyl analogue of MPP+ was effective in selectively destroying dopaminergic neurons in our culture system. The antioxidants L-acetyl-carnitine, beta-carotene, and alpha-tocopherol failed to protect against MPP+ neurotoxicity when co-incubated with the toxin.  相似文献   

11.
Abstract: 1-Methyl-4-phenylpyridinium (MPP+), the toxic agent in MPTP-induced dopaminergic neurotoxicity, is thought to act by inhibiting mitochondrial electron transport at complex I. This study examined this latter action further with a series of 4′-alkylated analogues of MPP+. These derivatives had IC50 values that ranged from 0.5 to 110 µM and from 1.6 to 3,300 µM in mitochondria and electron transport particles (ETPs), respectively. The IC50 values of corresponding 4′-alkylated phenylpyridine derivatives to inhibit NADH-linked oxidation ranged from 10 to 205 µM in mitochondria and from 1.7 to 142 µM in ETPs. The potencies of both classes of inhibitors directly correlated with their ability to partition between 1-octanol and water. In mitochondria, increased hydrophobicity resulted in greater inhibition of NADH dehydrogenase but a smaller dependence on the transmembrane electrochemical gradient for accumulation of the pyridiniums as evidenced by an ~600-fold, versus only a 36-fold, increase in the IC50 of MPP+ versus 4′-pentyl-MPP+, respectively, in the presence of uncoupler. In ETPs, the analogous increase in potencies of the more hydrophobic analogues was also consistent with an inhibitory mechanism that relied on differential partitioning into the lipid environment surrounding NADH dehydrogenase. However, the pyridinium charge must play a major role in explaining the inhibitory mechanism of the pyridiniums because their potencies are much greater than would be predicted based solely on hydrophobicity. For example, in ETPs, 4′-decyl-MPP+ was nearly 80-fold more potent than phenylpyridine although the latter compound partitions twice as much into 1-octanol. In addition, the lipophilic anion TPB? was a more effective potentiator of inhibition by pyridiniums possessing greater hydrophilicity (0–5 carbons), consistent with facilitation of accumulation of these analogues within the membrane phase of complex I, probably via ion pairing. These studies delineate further the mechanisms by which this class of compounds is able to accumulate in mitochondria, inhibit complex I activity, and thereby, effect neurotoxicity.  相似文献   

12.
The Role of Glutathione in Dopaminergic Neuronal Survival   总被引:4,自引:4,他引:0  
Abstract: An increased production of reactive oxygen species is thought to be critical to the pathogenesis of Parkinson's disease. At autopsy, patients with either presymptomatic or symptomatic Parkinson's disease have a decreased level of glutathione in the substantia nigra pars compacta. This change represents the earliest index of oxidative stress in Parkinson's disease discovered to this point. This study compares the sensitivity of dopaminergic and nondopaminergic neurons in dissociated mesencephalic cultures to the depletion of glutathione. We have found that dopaminergic neurons are more resistant to the toxicity of glutathione depletion than nondopaminergic neurons. The possibility that dopaminergic neurons have a higher baseline glutathione level than nondopaminergic neurons is suggested by measurements of levels of cellular glutathione in a parallel system of immortalized embryonic dopaminergic and nondopaminergic cell lines. We also examined the role of glutathione in 1-methyl-4-phenylpyridinium toxicity. Decreasing the glutathione level of dopaminergic neurons potentiates their susceptibility to 1-methyl-4-phenylpyridinium toxicity, although 1-methyl-4-phenylpyridinium does not deplete glutathione from primary mesencephalic cultures. Our data suggest that although a decreased glutathione content is not likely to be the sole cause of dopaminergic neuronal loss in Parkinson's disease, decreased glutathione content may act in conjunction with other factors such as 1-methyl-4-phenylpyridinium to cause the selective death of dopaminergic neurons.  相似文献   

13.
Abstract: The ionic species 1-methyl-4-phenylpyridinium (MPP+) seems to be the metabolite responsible for the damage to dopaminergic neurons occurring after administration of the parkinsonian drug 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. In the present study we show that the unilateral stereotaxic microinjection of MPP+ into the substantia nigra pars reticulata in rats produces immediately intense and long-lasting (up to 96 h) contralateral turning behavior in a dose-dependent manner. This behavioral effect was correlated with a dose- and time-dependent decrease (up to 90%) of glutamate decarboxylase activity and with a notable loss of neurons in the injected nigra reticulata. GABA levels in the injected nigra were also decreased, whereas the dopamine concentration in the ipsilateral striatum was not affected at 24 h, when maximal behavioral effects were observed. The circling behavior was prevented by the dopamine carrier blocker nomifensine only during the first 2 h, whereas the dopamine receptor antagonist haloperidol was ineffective. The results indicate that MPP+ is toxic for inhibitory GABAergic neurons in the nigra pars reticulata and, furthermore, suggest that disruption of the function of these GABAergic neurons may be involved in the abnormal motor behavior produced by the injection of MPP+ in the substantia nigra.  相似文献   

14.
Abstract: Microdialysis was used in a comparative study of the neurotoxic action of MPP+ in the absence or presence of nomifensine (20 µM) in the striatum and substantia nigra. Three different concentrations of MPP+ (1, 2.5, and 5 mM) were perfused for 15 min at 24 (day 1) and 48 h (day 2) after surgery. The dopamine basal value in the striatum was ~17 fmol/min. Nomifensine (20 µM) stimulated dopamine release to ~170 fmol/min. The increase of dopamine extracellular output in the striatum after MPP+ perfusion on day 1 was independent of the concentration of MPP+ perfused and of the absence or presence of nomifensine (20 µM), being ~2,500 fmol/min. The dopamine basal value in the substantia nigra was below the detection limit of our HPLC equipment. Nomifensine (20 µM) stimulated dopamine release to ~6.3 fmol/min. The increase of dopamine extracellular output in the substantia nigra was MPP+ dose-dependent (1 mM, 75 fmol/min; 2.5 mM, 150 fmol/min; and 5 mM, 250 fmol/min) and independent of the presence or absence of nomifensine. On day 2, the presence of nomifensine on day 1 produced a total protection against MPP+ (1 mM) perfusion in the striatum, which was not observed against MPP+ (5 mM). MPP+ (1 mM) did not produce any neurotoxic action in the substantia in the absence or presence of nomifensine. The MPP+ (2.5 mM) effect on dopamine extracellular output in the absence of nomifensine (20 µM) in the substantia nigra on day 2 was similar to that of MPP+ (1 mM) in the striatum. The presence of nomifensine (20 µM) partially prevented the neurotoxic effect of MPP+ (2.5 mM) on dopaminergic cell bodies/dendrites in the substantia nigra. The MPP+ (5 mM) effect on dopamine extracellular output was similar in both structures studied in the absence or presence of nomifensine on day 2. These results suggest that terminals in the striatum are more sensitive to the neurotoxicity of MPP+ than cell bodies/dendrites in the substantia nigra.  相似文献   

15.
Abstract: Microdialysis was used to evaluate the effect of desferrioxamine (DES) against 1-methyl-4-phenylpyridinium (MPP+) toxicity. The presence of DES (40 fmol-40 nmol/15 min for a total of 90 min) in the Ringer solution, coperfused with MPP+ (40 nmol/15 min) on day 1, produced on day 2 a higher extracellular dopamine output after perfusion of MPP+ than in control MPP+ perfusion experiments, in which no DES was administered on day 1. Both Ringer perfusion alone (control Ringer) and coperfusion of 40 nmol DES with 40 nmol MPP+ on day 1 produced on day 2 similar increases in extracellular dopamine output after a second MPP+ perfusion. In the control Ringer experiment, note that the MPP+ on day 2 is the first MPP+ perfusion. Perfusion of 800 fmol FeCl3/15 min along with 40 nmol MPP+ and 400 fmol DES on day 1 completely abolished on day 2 the neuroprotective effect found with 40 nmol MPP+ and 400 fmol DES; 800 fmol FeCl3 did not increase the neurotoxic effect of 40 nmol MPP+ perfusion. The ability of DES to protect against MPP+ toxicity may indicate a therapeutic strategy in the treatment of diseases when iron is implicated.  相似文献   

16.
17.
Defective complex I activity has been linked to Parkinson's disease and Huntington's disease, but little is known of the regional distribution of this enzyme in the brain. We have developed a quantitative autoradiographic assay using [3H]dihydrorotenone ([3H]DHR) to label and localize complex I in brain tissue sections. Binding was specific and saturable and in the cerebellar molecular layer had a KD of 11.5 +/- 1.3 nM and a Bmax of 11.0 +/- 0.4 nCi/mg of tissue. Unlabeled rotenone and 1-methyl-4-phenylpyridinium ion competed effectively for DHR binding sites. Binding was markedly enhanced by 100 microM NADH. The distribution of complex I in brain, as revealed by DHR autoradiography, is unique but somewhat similar to that of cytochrome oxidase (complex IV). This assay may provide new insight into the roles of complex I in brain function and neurodegeneration.  相似文献   

18.
Abstract: Subcutaneous injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) HC1 (25 mg/kg) in pregnant female mice at the 17th day of gestation markedly depleted striatal dopamine (DA) concentrations in the mothers 24 h later and at 24 h and 28 days after delivery. By contrast, in the offspring of the female mice exposed to MPTP during pregnancy, fetal brain DA concentrations at 24 h after injection and at 24 h after birth and striatal DA levels at 14 and 28 days postnatally were unaffected and identical to those in age-matched controls. The postnatal ontogenesis of striatal DA levels was identical in offspring of control vehicle- and MPTP-treated pregnant mice. Also, prenatal challenge with MPTP did not make nigrostriatal DA neurons more vulnerable to a second postnatal treatment with the toxin. Striatal DA depletions were identical in 6-week-old mice given MPTP, whether they were exposed to MPTP or to vehicle in utero. Monoamine oxidase (EC 1.4.3.4; MAO) type B activity was extremely low in the fetal brain and, relatively, much lower than that of MAO-A. Prenatal MPTP administration reduced maternal striatal and also embryonal brain MAO-B activity at 24 h post treatment but did not alter the normal postnatal development of striatal MAO-A and -B activities in the offspring. Study suggests that resistance of fetal DA neurons to the DA-depleting effect of MPTP may be due, at least in part, to an absence in the embryonal brain of adequately developed MAO-B activity required for the conversion of MPTP to its toxic metabolite, 1-methyl-4-phenylpyridinium ion.  相似文献   

19.
In this investigation, microdialysis has been used to study the effects of 1-methyl-4-phenylpyridinium (MPP+), an inhibitor of mitochondrial complex I and alpha-ketoglutarate dehydrogenase and the active metabolite of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), on extracellular concentrations of glutathione (GSH) and cysteine (CySH) in the rat striatum and substantia nigra (SN). During perfusion of a neurotoxic concentration of MPP+ (2.5 mM) into the rat striatum or SN, extracellular concentrations of GSH and CySH remain at basal levels (both approximately 2 microM). However, when the perfusion is discontinued, a massive but transient release of GSH occurs, peaking at 5,000% of basal levels in the striatum and 2,000% of basal levels in the SN. The release of GSH is followed by a slightly delayed and smaller elevation of extracellular concentrations of CySH that can be blocked by the gamma-glutamyl transpeptidase (gamma-GT) inhibitor acivicin. Low-molecular-weight iron and extracellular hydroxyl radical (OH*) have been implicated as participants in the mechanism underlying the dopaminergic neurotoxicity of MPTP/MPP+. During perfusion of Fe2+ (OH*) into the rat striatum and SN, extracellular levels of GSH also remain at basal levels. When perfusions of Fe2+ are discontinued, a massive transient release of GSH occurs followed by a delayed, small, but progressive elevation of extracellular CySH level that again can be blocked by acivicin. Previous investigators have noted that extracellular concentrations of the excitatory/excitotoxic amino acid glutamate increase dramatically when perfusions of neurotoxic concentrations of MPP+ are discontinued. This observation and the fact that MPTP/MPP+ causes the loss of nigrostriatal GSH without corresponding increases of glutathione disulfide (GSSG) and the results of the present investigation suggest that the release and gamma-GT/dipeptidase-mediated hydrolysis of GSH to glutamate, glycine, and CySH may be important factors involved with the degeneration of dopamine neurons. It is interesting that a very early event in the pathogenesis of Parkinson's disease is a massive loss of GSH in the SN pars compacta that is not accompanied by corresponding increases of GSSG levels. Based on the results of this and prior investigations, a new hypothesis is proposed that might contribute to an understanding of the mechanisms that underlie the degeneration of dopamine neurons evoked by MPTP/MPP+, other agents that impair neuronal energy metabolism, and Parkinson's disease.  相似文献   

20.
Protein bound and free 3-nitrotyrosine (3NT) levels are elevated in neurodegenerative diseases and have been used as evidence for peroxynitrite generation. Intrastriatal injection of free 3NT causes dopaminergic neuron injury and represents a new mouse model of Parkinson's disease (PD). We are investigating the nature of free 3NT neurotoxicity. In primary ventral midbrain cultures, free 3NT damaged dopaminergic neurons, while adjacent non-dopaminergic neurons were unaffected. Combined treatment with free 3NT and subtoxic amounts of dopamine caused extensive death of non-dopaminergic forebrain neurons in culture. Free 3NT alone directly inhibited mitochondrial complex I, decreased ATP, sensitized neurons to mitochondrial depolarization, and increased superoxide production. Subtoxic concentrations of rotenone (instead of free 3NT) caused similar results. Additionally, free 3NT and dopamine combined increased extraneuronal hydrogen peroxide and decreased intraneuronal glutathione levels more than dopamine alone. Oxidative and bioenergetic processes have been proposed to contribute to neurodegeneration in PD. As free 3NT is a compound that is increased in PD, damages dopamine neurons in vivo and in vitro and has detrimental effects on neuronal bioenergetics, it is possible that free 3NT is an endogenous contributing factor to neuronal loss, in addition to being a marker of oxidative and nitrative processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号