首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Rabbit aortic endothelium metabolizes arachidonic acid (AA) by the 15-lipoxygenase pathway to vasodilatory eicosanoids, hydroxyepoxyeicosatrienoic acids (HEETAs), and trihydroxyeicosatrienoic acids (THETAs). The present study determined the chemical identity of the vasoactive THETA and investigated its role in ACh-induced relaxation in the rabbit aorta. AA caused endothelium-dependent, concentration-related relaxations of the rabbit aorta. Increasing the extracellular KCl concentration from 4.8 to 20 mM inhibited the relaxations to AA by approximately 60%, thereby implicating K+-channel activation in the relaxations. In addition, AA caused an endothelium-dependent hyperpolarization of aortic smooth muscle from -39.6 +/- 2.7 to -56.1 +/- 3.4 mV. In rabbit aortic rings, [14C]AA was metabolized to prostaglandins, HEETAs, THETAs, and 15-hydroxyeicosatetraenoic acid. Additional purification of the THETAs by HPLC resolved the mixture into its 14C-labeled products. Gas chromatography/mass spectrometry identified the metabolites as isomers of 11,12,15-THETA and 11,14,15-THETA. The 11,12,15-THETA relaxed and hyperpolarized the rabbit aorta, whereas 11,14,15-THETA had no vasoactive effect. The relaxations to 11,12,15-THETA were blocked by 20 mM KCl. In aortic rings pretreated with inhibitors of nitric oxide and prostaglandin synthesis, ACh caused a concentration-related relaxation that was completely blocked by 20 mM KCl. Pretreatment with the phospholipase A2 inhibitors mepacrine and 7,7-dimethyl-5,8-eicosadienoic acid, the lipoxygenase inhibitors cinnamyl-3,4-dihydroxy-alpha-cyanocinnamate, nordihydroguaiaretic acid, and ebselen, or the hydroperoxide isomerase inhibitors miconazole and clotrimazole also blocked ACh-induced relaxations. ACh caused a threefold increase in THETA release. These studies indicate that AA is metabolized by endothelial cells to 11,12,15-THETA, which activates K+ channels to hyperpolarize the aortic smooth muscle membrane and induce relaxation. Additionally, this lipoxygenase pathway mediates the nonnitric oxide, nonprostaglandin relaxations to ACh in the rabbit aorta by acting as a source of an endothelium-derived hyperpolarizing factor.  相似文献   

2.
This study aimed to investigate the vasoactivity of sulfur dioxide (SO2), a novel gas identified from vascular tissue, in rat thoracic aorta. The thoracic aorta was isolated, cut into rings, and mounted in organ-bath chambers. After equilibrium, the rings were gradually stretched to a resting tension. Isometric tension was recorded under the treatments with vasoconstrictors, SO2 derivatives, and various drugs as pharmacological interventions. In endothelium-intact aortic rings constricted by 1 microM phenylephrine (PE), SO2 derivatives (0.5-8 mM) caused a dose-dependent relaxation. Endothelium removal and a NOS inhibitor L-NAME reduced the relaxation to low doses of SO2 derivatives, but not that to relatively high doses (>or=2 mM). In endothelium-denuded rings, SO2 derivatives attenuated vasoconstriction induced by high K+ (60 mM) or CaCl2 (0.01-10 mM). The relaxation to SO2 derivatives in PE-constricted rings without endothelium was significantly inhibited by blockers of ATP-sensitive K+(KATP) and Ca2+-activated K+ (KCa) channels, but not by those of voltage-dependent K+ channels, Na+- K+-ATPase or Na+-Ca2+ exchanger. SO2 relaxed vessel tone via endothelium-dependent mechanisms associated with NOS activation, and via endothelium-independent mechanisms dependent on the inhibition of voltage-gated Ca2+ channels, and the opening of KATP and KCa channels.  相似文献   

3.
During an agonist stimulation of endothelial cells, the sustained Ca2+ entry occurring through store-operated channels has been shown to significantly contribute to smooth muscle relaxation through the release of relaxing factors such as nitric oxide (NO). However, the mechanisms linking Ca2+ stores depletion to the opening of such channels are still elusive. We have used Ca2+ and tension measurements in intact aortic strips to investigate the role of the Ca2+-independent isoform of phospholipase A2 (iPLA2) in endothelial store-operated Ca2+ entry and endothelium-dependent relaxation of smooth muscle. We provide evidence that iPLA2 is involved in the activation of endothelial store-operated Ca2+ entry when Ca2+ stores are artificially depleted. We also show that the sustained store-operated Ca2+ entry occurring during physiological stimulation of endothelial cells with the circulating hormone ATP is due to iPLA2 activation and significantly contributes to the amplitude and duration of ATP-induced endothelium-dependent relaxation. Consistently, both iPLA2 metabolites arachidonic acid and lysophosphatidylcholine were found to stimulate Ca2+ entry in native endothelial cells. However, only the latter triggered endothelium-dependent relaxation through NO release, suggesting that lysophosphatidylcholine produced by iPLA2 upon Ca2+ stores depletion may act as an intracellular messenger that stimulates store-operated Ca2+ entry and subsequent NO production in endothelial cells. Finally, we found that ACh-induced endothelium relaxation also depends on iPLA2 activation, suggesting that the iPLA2-dependent control of endothelial store-operated Ca2+ entry is a key physiological mechanism regulating arterial tone.  相似文献   

4.
Wang GJ  Tseng HW  Chou CJ  Tsai TH  Chen CT  Lu MK 《Life sciences》2003,73(21):2769-2783
Antrodia camphorata, a medicinal fungus, has been used to treat cardiovascular diseases such as hypertension for many years. The purpose of this study was to examine the effects of mycelia extracts, from five Antrodia camphorata strains, on vascular tension and underlying mechanisms were explored. In isolated rat aortic rings, accession B86 caused concentration-dependent vasorelaxation with maximal relaxation of 40.34 +/- 7.53% whereas accessions 35398, 35396 and B71 had mild vasorelaxing effects. Strain B85 evoked potent vasorelaxation, partly through an endothelium-dependent mechanism that was inhibited by Nomega-nitro-L-arginine and 1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline-1-one (ODQ) but not by antagonist of K+ channels, tetraethylammonium. In cultured endothelial cells, B85 stimulated nitric oxide (NO) release and augmented the level of the intracellular Ca2+ concentration. HPLC and LC-MS-MS analysis revealed the presence of adenosine. Our results suggest that B85 produced strongest vasorelaxation in aortic preparations among five test strains. B85 acts in part on endothelial cells by activating the Ca(2+)-NO-cGMP pathway to reduce smooth muscle tone. However, K+ channels had no apparent roles. Adenosine could possibly be involved in the endothelium-dependent pathway of B85-induced vasorelaxation.  相似文献   

5.
Yao X  Huang Y 《Life sciences》2000,66(1):PL13-PL19
Quaternary ammonium ions are common pharmacological blockers of K+ channels. This study examined the vasorelaxant effect of tetraoctylammonium ions (TOA+) in rat isolated aortic rings. TOA+ caused a concentration-dependent transient relaxation of endothelium-intact tissues. Pretreatment with NG-nitro-L-arginine methyl ester (L-NAME, 3x10(-5) M) or methylene blue (3 x 10(-6) M) or removal of the endothelium abolished the TOA+-induced relaxation. L-arginine (10(-3) M ) partially antagonized the effect of L-NAME. Glibenclamide (3x10(-6) M), charybdotoxin (CTX, 10(-7) M), indomethacin (10(-5) M), or atropine (3x10(-6) M) had no effect. Both TOA+ (10(-5) M)- and acetylcholine (ACh, 10(-5) M)-induced increase in tissue content of cyclic GMP was significantly attenuated by NG-nitro-L-arginine (L-NNA, 10(-4) M) and abolished in endothelium-denuded arteries. These results indicate that TOA+ induced endothelium-dependent relaxation which is likely mediated through nitric oxide but not other endothelium-derived factors. This relaxant action seems unique for TOA+ since other quaternary ammonium ions did not cause nitric oxide-dependent relaxation.  相似文献   

6.
Bourlier, V., Diserbo, M., Gourmelon, P. and Verdetti, J. Prolonged Effects of Acute Gamma Irradiation on Acetylcholine-Induced Potassium Currents in Human Umbilical Vein Endothelial Cells. Radiat. Res. 155, 748-752 (2001). We have recently reported an acute effect of gamma irradiation (15 Gy, 1 Gy/min) on acetylcholine-mediated endothelium-dependent relaxation in rat aortic rings. Given the importance of permeability to K+ to endothelium-dependent relaxation, we have evaluated the effect of the same radiation on K+ currents in human endothelial cells in culture using the patch-clamp technique in the whole-cell recording configuration. Our results indicate that, in resting cells, gamma irradiation has no effect on endothelial permeability to K+. However, irradiation during stimulation of endothelial cells with acetylcholine reduces the sustained increase in permeability to K+ observed in the acetylcholine-stimulated, nonirradiated cells. Additional experiments using K+ channel inhibitors (TEA, charybdotoxin, apamin) suggest that irradiation may in part decrease the prolonged activation of Ca2+-activated K+ channels by acetylcholine. Taken together with our previous finding that irradiation inhibits the acute relaxing effects of acetylcholine, these results show that gamma irradiation also affects the delayed effects of acetylcholine on permeability to K+.  相似文献   

7.
The contribution of potassium channels [ATP-sensitive potassium (K(ATP)) and high-conductance calcium-activated potassium (BK(Ca)) channels] in the resistance of aortic rings of term pregnant rats to phenylephrine (Phe), arginine vasopressin (AVP), and KCl was investigated. Concentration-response curves to tetraethylammonium (TEA), a nonselective K(+) channel inhibitor, were obtained in the absence or presence of KCl. TEA induced by itself concentration-dependent responses only in aortic rings of nonpregnant rats. These responses to TEA could be modulated in both groups of rings by preincubation with different concentrations of KCl. Concentration-response curves to Phe, AVP, and KCl were obtained in the absence or presence of cromakalim or NS-1619 (K(ATP) and BK(Ca) openers, respectively) and glibenclamide or iberiotoxin (K(ATP) and BK(Ca) inhibitors, respectively). Cromakalim significantly inhibited the responses to the three agonists in a concentration-dependent manner in both groups of rats. Alternatively, in the pregnant group of rats, glibenclamide increased the sensitivity to all three agonists. NS-1619 also inhibited the response to all agonists. With AVP and KCl, its effect was greater in aortic rings of pregnant than nonpregnant rats. Finally, iberiotoxin increased the sensitivity to all three agents. This effect was more important in aortic rings of nonpregnant rats and was accompanied by an increase of the maximal response to Phe and AVP. These results suggest that potassium channels are implicated in the control of basal membrane potential and in the blunted responses to these agents during pregnancy.  相似文献   

8.
Low-affinity state beta1-adrenoceptor (beta1-AR) was functionally expressed in some blood vessels and was different from beta1, beta2 and beta3-AR. In rat aorta, low-affinity state beta1-AR activation produced an endothelium-independent relaxation which was impaired in spontaneously hypertensive rats (SHRs). In the present work, we investigated whether renin-angiotensin system was involved in this alteration by evaluating the effects of enalapril, an angiotensin converting enzyme (ACE) inhibitor or losartan, an AT1 angiotensin receptor antagonist. Cumulative concentration-response curves to low-affinity state beta1-AR agonists (CGP 12177, cyanopindolol or alprenolol) and to NS 1619, a large conductance Ca2+-activated K+ channels (BK) agonist were performed in denuded aortic rings isolated from control or treated Wistar Kyoto (WKY) rats or SHRs in different experimental conditions. The low-affinity state beta1-AR-mediated aortic vasodilation was impaired in 5 and 12 weeks old SHRs when compared to age-matched WKY. Twelve days enalapril (5 mg/kg/day) or losartan (15 mg/kg/day) treatments reduced systolic blood pressure (SBP) only in 12 weeks old SHRs whereas no significant change was observed in other groups. These treatments improved low-affinity state beta1-AR effect only in SHRs groups. In 12 weeks old WKY rats, CGP 12177-induced relaxation was insensitive to glibenclamide, a K(ATP)+ channel blocker, but was reduced by TEA or iberiotoxin, two large conductance Ca2+-activated K+ channel (BK) blockers. The impairment of NS 1619-induced vasodilation in both 5 and 12 weeks old SHRs was restored by enalapril or losartan. These results suggested that improvement of the low-affinity state beta1-AR-mediated vasodilation in 5 and 12 weeks old SHRs could be attributed to enhanced BK channels-induced hyperpolarization in SHRs independently of lowering of SBP.  相似文献   

9.
Endothelial nitric oxide (NO) synthase (eNOS) is controlled by Ca(2+)/calmodulin and caveolin-1 in caveolae. It has been recently suggested that Na(+)/Ca(2+) exchanger (NCX), also expressed in endothelial caveolae, is involved in eNOS activation. To investigate the role played by NCX in NO synthesis, we assessed the effects of Na(+) loading (induced by monensin) on rat aortic rings and cultured porcine aortic endothelial cells. Effect of monensin was evaluated by endothelium-dependent relaxation of rat aortic rings in response to acetylcholine and by real-time measurement of NO release from cultured endothelial cells stimulated by A-23187 and bradykinin. Na(+) loading shifted the acetylcholine concentration-response curve to the left. These effects were prevented by pretreatment with the NCX inhibitors benzamil and KB-R7943. Monensin potentiated Ca(2+)-dependent NO release in cultured cells, whereas benzamil and KB-R7943 totally blocked Na(+) loading-induced NO release. These findings confirm the key role of NCX in reverse mode on Ca(2+)-dependent NO production and endothelium-dependent relaxation.  相似文献   

10.
Nitric oxide (NO) is synthesized from l-arginine by the Ca(2+)/calmodulin-sensitive endothelial NO synthase (NOS) isoform (eNOS). The present study assesses the role of Ca(2+)/calmodulin-dependent protein kinase II (CaMK II) in endothelium-dependent relaxation and NO synthesis. The effects of three CaMK II inhibitors were investigated in endothelium-intact aortic rings of normotensive rats. NO synthesis was assessed by a NO sensor and chemiluminescence in culture medium of cultured porcine aortic endothelial cells stimulated with the Ca(2+) ionophore A23187 and thapsigargin. Rat aortic endothelial NOS activity was measured by the conversion of l-[(3)H]arginine to l-[(3)H]citrulline. Three CaMK II inhibitors, polypeptide 281-302, KN-93, and lavendustin C, attenuated the endothelium-dependent relaxation of endothelium-intact rat aortic rings in response to acetylcholine, A23187, and thapsigargin. None of the CaMK II inhibitors affected the relaxation induced by NO donors. In a porcine aortic endothelial cell line, KN-93 decreased NO synthesis and caused a rightward shift of the concentration-response curves to A23187 and thapsigargin. In rat aortic endothelial cells, KN-93 significantly decreased bradykinin-induced eNOS activity. These results suggest that CaMK II was involved in NO synthesis as a result of Ca(2+)-dependent activation of eNOS.  相似文献   

11.
We examined the effects of the mitochondrial Ca(2+)-activated K(+) (mitoBK(Ca)) channel activator NS 1619 on L-type Ca(2+) channels in rat ventricular myocytes. NS 1619 inhibited the Ca(2+) current in a dose-dependent manner. NS 1619 shifted the activation curve to more positive potentials, but did not have a significant effect on the inactivation curve. Pretreatment with inhibitors of membrane BK(Ca) channel, mitoBK(Ca) channel, protein kinase C, protein kinase A, and protein kinase G had little effect on the Ca(2+) current and did not alter the inhibitory effect of NS 1619 significantly. The application of additional NS 1619 in the presence of isoproterenol, a selective beta-adrenoreceptor agonist, reduced the Ca(2+) current to approximately the same level as a single application of NS 1619. In conclusion, our results suggest that NS 1619 inhibits the Ca(2+) current independent of the mitoBK(Ca) channel and protein kinases. Since NS 1619 is widely used to study mitoBK(Ca) channel function, it is essential to verify these unexpected effects of NS 1619 before experimental data can be interpreted accurately.  相似文献   

12.
Cytoplasmic free Ca2+ ([Ca2+]cyt) is essential for the contraction and relaxation of blood vessels. The role of plasma membrane Na+/Ca2+ exchange (NCX) activity in the regulation of vascular Ca2+ homeostasis was previously ascribed to the NCX1 protein. However, recent studies suggest that a relatively newly discovered K+-dependent Na+/Ca2+ exchanger, NCKX (gene family SLC24), is also present in vascular smooth muscle. The purpose of the present study was to identify the expression and function of NCKX in arteries. mRNA encoding NCKX3 and NCKX4 was demonstrated by RT-PCR and Northern blot in both rat mesenteric and aortic smooth muscle. NCXK3 and NCKX4 proteins were also demonstrated by immunoblot and immunofluorescence. After voltage-gated Ca2+ channels, store-operated Ca2+ channels, and Na+ pump were pharmacologically blocked, when the extracellular Na+ was replaced with Li+ (0 Na+) to induce reverse mode (Ca2+ entry) activity of Na+/Ca2+ exchangers, a large increase in [Ca2+]cyt signal was observed in primary cultured aortic smooth muscle cells. About one-half of this [Ca2+]cyt signal depended on the extracellular K+. In addition, after the activity of NCX was inhibited by KB-R7943, Na+ replacement-induced Ca2+ entry was absolutely dependent on extracellular K+. In arterial rings denuded of endothelium, a significant fraction of the phenylephrine-induced and nifedipine-resistant aortic or mesenteric contraction could be prevented by removal of extracellular K+. Taken together, these data provide strong evidence for the expression of NCKX proteins in the vascular smooth muscle and their novel role in mediating agonist-stimulated [Ca2+]cyt and thereby vascular tone.  相似文献   

13.
Bradykinin-induced K+ currents, membrane hyperpolarization, as well as rises in cytoplasmic Ca2+ and cGMP levels were studied in endothelial cells cultured from pig aorta. Exposure of endothelial cells to 1 microM bradykinin induced a whole-cell K+ current and activated a small-conductance (approximately 9 pS) K+ channel in on-cell patches. This K+ channel lacked voltage sensitivity, was activated by increasing the Ca2+ concentration at the cytoplasmic face of inside-out patches and blocked by extracellular tetrabutylammonium (TBA). Bradykinin concomitantly increased membrane potential and cytoplasmic Ca2+ of endothelial cells. In high (140 mM) extracellular K+ solution, as well as in the presence of the K(+)-channel blocker TBA (10 mM), bradykinin-induced membrane hyperpolarization was abolished and increases in cytoplasmic Ca2+ were reduced to a slight transient response. Bradykinin-induced rises in intracellular cGMP levels which reflect Ca(2+)-dependent formation of EDRF(NO) were clearly attenuated in the presence of TBA (10 mM). Our results suggest that bradykinin hyperpolarizes pig aortic endothelial cells by activation of small-conductance Ca(2+)-activated K+ channels. Opening of these K+ channels results in membrane hyperpolarization which promotes Ca2+ entry, and consequently, NO synthesis.  相似文献   

14.
Here we investigated the effect of the flavonoid galangin in isolated rat thoracic aortic rings. Galangin (0.1-100 microM) induced relaxation in rings pre-contracted with phenylephrine (PE 1 microM) or with KCl (100 mM) or pre-treated with the nitric oxide synthase inhibitor Nomega-nitro-L-arginine methyl ester (L-NAME, 100 microM), the cyclooxygenase inhibitor indomethacin (10 microM) and the adenylate cyclase inhibitor, SQ 22,536 (100 microM). In another set of experiments, rat aortic rings were incubated with galangin (1-100 microM) and the contractile responses to PE (0.001-3 microM) or to KCl (60 mM) were evaluated. We also evaluated the effect of galangin (100 microM) on PE (10 microM)-induced contraction in a Ca2+-free medium. Galangin relaxed aortic rings with or without endothelium. Galangin effect was significantly inhibited by L-NAME. Galangin inhibited the contractile response to PE, either in presence or in absence of external calcium, and to KCl. In the end, we also found that galangin caused nitric oxide (NO) release from aortic rings and abolished the increase in [Ca2+]i triggered by PE or KCl in aortic smooth muscle cells, either in presence and in absence of external Ca2+. Our results suggest that galangin reduces the contractility of rat aortic rings through an endothelium-dependent mechanism, involving NO, and also through an endothelium-independent mechanism, inhibiting calcium movements through cell membranes.  相似文献   

15.
Cellular redox change regulates pulmonary vascular tone by affecting function of membrane and cytoplasmic proteins, enzymes, and second messengers. This study was designed to test the hypothesis that functional modulation of ion channels by thiol oxidation contributes to regulation of excitation-contraction coupling in isolated pulmonary artery (PA) rings. Acute treatment with the thiol oxidant diamide produced a dose-dependent relaxation in PA rings; the IC50 was 335 and 58 microM for 40 mM K+ - and 2 microM phenylephrine-induced PA contraction, respectively. The diamide-mediated pulmonary vasodilation was affected by neither functional removal of endothelium nor 8-bromoguanosine-3'-5'-cyclic monophosphate (50 microM) and HA-1004 (30 microM). A rise in extracellular K+ concentration (from 20 to 80 mM) attenuated the thiol oxidant-induced PA relaxation. Passive store depletion by cyclopiazonic acid (50 microM) and active store depletion by phenylephrine (in the absence of external Ca2+ both induced PA contraction due to capacitative Ca2+ entry. Thiol oxidation by diamide significantly attenuated capacitative Ca2+ entry-induced PA contraction due to active and passive store depletion. The PA rings isolated from left and right PA branches appeared to respond differently to store depletion. Although the active tension induced by passive store depletion was comparable, the active tension induced by active store depletion was 3.5-fold greater in right branches than in left branches. These data indicate that thiol oxidation causes pulmonary vasodilation by activating K+ channels and inhibiting store-operated Ca2+ channels, which subsequently attenuate Ca2+ influx and decrease cytosolic free Ca2+ concentration in pulmonary artery smooth muscle cells. The mechanisms involved in thiol oxidation-mediated pulmonary vasodilation or activation of K+ channels and inhibition of store-operated Ca2+ channels appear to be independent of functional endothelium and of the cGMP-dependent protein kinase pathway.  相似文献   

16.
The effect of Na+-K+ pump activation on endothelium-dependent relaxation (EDR) and on intracellular Ca2+ concentration ([Ca2+]i) was examined in mouse aorta and mouse aortic endothelial cells (MAECs). The Na+-K+ pump was activated by increasing extracellular K+ concentration ([K+]o) from 6 to 12 mM. In aortic rings, the Na+ ionophore monensin evoked EDR, and this EDR was inhibited by the Na+/Ca2+ exchanger (NCX; reverse mode) inhibitor KB-R7943. Monensin-induced Na+ loading or extracellular Na+ depletion (Na+ replaced by Li+) increased [Ca2+]i in MAECs, and this increase was inhibited by KB-R7943. Na+-K+ pump activation inhibited EDR and [Ca2+]i increase (K+-induced inhibition of EDR and [Ca2+]i increase). The Na+-K+ pump inhibitor ouabain inhibited K+-induced inhibition of EDR. Monensin (>0.1 microM) and the NCX (forward and reverse mode) inhibitors 2'4'-dichlorobenzamil (>10 microM) or Ni2+ (>100 microM) inhibited K+-induced inhibition of EDR and [Ca2+]i increase. KB-R7943 did not inhibit K+-induced inhibition at up to 10 microM but did at 30 microM. In current-clamped MAECs, an increase in [K+]o from 6 to 12 mM depolarized the membrane potential, which was inhibited by ouabain, Ni2+, or KB-R7943. In aortic rings, the concentration of cGMP was significantly increased by acetylcholine and decreased on increasing [K+]o from 6 to 12 mM. This decrease in cGMP was significantly inhibited by pretreating with ouabain (100 microM), Ni2+ (300 microM), or KB-R7943 (30 microM). These results suggest that activation of the forward mode of NCX after Na+-K+ pump activation inhibits Ca2+ mobilization in endothelial cells, thereby modulating vasomotor tone.  相似文献   

17.
The role of homocysteine for store-operated calcium influx was investigated in human umbilical cord endothelial cell line. Homocysteine significantly decreased thapsigargin-evoked Ca2+ entry, membrane hyperpolarization and actin polymerization. GSH and DTT prevented homocysteine-induced inhibition of thapsigargin-evoked Ca2+ entry, membrane hyperpolarization and actin polymerization; while GSSG had the opposite effect. Homocysteine blocked large conductance Ca2+-activated K+ (BK(Ca)) channels in a concentration-dependent manner and related to the redox status of the endothelial cells. BK(Ca) channels opener NS1619 reversed thapsigargin-evoked Ca2+ entry, membrane hyperpolarization and actin polymerization; BK(Ca) channels inhibitor iberiotoxin had the opposite effect. The findings suggest that homocysteine is involved in store-regulated Ca2+ entry through membrane potential-dependent and actin cytoskeleton-dependent mechanisms, redox status of homocysteine and BK(Ca) channels may play a regulatory role in it.  相似文献   

18.
Vascular smooth muscle cell contraction and endothelium-dependent relaxation was evaluated in aortic rings isolated from weaned, 5-mo-old Sprague-Dawley rats fed a normal (NS; 0.8% NaCl) or high (HS; 8% NaCl) sodium diet. Arterial pressure was 140 +/- 6 (NS) and 145 +/- 6 mmHg (HS). In endothelium-denuded rings, the response to phenylephrine (PE) was not modified by the sodium diet, while that of depolarizing agent KCl and intracellular calcium releasing agent caffeine increased in the HS group. When endothelium was preserved, PE-evoked contraction was reduced in both NS and HS groups, the contraction being yet lower in the HS group. This effect was partially obliterated by addition of N(G)-nitro-L-arginine methyl ester (L-NAME), independently of the sodium diet. Relaxation to ACh in intact rings and to sodium nitroprusside (SNP) and 8-bromoadenosine 3'5' cyclic guanosine monophosphate (8-BrcGMP) in the absence of endothelium was enhanced in rings isolated from HS rats. In addition, the dose-response curve to 8-BrcGMP was shifted to the right in the presence of iberiotoxin, an inhibitor of large conductance, voltage-dependent, and calcium-sensitive potassium channel (BK(Ca)). However, shift was more marked in rings from HS rats. Present results provide evidence that response of vascular smooth muscle cell to nitric oxide/cGMP-related compounds is increased in HS rings and is associated with a greater activation of the repolarizing BK(Ca) channels. Such changes might counterbalance enhanced contractile response to membrane depolarization and thus participate in maintenance of arterial pressure in the present model of early and long-term HS feeding in rats.  相似文献   

19.
Hyperpolarizing large-conductance, Ca(2+)-activated K(+) channels (BK) are important modulators of vascular smooth muscle and endothelial cell function. In vascular smooth muscle cells, BK are composed of pore-forming alpha subunits and modulatory beta subunits. However, expression, composition, and function of BK subunits in endothelium have not been studied so far. In patch-clamp experiments we identified BK (283 pS) in intact endothelium of porcine aortic tissue slices. The BK opener DHS-I (0.05-0.3 micromol/l), stimulating BK activity only in the presence of beta subunits, had no effect on BK in endothelium whereas the alpha subunit selective BK opener NS1619 (20 micromol/l) markedly increased channel activity. Correspondingly, mRNA expression of the beta subunit was undetectable in endothelium, whereas alpha subunit expression was demonstrated. To investigate the functional role of beta subunits, we transfected the beta subunit into a human endothelial cell line (EA.hy 926). beta subunit expression resulted in an increased Ca(2+) sensitivity of BK activity: the potential of half-maximal activation (V(1/2)) shifted from 73.4 mV to 49.6 mV at 1 micromol/l [Ca(2+)](i) and an decrease of the EC(50) value for [Ca(2+)](i) by 1 microM at +60 mV was observed. This study demonstrates that BK channels in endothelium are composed of alpha subunits without association to beta subunits. The lack of the beta subunit indicates a substantially different channel regulation in endothelial cells compared to vascular smooth muscle cells.  相似文献   

20.
Most excitable cells, including gastrointestinal smooth muscle cells, express several types of K+ channels. The aim of this study was to examine the types of K' channels involved in the contractility of longitudinal smooth muscle of rabbit small intestine in vitro. Spontaneous contractions and KCl-stimulated contractions were reduced by atropine, phentolamine, propranolol, suramin, tetrodotoxin and indomethacin. The amplitude and tone of spontaneous contractions were increased by apamin, charybdotoxin, iberiotoxin, E4031, tetraetylammonium (TEA) and BaCl2. The frequency of contractions was reduced in the presence of apamin and TEA and increased by charybdotoxin. It was found that 4-aminopyridine increased the tone of spontaneous contractions and reduced the amplitude and frequency of contractions. Glibenclamide did not modify the amplitude, frequency or tone of contractions. KCl-stimulated contractions were increased by E4031, were not modified by apamin, glibenclamide, NS1619 or diazoxide, and were reduced by charybdotoxin, TEA, 4-aminopyridine or BaCl2. These results suggest that both Ca2+-activated K+ channels of small and high conductance, and HERG K+ channels and inward rectifier K+ channels participate in spontaneous contractions of small intestine. On the other hand, voltage-dependent K+ channels, HERG K+ channels, inward rectifier K+ channels and high conductance Ca2+-activated K+ channels are involved in KCl-stimulated contractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号