首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P Mestres  M Diener  W Rummel 《Acta anatomica》1992,143(4):268-274
The mucosal plexus of the rat colon descendens is constituted of a network of nerves that, in contrast to most other segments of the digestive tract, contains also ganglia. The ganglia, consisting of neurons and glial cells, are located in the basal part of the lamina propria at distances between 100 and 1,200 microns. They are not vascularized. The neurons in these ganglia were characterized by means of: (1) the histochemical demonstration of acetylcholinesterase (AChE) activity, (2) the immunocytochemical identification of neurofilament proteins (NFP; 200 kD) and (3) their ultrastructure. The glial cells, which were AChE negative, could be distinguished from the neurons by differences in size and chromatin pattern. All neurons of the mucosal plexus reveal AChE activity in the perikaryon, but only parts of the axons are AChE positive. NFP-like immunoreactivity was detected in the perikarya but only in a minor part of the axons. These findings confirm previous light-microscopical observations and add new evidence for the existence of neurons (ganglia) in the mucosal plexus of the rat colon.  相似文献   

2.
3.
The myenteric plexus of the domestic fowl (Gallus domesticus) small intestine was studied by means of silver staining, glyoxylic acid-induced fluorescence, the modified Koelle-Friedenwald method for the detection of acetylcholinesterase, NADH-diaphorase techniques and the unlabelled antibody method involving the use of an antiserum raised against GABA conjugated by glutaraldehyde to bovine serum albumin. The majority of the perikarya were in the ganglia, with an average density of 3370 +/- 942 nerve cells/cm2. Cholinesterase-positive and a few GABA-immunoreactive nerve cell bodies were seen in the myenteric ganglia, while fluorescent ganglion cells were not observed. In addition to AChE and GABA-positive nerve fibres, a rich fluorescent network of varicose and nonvaricose nerve fibres was detected, pointing to the presence of an extrinsic aminergic system in the domestic fowl myenteric plexus. Electron microscopic observations on nerve cells, axon profiles and varicosites with various vesicle populations were in good agreement with the histochemical findings.  相似文献   

4.
Y Ito  S Sohma  H Hirano 《Histochemistry》1984,81(3):209-212
The distal portions of rat colon from 14-, 16-, 18-, and 21-day fetuses, newborns, and adults were histochemically examined for acetylcholinesterase (AChE) activity by light and electron microscopy. The specificity of AChE activity in Auerbach's plexus was confirmed by specific and/or nonspecific cholinesterase inhibition tests. Enzyme activity was first detectable after 18 days of gestation and became stronger with age. The reaction product was demonstrated by electron microscopy in and between the plasma membranes of the nerve fibers and their terminals. Ganglion cells also showed positive activity in the plasma membrane, nuclear envelope, and rough endoplasmic reticulum. The distribution pattern of the reaction product in fetal and newborn rat colons was basically the same as in adult rat colon. Therefore, the localization of AChE activity is considered to be a good marker for identifying premature ganglion cells in Auerbach's plexus, and the degree of AChE staining is a good indication of the degree of maturation of the plexus.  相似文献   

5.
Summary The distribution of nerve cells with immunoreactivity for the calcium-binding protein, calbindin, has been studied in the small intestine of the guinea-pig, and the projections of these neurons have been analysed by tracing their processes and by examining the consequences of nerve lesions. The immunoreactive neurons were numerous in the myenteric ganglia; there were 3500±100 reactive nerve cells per cm2 of undistended intestine, which is 30% of all nerve cells. In contrast, reactive nerve cells were extremely rare in submucous ganglia. The myenteric nerve cells were oval in outline and gave rise to several long processes; this morphology corresponds to Dogiel's type-II classification. Processes from the cell bodies were traced through the circular muscle in perforating nerve fibre bundles. Other processes ran circumferentially in the myenteric plexus. Removal of the myenteric plexus, allowing time for subsequent fibre degeneration, showed that reactive nerve fibres in the submucous ganglia and mucosa came from the myenteric cell bodies. Operations to sever longitudinal or circumferential pathways in the myenteric plexus indicated that most reactive nerve terminals in myenteric ganglia arise from myenteric cell bodies whose processes run circumferentially for 1.5 mm, on average. It is deduced that the calbindin-reactive neurons are multipolar sensory neurons, with the sensitive processes in the mucosa and with other processes innervating neurons of the myenteric plexus.  相似文献   

6.
Summary The distal portions of rat colon from 14-, 16-, 18-, and 21-day fetuses, newborns, and adults were histochemically examined for acetylcholinesterase (AChE) activity by light and electron microscopy. The specificity of AChE activity in Auerbach's plexus was confirmed by specific and/or nonspecific cholinesterase inhibition tests. Enzyme activity was first detectable after 18 days of gestation and became stronger with age. The reaction product was demonstrated by electron microscopy in and between the plasma membranes of the nerve fibers and their terminals. Ganglion cells also showed positive activity in the plasma membrane, nuclear envelope, and rough endoplasmic reticulum. The distribution pattern of the reaction product in fetal and newborn rat colons was basically the same as in adult rat colon. Therefore, the localization of AChE activity is considered to be a good marker for identifying premature ganglion cells in Auerbach's plexus, and the degree of AChE staining is a good indication of the degree of maturation of the plexus.  相似文献   

7.
Summary To further evaluate the role of autonomic ganglia in the regulation of pelvic visceral activity, the neural elements in the major pelvic ganglion of the male rat have been studied with histochemical and electron microscopic techniques. The principal findings are that the ganglion is composed of cholinergic and adrenergic ganglion cells as well as small intensely fluorescent (SIF) cells. Polarity in the ganglion is indicated by clustering of small ganglion cells which stain intensely for acetylcholinesterase (AChE) along the pelvic nerve while larger cells, with weak to moderate AChE activity, collect near small branches of the hypogastric nerve. Some cholinergic ganglion cells are enclosed by a plexus of adrenergic terminals. SIF cells appear to be in contact with both cholinergic and adrenergic cells, although many of the fluorescent beads around adrenergic neurons may be short dendrites of ganglion cells, rather than processes of SIF cells. Two types of SIF cells may be distinguished on the basis of size and morphology of their granulated vesicles. Afferent synapses of the cholinergic type were common on SIF cells of the large granule and small granule type. Portions of SIF cells with large granules occur within the capsule of ganglion cells. Contacts seen here were interpreted as efferent synapses from SIF cells to the dendrites of ganglion cells.  相似文献   

8.
The distribution of nerve cells and fibres with immunoreactivity for the calcium-binding protein, calretinin, was studied in the distal colon of the guinea-pig. The projections of the neurons were determined by examining the consequences of lesioning the myenteric plexus. Calretinin-immunoreactive neurons comprised 17% of myenteric nerve cells and 6% of submucous nerve cells. Numerous calretinin-immunoreactive nerve fibres were located in the longitudinal and circular muscle, and within the ganglia of the myenteric and submucous plexuses. Occasional fibres were found in the muscularis mucosae, but they were very rare in the lamina propria of the mucosa. Lesion studies revealed that myenteric neurons innervated the underlying circular muscle and provided both ascending and descending processes that gave rise to varicose branches in myenteric ganglia. Calretinin-immunoreactive fibres also projected to the tertiary component of the myenteric plexus, and are therefore likely to be motor neurons to the longitudinal muscle. Varicose fibres that supplied the submucous ganglia appear to arise from submucous nerve cells. Arterioles of the submucous plexus were sparsely innervated by calretinin-immunoreactive fibres. The submucous plexus was the principal source of immunoreactive nerve fibres in the muscularis mucosae. This work shows that calretinin-IR reveals different neuronal populations in the large intestine to those previously reported in the small intestine.  相似文献   

9.
Summary Somatostatin-immunoreactive nerves and endocrine cells were localized by use of immunohistochemistry in human stomach, small and large intestine. The nature of the immunoreactivity in acid extracts of separated layers of intestine was determined with separation by high pressure liquid chromatography followed by detection with radioimmunoassay; authentic somatostatin-14 was found in the external musculature, which contains nerves, and in the submucosa and mucosa, which contain both nerve fibres and endocrine cells.The distribution of somatostatin nerves in the gastric antrum, duodenum, jejunum, ileum, ascending and sigmoid colon, and rectum is described. In the intestine many positive perikarya and fine varicose fibres were seen. Mucosal fibres formed a sub-epithelial plexus and a looser network in the lamina propria; this nerve supply was less dense in the large intestine. Submucous ganglia contained positive perikarya and terminals; many terminals formed pericellular baskets, mainly around non-reactive cells. A small number of nerve fibres were associated with submucosal blood vessels. The innervation of the circular and longitudinal muscle was sparse. Positive nerve terminals were seen in the myenteric plexus, although fewer than in the submucous ganglia; positive perikarya were scarce in myenteric ganglia. Somatostatin-immunoreactive nerves were found in the muscle layers and myenteric plexus of the gastric antrum, but were not detected in the antral mucosa and all layers of the gastric body.The distribution of human enteric somatostatin nerves is compared to that in small laboratory animals, and possible roles for these nerves are discussed.  相似文献   

10.
Vasoactive intestinal peptide immunoreactive (VIP-IR) nerve fibres and terminals, neurons and small granule containing cells were observed in human lumbal sympathetic ganglia. Electron-microscopically VIP-IR was localized in the large dense-cored vesicles in nerve terminals and on the membranes of the Golgi complexes in the neurons. A small population of principal ganglion cells was surrounded by VIP-IR nerve terminals. Most of these neurons contained acetylcholinesterase (AChE) enzyme but were not tyrosine hydroxylase-immunoreactive (TH-IR). All VIP-IR ganglion cells and most of the nerve fibres contained AChE but not TH-IR. It appears that in human sympathetic ganglia VIP is localized in the cholinergic neurons and nerve fibres and that the VIP-IR nerve terminals innervate mainly the cholinergic subpopulation of the sympathetic neurons.  相似文献   

11.
Summary Vasoactive intestinal peptide immunoreactive (VIP-IR) nerve fibres and terminals, neurons and small granule containing cells were observed in human lumbal sympathetic ganglia. Electron-microscopically VIP-IR was localized in the large dense-cored vesicles in nerve terminals and on the membranes of the Golgi complexes in the neurons. A small population of principal ganglion cells was surrounded by VIP-IR nerve terminals. Most of these neurons contained acetycholinesterase (AChE) enzyme but were not tyrosine hydroxylase-immnoreactive (TH-IR). All VIP-IR ganglion cells and most of the nerve fibres contained AChE but not TH-IR. It appears that in human sympathetic ganglia VIP is localized in the cholingergic neurons and nerve fibres and that the VIP-IR nerve terminals innervate mainly the cholinergic subpopulation of the sympathetic neurons.  相似文献   

12.
The coelomic lining of the water-vascular canal in a suckered tube foot from the sea cucumber, Parastichopus californicus, is a pseudostratified myoepithelium consisting of flagellated adluminal cells and myofilament-bearing retractor cells. The bodies of adluminal cells flank the water-vascular canal and send basal processes between the underlying retractor cells to confront the podial connective tissue. Retractor cells have a contractile apparatus of unregistered thick and thin myofilaments. The contractile apparatus is confined to the medullary sarcoplasm and oriented parallel to the primary axis of a tube foot. The bodies and processes of retractor cells intermingle with the basal processes of adluminal cells at the basal lamina of the coelomic lining. A ganglionated nerve plexus in the podial connective tissue approximates the basal lamina. Neuronal connectives link the ganglia to one another and to the nerve plexus in deep sectors of the podial epidermis. External laminae enveloping the ganglia and connectives in the podial connective tissue are continuous with the basal lamina of the epidermis. The adventitial nerve plexus, since it merges with the epidermal nerve plexus, is a component of the ectoneural division of the echinoderm nervous system.  相似文献   

13.
使用NADH黄递酶组化法,我们观察到小肠的固有层和粘膜肌层内的神经元和小神经节。粘膜内神经元经NADH黄递酶组化与NSE免疫组化法联合染色,由蓝色转变为黑色;在同一切片内粘膜下丛和肌间神经丛的神经元具有相同的染色性。粘膜内一些AChE阳性反应神经元,胞体呈校形,两端伸出较长的突起;另一些神经元胞体呈卵圆形或不规则形,可见突起伸入肠膝下部,参与腺周丛。粘膜内神经元的类型和性质有待进一步研究。  相似文献   

14.
Summary The distribution of nerve cell bodies and fibres in the canine stomach was investigated using antibodies to the general neuronal marker, neuron-specific enolase. Prominent ganglia containing many reactive nerve cells were found in the myenteric plexus of the gastric corpus and antrum. Nerve cells were absent from the submucosa of the corpus and were extremely rare in the antrum. Renoval of areas of longitudinal muscle and myenteric plexus from the corpus (myectomy), with 7 days allowed for axon degeneration, resulted in the loss of fibres reactive for galanin, gastrin-releasing peptide, substance P and vasoactive intestinal peptide from both the circular muscle and mucosa in the area covered by the lesion. Combined vagotomy and sympathetic denervation did not significantly affect these fibres, but did cause fibres reactive for calcitonin gene-related peptide to degenerate. It is concluded that the myenteric plexus of the gastric corpus, like the myenteric plexus of the small intestine and colon, is the source of nerve fibres innervating the circular muscle, but, in contrast to other regions of the gastrointestinal tract, myenteric ganglia, not submucous ganglia, are the major, or sole, source of the intrinsic innervation of the mucosa.  相似文献   

15.
The intrinsic innervation of the anterior two thirds of the tongue in adult dogs of both sexes was studied in paraffin sections stained with Bodian, Holmes, cholinesterase and other stains. In all the sections, a subepithelial plexus of nerve fibres and cells was always seen on the dorsum of the tongue. Nerve endings were seen extending in between the epithelial cells on the dorsum of the tongue. The nerve cells were usually spindle-shaped and collected to form numerous ganglia in the submucosa. There were other ganglia in the tongue whose structure was very much similar to terminal autonomic ganglia. The significance of the ganglia consisting of biopolar nerve cells is being discussed.  相似文献   

16.
The present scanning electron microscopical (SEM) study was initiated to visualize the surface topography of Auerbach's plexus in the ileum of the pig. After enzymatic digestion of the connective-tissue components of the tunica muscularis and the tunica serosa followed by glutaraldehyde fixation, HCl-hydrolysis and stripping off either the longitudinal or circular smooth muscle layer, the three-dimensional architecture and topographical features of the myenteric plexus can clearly be observed. In this way, ganglia, primary, secondary and tertiary strands, and single nerve fibres can be demonstrated. Individual nerve cells, which are incompletely covered by glial cells and by remnants of the basal lamina, can be recognized in the centre and periphery of the ganglia and adjacent to primary and secondary nerve strands.  相似文献   

17.
Synopsis Histochemical techniques were employed for the localization of choline acetyltransferase (ChAc; EC 2.3.1.6.), acetylcholinesterase (AChE; EC 3.1.1.7) and cholinesterase (ChE; EC 3.1.1.8) activities in dorsal and ventral roots and dorsal root ganglia of the bullfrog. AChE activity was present in most of the neuronal elements of dorsal root ganglia, in some nerve fibres in the dorsal roots, and in all nerve fibres in ventral roots. ChE activity in dorsal root ganglia and in the dorsal roots was confined to non-neuronal elements. No ChE activity was demonstrable in the ventral roots. ChAc activity was localized in many neurons of the dorsal root ganglia and in some nerve fibres of the dorsal roots; however, none of the ventral root fibres were visibly reactive. Some supportive cells of the dorsal roots and ganglia contained small amounts of ChAc activity. Except for the ventral roots, the histochemical distribution of AChE and ChAc activity was similar. The results of solubility studies indicated that under the histochemical conditions, approximately 50% of the ChAc remained bound to the dorsal roots and ganglia, whereas more than 90% of the ChAc in the ventral roots was soluble. This would account for the lack of reactivity in ventral root fibres. Differences in ChAc solubility are discussed in relation to the interpretation of histochemical data and in relation to the concept of multiple forms of ChAc. The results of this study indicate that at least one-third of the neurons of the dorsal root ganglia contain significant levels of the enzymes involved in both the synthesis and hydrolysis of acetylcholine.  相似文献   

18.
The effect of a subtotal vagotomy on the function of the intramural nervous system of different parts of the intestinal tract is studied by means of quantitative measurements of the acetylcholinesterase (AChE) activity. By sham vagotomy it was possible to explore the effect of narcosis and laparotomy on the intramural nervous system of the intestine. Vagotomy is followed by a decrease in AChE activity of the ganglionic cells in all parts of the intestinal tract. A minimum of activity, about 50% of the normal concentration, is attained at the 16th postoperative day. After this time, a continual increase in AChE activity, along with a reactivation of the function of the ganglionic cells, can be observed. 90 days after vagotomy the ganglionic cells of the intramural nervous plexus show a normal enzyme activity. These results support the hypothesis that most of the cells of the myenteric plexus build up an autonomic nervous plexus, which is stimulated in an excitatory way by the vagus nerve and which will be inhibited by sympathetic stimulation.  相似文献   

19.
P Mestres  M Diener  W Rummel 《Acta anatomica》1992,143(4):275-282
The ultrastructure of neurons, glial cells and axons of the mucosal plexus of the rat colon descendens was studied. Serial semithin sections and a re-embedding technique were used in order to localize the ganglia. The ganglia are free of blood vessels and connective tissue. The ratio of neurons to glial cells is approximately 1. Ganglia and nerve strands are enclosed by a basement membrane, without a well-defined perineural connective tissue. The neurons show a structure similar to other enteric plexus. Synaptic contacts were observed frequently in the neuropil, where nerve endings and varicosities show a diverse outfit in vesicles. The glial cells, which contain immunocytochemically detectable glial fibrillary protein, possess the same ultrastructural attributes in the intra- and extraganglionic localizations. In the nerves, axonic profiles and varicosities appear in close relation with glial cells or their processes. The distance between the nerves and their target cells, i.e. the enterocytes, is 0.5 microns or more with interposed basement membranes and fibroblasts.  相似文献   

20.
The guinea-pig caecum was studied by using immunohistochemistry for Kit receptors and nerves to clarify whether interstitial cells of Cajal (ICC) were localized in association with the submucosal plexus (ICC-SP). A large area of the guinea-pig caecum was nearly devoid of longitudinal muscles, because they were concentrated into three bundles of the taenia caeci (coli) and this allowed clear observation of the myenteric and submucosal plexus as separate networks in whole-mount stretch preparations. The myenteric plexus was observed as a loose polygonal network consisting in elongated ganglia and long connecting nerve strands, whereas the submucosal plexus was identified as smaller ovoid ganglia connected to much thinner nerve strands in different tissue layers. Three-dimensional reconstruction of confocal images revealed multipolar-shaped ICC-SP located around the submucosal ganglion in a basket formation. Bipolar ICC-SP were also observed along the connecting nerve strands of the submucosal plexus. The functional involvement of ICC-SP in mucosal activity is discussed in relation to fluid transportation. This three-dimensional study of ICC-SP thus provides a candidate for the most suitable material available for functional experiments examining the physiological significance of ICC-SP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号