首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA phosphotriester adducts are common alkylation products of DNA phosphodiester moiety induced by N-nitrosoureas. The 2-hydroxyethyl phosphotriester was reported to hydrolyze more rapidly than other alkyl phosphotriesters both in neutral and in alkaline conditions, which can cause DNA single strand scission. In this work, DFT calculations have been employed to map out the four lowest activation free-energy profiles for neutral and alkaline hydrolysis of triethyl phosphate (TEP) and diethyl 2-hydroxyethyl phosphate (DEHEP). All the hydrolysis pathways were illuminated to be stepwise involving an acyclic or cyclic phosphorane intermediate for TEP or DEHEP, respectively. The rate-limiting step for all the hydrolysis reactions was found to be the formation of phosphorane intermediate, with the exception of DEHEP hydrolysis in alkaline conditions that the decomposition process turned out to be the rate-limiting step, owing to the extraordinary low formation barrier of cyclic phosphorane intermediate catalyzed by hydroxide. The rate-limiting barriers obtained for the four reactions are all consistent with the available experimental information concerning the corresponding hydrolysis reactions of phosphotriesters. Our calculations performed on the phosphate triesters hydrolysis predict that the lower formation barriers of cyclic phosphorane intermediates compared to its acyclic counter-part should be the dominant factor governing the hydrolysis rate enhancement of DEHEP relative to TEP both in neutral and in alkaline conditions.
Figure
DEHEP hydrolysis involved in DNA single strand scission induced by N-nitrosoureas  相似文献   

2.
The stability of methyl and ethyl phosphotriesters in DNA in vivo   总被引:3,自引:0,他引:3  
C57BL male mice were injected with N-methyl-N-nitrosourea (MNUA) or N-ethyl-N-nitrosourea (ENUA) and the concentration of alkyl phosphotriesters in the DNA of lung, liver, brain, kidney, spleen and thymus determined from the extent of degradation induced in isolated DNA by alkali. The same total dose of reagent was given either as a single injection (i.p.) or by weekly injections carried out over 5-20 weeks. Methyl phosphotriesters induced in liver, lung and kidney by the single injection were lost with a half-life of about 7 days, in brain the loss was more rapid, t1/2 = 2-3 days. During the multiple injections the observed t1/2 was 16 days. Ethyl phosphotriesters formed in the DNA of lung, liver, kidney and brain were much more stable than the methyl derivatives, t1/2 = 10-15 weeks. Phosphotriesters formed in the DNA of spleen and thymus disappeared very quickly after the single injection presumably as a result of dilution due to DNA replication. No accumulation of phosphotriesters occurred in the DNA of these tissues during the multiple injections. The general pattern of the results suggests that phosphotriesters are not excised by cellular repair systems.  相似文献   

3.
The degradation in alkali of normal DNA and DNA alkylated with dimethyl sulphate (DMS), N-methyl-N-nitrosourea (MNUA) and N-ethyl-N-nitrosourea (ENUA) has been investigated using analytical ultracentrifugation techniques. For control T7-DNA (w.st. denatured form 12.5 - 10(6) daltons) the rate of degradation at 37 degrees varies from 0.14 breaks/molecule/h in 0.1 M NaOH to 1.2 breaks/molecule/h in 0.4 M NaOH. When DNA is alkylated with reagents known to produce phosphotriesters addition of alkali leads to an initial rapid degradation not observed with control DNA. Ethyl phosphotriesters are hydrolysed at about half the rate of methyl phosphotriesters. Approximately one third of the methyl or ethyl phosphotriesters present hydrolyse to give breaks in the DNA chain.  相似文献   

4.
Synthesis and properties of some cyclic AMP alkyl phosphotriesters   总被引:2,自引:0,他引:2  
Cyclic AMP was converted to its phosphotriesters according to the classical approach of phosphate activation with a sulfonyl chloride, followed by esterification with an alcohol. The methyl, ethyl, propyl, butyl and cetyl triesters were prepared, and some of their physical-chemical properties determined. Alkaline hydrolysis of these alkyl phosphotriesters resulted predominantly in ring opening. On the other hand, nucleophilic attack by thiourea led to the formation of cAMP as the main product. The conclusion can be drawn from these results that cAMP phosphotriesters could serve as suitable storage forms of cAMP, and cyclic triesters may be the best vehicle of transporting nucleotides through biological membranes.  相似文献   

5.
The alkaline elution assay was used to monitor DNA single-strand breaks in embryonic tissue following exposure to the DNA-damaging teratogen N-methyl-N-nitrosourea (MNU, CAS No. 694-93-5). An animal model was developed in which nearly every fetus exposed to the highest dose of MNU had malformations of the hindlimbs while the fetuses exposed to the lowest dose of MNU had none. Hindlimbs pooled within litters were analyzed for DNA single-strand breaks by alkaline elution conducted at rapid (0.35 ml/min) and slow (0.35 ml/min) speeds. Breaks in the DNA of hindlimbs exposed to teratogenic doses of MNU were readily detected by alkaline elution only if slower speeds were used in the assay. Using the more sensitive procedure, DNA breakage was monitored over a 24-h period. DNA breakage peaked in the MNU-exposed hindlimbs in a dose-dependent manner 4 h after injection. While the elution profiles of hindlimbs exposed to the lower doses of MNU returned to control levels 8 h after injection, single-strand breaks persisted in the hindlimbs exposed to the highest dose of MNU for at least 20 h. These latter data suggest that the highly teratogenic dose of MNU induced DNA damage that was more slowly repaired than that produced at lower doses, possibly by saturation of DNA repair systems. Although some necrosis did occur in hindlimbs exposed at teratogenic dose levels, it was not severe and it did not appear to influence the alkaline elution results. These experiments show that alkaline elution is a sensitive assay for the detection of DNA damage in embryonic tissues.  相似文献   

6.
Following the injection i.p. of N,N-dimethylnitrosamine (DMN) into Chester Beatty (CB) hooded, female rats (2 mg/kg) measurable concentrations of methyl phosphotriesters were found in the DNA of liver, lung and kidney but not in spleen, thymus or brain. In lung and kidney these lesions were stable for at least 14 days but in liver there was a steady loss (t 1/2 9-11 days). Administering the same total dose in 10 weekly injections produced the same concentration of phosphotriesters in lung and kidney DNA as the single injection but in liver only half of the concentration induced by the single injection was found. It was calculated that the half-life of methyl phosphotriesters in the liver DNA of animals given repetitive injections was of the order of 6 weeks.  相似文献   

7.
We have investigated the genotoxic effects of 1-(2-hydroxyethyl)-1-nitrosourea (HENU). We have chosen this agent because of its demonstrated ability to produce N7-(2-hydroxyethyl) guanine (N7-HOEtG) and O6-(2-hydroxyethyl) 2′-deoxyguanosine (O6-HOEtdG); two of the DNA alkylation products produced by 1,3-bis (2-chloroethyl)-1-nitrosourea (BCNU). For these studies, we have used the Big Blue Rat-2 cell line that contains a lambda/lacI shuttle vector. Treatment of these cells with HENU produced a dose dependent increase in the levels of N7-HOEtG and O6-HOEtdG as quantified by HPLC with electrochemical detection. Treatment of Big Blue Rat-2 cells with either 0, 1 or 5 mM HENU resulted in mutation frequencies of 7.2±2.2×10−5, 45.2±2.9×10−5 and 120.3±24.4×10−5, respectively. Comparison of the mutation frequencies demonstrates that 1 and 5 mM HENU treatments have increased the mutation frequency by 6- and 16-fold, respectively. This increase in mutation frequency was statistically significant (P<0.001). Sequence analysis of HENU-induced mutations have revealed primarily G:C→A:T transitions (52%) and a significant number of A:T→T:A transversions (16%). We propose that the observed G:C→A:T transitions are produced by the DNA alkylation product O6-HOEtdG. These results suggest that the formation of O6-HOEtdG by BCNU treatment contributes to its observed mutagenic properties.  相似文献   

8.
Preliminary studies in vitro using bacteriophage T7-DNA have shown that breaks formed in the DNA on the alkaline hydrolysis of apurinic sites and phosphotriesters can be distinguished from each other by measuring the extent of degradation of the DNA immediately after adding NaOH to 0.1 M and after incubating for 1 h in 0.5 M NaOH. This method has then been applied to the study of the formation and stability of phosphotriesters invivo. Methyl phosphotriesters formed in liver DNA following injection of mice with N-methyl-N-nitrosourea (MNUA) disappear with time (50% in 4-5 days). The concentration of ethyl phosphotriesters in liver DNA formed by injecting mice with N-ethyl-N-nitrosourea (ENUA) does not appear to decrease with time. Results of experiments on injecting methyl methane-sulphonate (MMS), ethyl methanesulphonate (EMS) and dimethyl sulphate (DMS) are also reported. The method described does not require the use of radioactively labelled reagents.  相似文献   

9.
The in vivo formation and repair of specific DNA lesions produced by alkylating agents of contrasting carcinogenic potencies were investigated. Male Sprague-Dawley rats were treated with direct-acting alkylating agents methylmethane sulfonate (MMS) or methylnitrosourea (MNU). The amounts of N-3-methyladenine (3-meA), N-7-methylguanine (7-meG), and methylphosphotriesters (mePTE) in the DNA of liver and brain were determined following selective removal of the methylated bases by enzyme 3-meA N-glycosylase from Micrococcus luteus and thermal depurination at neutral pH. Both enzyme- and heat-induced alkali-labile apurinic sites were converted to single-strand breaks on incubation with 0.1 M NaOH. The number of such sites was quantitated following centrifugation of the DNA in alkaline sucrose gradients, fluorescent detection of unlabeled DNA, and estimation of number-average molecular weight. The results show a carcinogen dose-dependent initial linear increase in the number of enzyme- and heat-induced DNA strand breakage in both liver and brain DNA. With a half-life of approximately 3 h, 3-meA was removed from the tissues, whereas 45 to 55% of 7-meG remained unrepaired at 48 h. The study of the alkylation damage induced by MNU treatment of rats showed that the kinetics of repair for 3-meA and 7-meG was similar to the MMS-treated tissues and that mePTE persisted over a 7-day period. The technique developed does not require the use of radiolabeled reagents of DNA and allows for the selective quantitation of DNA alkylation lesions like 3-meA and 7-meG in the presence of nitrosourea-induced phosphotriesters.  相似文献   

10.
Two examples of neighbouring group participation during the removal of protecting groups from phosphotriesters of partially or fully protected intermediates of nucleic acids are presented. The first example shows that ammonolysis of aryl groups from phosphotriesters of partially protected - 5'- hydroxy free - nucleic acids (e.g., 4b approximately to; Ar=2C1C 6H4) gives rise to the formation of unnatural nucleic acids (e.g., 7 approximately to and 8 approximately to). The second one illustrates that fluoride ion promoted hydrolysis of 2,2,2-trichloroethyl groups from phosphotriesters of fully protected nucleic acids (e.g., 18a approximately to), having t-butyldimethylsilyl groups at the 2'-positions, leads to the formation of a considerable amount of side-products (e.g., 20 approximately to and 21 approximately to).  相似文献   

11.
The E. coli ada+ gene product that controls the adaptive response to alkylating agents has been purified to apparent homogeneity using an overproducing expression vector system. This 39 kDa protein repairs 0(6)-methylguanine and 0(4)-methylthymine residues in alkylated DNA by transfer of the methyl group from the base to a cysteine residue in the protein itself. The Ada protein also corrects one of the stereoisomers of methyl phosphotriesters in DNA by the same mechanism, while the other isomer is left unrepaired. Different cysteine residues in the Ada protein are used as acceptors in the repair of methyl groups derived from phosphotriesters and base residues.  相似文献   

12.
The ada+ gene product, a DNA methyltransferase present in extracts from an Escherichia coli strain constitutive for the adaptive response, removes only half of the methyl phosphotriesters from alkylated DNA. Since DNA phosphotriesters occur in two isomeric configurations (denoted Rp and Sp), we examined whether this reflects a stereospecific mode of repair by the methyltransferase. Analysis by reverse-phase HPLC, phosphorus NMR and circular dichroism established that only triesters in the Sp configuration are acted upon by the E. coli extract.  相似文献   

13.
The concentration of alkyl phosphotriesters induced in mammalian DNA by many carcinogens can be determined by measuring the mean sedimentation coefficient of the single strands before and after hydrolysis of the triesters in 0.5 m NaOH at 37°C for 1 h. Experiments show that the difference between hydrolyzed and unhydrolyzed DNA containing methyl phosphotriesters can be quantitatively determined using the technique of difference sedimentation. Theoretical analysis indicates that there is no requirement for the accurate matching of the meniscus positions but that differences in DNA concentration between the two solutions have to be avoided. Practical procedures for the analysis and the calculation of the results are discussed.  相似文献   

14.
We have earlier reported that alkylation of DNA by the chemical carcinogen dimethyl sulphate, which mainly alkylates N-7 of guanine and N-3 of adenine, causes the formation of partially denatured regions in double-stranded DNA (Rizvi RY, Alvi NK & Hadi SM, Biosci. Rep. 2, 315-322, 1982). It is known that the major site of alkylation in DNA by N-ethyl-N-nitrosourea (EtNu) are the phosphate groups. N-methyl-N-nitrosourea (MeNu), on the other hand, causes the alkylation of mainly guanine residues. We have therefore studied the effect of these two alkylating carcinogens on the secondary structure of DNA. DNA alkylated with increasing concentrations of EtNu and MeNu was subjected to alkaline and S1 nuclease hydrolysis. Thermal melting profiles of alkylated DNA were also determined using S1 nuclease. The results indicated that alkylation by the two alkylating agents had a differential effect on the secondary structure of DNA. EtNu-alkylated DNA was found to be more thermostable than native DNA at neutral pH. It was however more alkali-labile than MeNu-alkylated DNA. The greater stability of EtNu-alkylated DNA was considered to be due to abolition of negative charges on phosphate alkylation.  相似文献   

15.
The rates of incorporation of 2-14C-thymidine into DNA of leukemia P388, bone marrow, gastrointestinal mucosa and spleen cells at various time after administration of 3,4-disuccinyldianhydrogalactitol (DisuDAG), 1-methyl-1-nitrosourea (MNU), 1-(2-hydroxyethyl)-3-(2-chloroethyl)-3-nitrosourea (HECNU) and their combinations at different doses to mice with leukemia P388 (solid form) were studied. DisuDAG (80 mg/kg) induced the deep and the stable inhibition in DNA synthesis of leukemia P388, bone marrow and spleen cells. The combination of DisuDAG and HECNU at small doses induced the deep and the stable suppression of DNA synthesis in tumor cells, however DNA synthesis in normal dividing cells was shown to recover more rapidly than in leukemia P388 cells. Administration of the combination of DisuDAG with MNU to tumor-bearing mice induced more stable inhibition of DNA synthesis in tumor cells in comparison with MNU and DisuDAG. In vivo inhibition of DNA synthesis in leukemia P388 cells with DisuDAG and HECNU was not due to damage in pool of precursors (TCA soluble fraction).  相似文献   

16.
The synthesis and anti-HIV activities of phenyl S-pivaloyl-2-thioethyl (tBuSATE) phosphotriesters of AZT and d4T are reported. These compounds show similar activity compared to bis(tBuSATE) phosphotriesters and appear to be able to deliver the corresponding 5'-mononucleotides inside the cells.  相似文献   

17.
The alkylation of phosphates in DNA by therapeutically active haloethylnitrosoureas was studied by reacting N-chloroethyl-N-nitrosourea (CNU) with dTpdT, separating the products by HPLC, and identifying them by co-chromatography with authentic markers. Both hydroxyethyl and chloroethyl phosphotriesters of dTpdT were identified; a similar reaction between CNU and dTR yielded 3-hydroxyethyl and 3-chloroethyl dTR as the major products of ring alkylation. A DNA-like substrate for repair studies was synthesized by reacting 14C-labelled N-(2-chloroethyl)-N'-cyclohexyl-N-nitrosourea (14C-CCNU) with poly dT and annealing the product to poly dA. An extract of E. coli strain BS21 selectively transferred a chloroethyl group from one of the chloroethyl phosphotriester isomers in this substrate to the bacterial protein; chemical instability of the hydroxyethyl phosphotriesters precluded definite conclusions about the repair of this product.  相似文献   

18.
The alternating copolymer poly(dA-dT) has been methylated with either dimethyl sulphate (DMS) or N-methyl-N-nitrosourea (MNU) and the levels of the various methylation products determined. In addition to the methylated adenines formed by both methylating agents, MNU resulted also in the formation of 3-methylthymine, O4-methylthymine and phosphotriesters. The methylated polymers have been ution of complementary and non-complementary nucleotides determined. With the DMS methylated template no wrong nucleotide incorporation was detectable, but with the MNU methylated polymer the incorporation of dGMP was observed. The amount of dGMP incorporated correlated with the level of O4-methylthymine in the template over the range of methylation studied. The results indicate that O4-methylthymine is capable of miscoding on a one-to-one basis while the products of DMS methylation (1-, 3- and 7-methyladenines), and also possibly the phosphotriesters, do not lead to any misincorporation.  相似文献   

19.
We have conducted studies to obtain practical knowledge regarding the stability, digestion, and analytical determination of the content of 8-hydroxy-2-deoxy-guanosine (8-OHdG) in oxidatively damaged DNA. Utilizing H2O2 plus uv light to form oxidatively damaged DNA, we found that storage of the DNA at -20 degrees C at alkaline pH caused a significant loss of 8-OHdG, whereas storage at -20 degrees C at neutral or acidic pH prevented loss of 8-OHdG. The 8-OHdG within DNA is stable at 100 degrees C for at least 15 min. Formation of 8-OHdG within DNA using uv light and H2O2 as a hydroxyl free radical-generating system yields the highest amounts when low levels of phosphate buffer are used; but the use of Tris or citrate buffers causes a lower yield of 8-OHdG because these buffers act as scavengers for the hydroxyl free radicals. Independent assessment of hydroxyl free radical flux by the use of salicylate trapping allows assessment of competitive radical reactions. Ethanol washing of plastic microfuge tubes prior to DNA enzymatic digestion improved the yield of 8-OHdG and reduced the variability between samples. Digestion of the oxidatively damaged DNA by the use of a method involving DNase I, endonuclease, phosphodiesterase, and alkaline phosphatase produced the highest yield of 8-OHdG.  相似文献   

20.
The damage of DNA structure and synthesis in murine leukemia L1210 cells upon single administration in therapeutic doses of antitumour agents of N-nitrosourea type, such as 1-methyl-1-nitrosourea (MNU) and 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) was studied. MNU and BCNU were characterized by stronger inhibitory effects on de novo DNA synthesis compared to additional pathway of DNA synthesis in leukemia L1210 cells in vivo. Centrifugation in alkaline sucrose density gradients of L1210 cell lysates has revealed persistent single-strand breaks and alkaline-labile sites in newly replicated DNA. Parental DNA structure was more stable to damaging drug effects than that of newly replicated DNA. The results are consistent with our previous data on the differences in the mechanisms of MNU and BCNU action and the absence of complete cross resistance between the drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号