首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Peninsular Malaysia ten species of lycaenid butterflies use leaf flushes or inflorescences of the legume tree Saraca thaipingensis as larval hostplant. Resource partitioning among these species is regulated by a complex mixture of patterns of interaction with ants. Females of obligately myrmecophilous species lay their eggs exclusively on trees colonized by their specific host ants. On trees colonized by weaver ants, only specialist mutualists adapted to these territorial ants are able to survive, while larvae of other species are killed. The formicine ant Cladomyrma petalae, which inhabits hollow twigs of the myrmecophytic hostplant, likewise precludes oviposition by female butterflies. Lycaenid larvae confronted with this ant species never survive, but one concealed feeding species (Jamides caeruleus) escapes removal due to the cryptic life-habits of the larvae. Two facultative myrmecophiles associate in a mutualistic way with a wide and largely overlapping range of ant genera which forage at the extrafloral nectaries of leaf flushes. One species (Cheritra freja) is not myrmecophilous, but is tolerated by all but the most territorial ants. Ant-dependent hostplant selection and egg-clustering characterize the obligate mutualists, whereas facultative myrmecophiles and the non-myrmecophile distribute their eggs singly over appropriate hostplants. Signals mediating caterpillar-ant communication are highly specialized in one obligate myrmecophile (Drupadia theda), but rather unspecific in four other species tested. Altogether our observations indicate that colonization and establishment of lycaenid butterflies on S. thaipingensis trees are governed by specializations as well as opportunistic use of resources (ants and hostplant parts). Therefore, the diversity of this species assemblage is maintained by deterministic as well as stochastic factors.  相似文献   

2.
3.
Eggs of leaf beetles of the tribe Galerucini, subfamily Galerucinae, contain polyketides that are unusual in insects: 1,8-dihydroxylated anthraquinones (chrysazin, chrysophanol) and anthrones (dithranol, chrysarobin) deterring predators. The host plants do not contain these compounds. In the present study, we tested the hypothesis that the beetles, but not bacterial or fungal microorganisms living as endosymbionts within the beetles, produce the anthraquinones. The tansy leaf beetle Galeruca tanaceti was used as Galerucini model organism. It was treated with antimicrobial substances to eradicate the microorganisms and inhibit the hypothesised endosymbiotic anthraquinone production. Despite treatment, female G. tanaceti laid eggs containing anthraquinones. Although broad spectrum antimicrobials were used, it cannot be excluded that the potential endosymbiotic microorganisms are resistant. Given that the hypothesised endosymbionts are transferred via the eggs from one generation to the next, bacterial or fungal DNA was expected to be present in the eggs. With the exception of Wolbachia pipientis, however, no further 16S rDNA from bacteria responsible for anthraquinone biosynthesis was detected in eggs of untreated beetles. Because Wolbachia were also found in closely related anthraquinone-free insects, we exclude these bacteria as producers of the defensive polyketides. Nor was any 18S rDNA from fungi with anthraquinone biosynthetic abilities detected. Our results indicate that anthraquinones and anthrones in eggs of Galerucini are produced by beetle enzymes and not by endosymbiotic microorganisms within the eggs.  相似文献   

4.
Defence and development in a gregarious leaf-mining beetle   总被引:1,自引:0,他引:1  
Abstract.
  • 1 The gregarious larvae of the chrysomelid beetle Microrhopala vittata mine the leaves of goldenrods (Solidago spp.). These mines serve both as food and as shelter for the larvae.
  • 2 Life-table data and experiments indicated that mine initiation and moves to secondary mines represented especially vulnerable stages during larval development. Leaf mines effectively protected M.vittata against predators in the field.
  • 3 Field experiments indicated that larvae hatching from larger clutches of eggs stood a greater chance of surviving to pupation, primarily because larvae hatching in groups proved more successful at initiating leaf mines. Once inside the leaf mine, however, larvae feeding in large groups attained lower adult masses, and were more likely to abandon the natal mine and did so earlier in development because large groups more rapidly destroyed a leaf.
  相似文献   

5.
Summary Diplacus aurantiacus produces a full canopy of leaves during the rainy winter and spring. As the drought begins in summer, all but the terminal leaves are lost. The leaves present during the growth period have a comparatively low specific weight and a high content of water, protein, and non-structural carbohydrate on a weight basis. Leaves of this type have a high carbon-gain per unit dry matter investment.The larvae of Euphydryas chalcedona utilize Diplacus as their principal food source. Following the first winter rains, the shrub starts to grow and the larvae of Euphydryas break diapause and begin actively feeding. Adults are produced which lay eggs that hatch into prediapause larvae. During the end of the growth period of the shrub, as the quality and quantity of Diplacus leaves decline, the prediapause larvae have a brief period of active feeding and growth and then enter diapause. Diplacus produces a leaf surface resin which inhibits the growth of Euphydryas larvae. It is present in the highest amounts on those few leaves that remain on the shrub during the drought period.The type and pattern of herbivore defense in Diplacus fits the model described for apparent plants.  相似文献   

6.
Chrysomelid larvae of the subfamily Galerucinae, tribe Galerucini, are known to contain 1,8-dihydroxylated 9,10-anthraquinones. Since nonhydroxylated 9,10-anthraquinone is the active agent in several commercial products sold to protect seeds against birds, we suggested that the naturally occurring dihydroxylated anthraquinones of galerucine larvae may also act as protective devices against bird predation. Tits (Parus spp.) are potential predators of larvae of the tansy leaf beetle, Galeruca tanaceti, and the elm leaf beetle, Xanthogaleruca luteola. To investigate the palatability of these chrysomelid larvae to birds, we offered them with mealworms and Calliphora pupae, respectively, as controls in dual choice bioassays to eight singly kept, naive tits (five P. major and three P. ater individuals). The bioassays were limited to 5 days, during which larvae were offered daily for 2 h (X. luteola) and 3 h (G. tanaceti), respectively. Every day, the birds significantly avoided uptake of G. tanaceti and X. luteola. More than 98% of the control food was consumed daily, whereas the percentage of chrysomelid larvae totally eaten never surpassed 6.6% for G. tanaceti and 51.8% for X. luteola. In order to determine whether this avoidance was due to the anthraquinones of the chrysomelid larvae, mealworms and Calliphora pupae, respectively, were treated with these compounds in concentrations equivalent to the natural ones. Dual choice bioassays with treated and untreated prey were conducted, again for 5 days with a daily 2- or 3-h test period, respectively. The tits ate all or nearly all treated and untreated food items every day. However, during the 5-day test period the tits learnt to take up the control insects significantly earlier than the treated ones; the food containing anthraquinones was not consumed as readily as the control, which suggest aversive learning based on distastefulness. The efficiency of anthraquinones in protecting galerucine larvae against bird predation is discussed with special respect to learning behavior and factors which might delay or mask learning of avoidance.  相似文献   

7.
Summary Caterpillars of Maculinea arion are obligate predators of the brood of Myrmica sabuleti ants. In the aboratory, caterpillars eat the largest available ant larvae, although eggs, small larvae and prepupae are also palatable. This is an efficient way to predate. It ensures that newly-adopted caterpillars consume the final part of the first cohort of ant brood in a nest, before this pupates in early autumn and becomes unavailable as prey. At the same time, the fixed number of larvae in the second cohort is left to grow larger before being killed in late autumn and spring. Caterpillars also improve their feeding efficiency by hibernating for longer than ants in spring, losing just 6% of their weight while the biomass of ant larvae increases by 27%. Final instar caterpillars acquire more than 99% of their ultimate biomass in Myrmica nests, growing from 1.3 mg to an estimated 173 mg. A close correlation was found between the weights of caterpillars throughout autumn and the number of large ant larvae they had eaten. This was used to calculate the number of larvae eaten in spring, allowing both for the loss of caterpillar weight during winter and the increase in the size of their prey in spring. It is estimated that 230 of the largest available larvae, and a minimum nest size of 354 M. sabuleti workers, is needed to support one butterfly. Few wild M. sabuleti nests are this large: on one site, it was estimated that 85% of nests were too small to produce a butterfly, and only 5% could support two or more. This prediction was confirmed by the mortalities of 376 caterpillars in 151 wild M. sabuleti nests there. Mortalities were particularly high in nests that adopted more than two caterpillars, apparently due to scramble competition and starvation in autumn. Survival was higher than predicted in wild nests that adopted one caterpillar. These caterpillars seldom exhaust their food before spring, when there is intense competition among Myrmica for nest sites. Ants often desert their nests in the absence of brood, leaving the caterpillar behind. Vacant nests are frequently repopulated by a neighbouring colony, carrying in a fresh supply of brood. Maculinea arion caterpillars have an exceptional ability to withstand starvation, and sometimes survive to parasitize more than one Myrmica colony. Despite these adaptations, predation is an inefficient way to exploit the resources of a Myrmica nest. By contrast, Maculinea rebeli feeds mainly at a lower trophic level, on the regurgitations of worker ants. Published data show that Myrmica nests can support 6 times more caterpillars of Maculinea rebeli than of M. arion in the laboratory. This is confirmed by field data.  相似文献   

8.
Invasive predators can have dramatic impacts on invaded communities. Extreme declines in macroinvertebrate populations often follow killer shrimp (Dikerogammarus villosus) invasions. There are concerns over similar impacts on fish through predation of eggs and larvae, but these remain poorly quantified. We compare the predatory impact of invasive and native amphipods (D. villosus and Gammarus pulex) on fish eggs and larvae (ghost carp Cyprinus carpio and brown trout Salmo trutta) in the laboratory. We use size-matched amphipods, as well as larger D. villosus reflecting natural sizes. We quantify functional responses, and electivity amongst eggs or larvae and alternative food items (invertebrate, plant and decaying leaf). D. villosus, especially large individuals, were more likely than G. pulex to kill trout larvae. However, the magnitude of predation was low (seldom more than one larva killed over 48 h). Trout eggs were very rarely killed. In contrast, carp eggs and larvae were readily killed and consumed by all amphipod groups. Large D. villosus had maximum feeding rates 1.6–2.0 times higher than the smaller amphipods, whose functional responses did not differ. In electivity experiments with carp eggs, large D. villosus consumed the most eggs and the most food in total. However, in experiments with larvae, consumption did not differ between amphipod groups. Overall, our data suggest D. villosus will have a greater predatory impact on fish populations than G. pulex, primarily due to its larger size. Higher invader abundance could amplify this difference. The additional predatory pressure could reduce recruitment into fish populations.  相似文献   

9.
ABSTRACT.
  • 1 The female weevil of Apoderus balteatus Roelofs cuts the leaf near its base in order to make a leaf-roll‘cradle', in which one, two or three eggs are laid. Cuts are always located about 5 mm from the leaf base, independent of leaf size.
  • 2 Larger leaves are made into larger cradles.
  • 3 Weevils tend to lay more eggs in large cradles.
  • 4 Eggs are laid through different holes and separated by leaf layers in the cradle. Cannibalism by larvae will be prevented by this isolated oviposition.
  • 5 Multiple oviposition of this weevil allows larger leaves to be used by multiple larvae. It facilitates more efficient use of larger leaves and economizes on female effort in cradle formation.
  相似文献   

10.
This study of animal–plant interaction focused on the impact of oviposition by an insect on the leaves of Prunus avium (cherries). We examined whether the oviposition by Caliroa cerasi affects leaf mechanical and spectral traits in P. avium. Three cultivars of P. avium were studied. Infested leaves had from 1 to 18 eggs and exhibited higher leaf dry mass per area (LMA) than leaves without eggs. Leaf dry weight and LMA were positively correlated with egg number per leaf. Infested leaves tended to have higher number of trichomes. Leaf thickness and material and structural resistance tended to increase in infested leaves. The reflectance across all wavelengths (500–700 nm) in leaves with larger number of eggs was higher compared to leaves without eggs. Photosynthetic performance was reduced and oxidative activity was increased in leaves with eggs. Extrafloral nectaries increased with increasing the number of eggs per leaf and thus play an important role in defense against herbivores by providing nectar rewards that attract their depredators. These responses to oviposition may be beneficial for the plants in terms of resistance to feeding larvae.  相似文献   

11.
12.
Cloning of OSCs required for triterpene synthesis from legume species that are amenable to molecular genetics will provide tools to address the importance of triterpenes and their derivatives during normal plant growth and development and also in interactions with symbionts and pathogens. Here we report the cloning and characterization of a total of three triterpene synthases from the legume species Medicago truncatula and Lotus japonicus. These include a -amyrin synthase from M. truncatula (MtAMYI) and a mixed function triterpene synthase from Lotus japonicus (LjAMY2). A partial cDNA predicted to encode a -amyrin synthase (LjAMY1) was also isolated from L. japonicus. The expression patterns of MtAMY1, LjAMY1 and LjAMY2 and of additional triterpene synthases previously characterised from M. truncatula and pea differ in different plant tissues and during nodulation, suggesting that these enzymes may have distinct roles in plant physiology and development.  相似文献   

13.
Abstract.
  • 1 Generalist predators are repelled by chrysomelid (Chrysomela spp., Phratora vitellinue L.) larval defensive secretions that are obtained from salicin in their host plants. But little is known about the effect of these secretions on specialist predators.
  • 2 In this study, we describe the feeding behaviour of a fly, Parasyrphus melanderi Curran (Diptera: Syrphidae), which feeds on Chrysomela aeneicollis Schaeffer (Coleoptera: Chrysomelidae). Parasyrphus melanderi lays its eggs on C.aeneicollis egg clutches, and its larvae consume C.aeneicollis eggs and larvae.
  • 3 Chrysomela aeneicollis hatching rates were significantly lower (20%) on clutches with fly eggs than on clutches without them (40%). Half of the clutches with one fly egg had survival rates below 5%, and when two fly eggs were present (four clutches), the entire clutch was consumed.
  • 4 In nature, P.melanderi eggs were 3 times more abundant on a salicylaterich willow species S.orestera Schneider, than on the medium-salicylate S.geyeriana Anderss. (1.8 v 0.6 eggs per clutch). On 18% of the S.orestera clones, all the beetle clutches contained fly eggs. In laboratory-choice tests, P.melanderi larvae fed equally rapidly on C.aeneicollis larvae that were chemically defended (feeding on S.orestera) as on larvae that produced no secretion (feeding on the salicylate-poor S.lutea Nutt.). This predator does not appear to be deterred by C.aeneicollis's defensive secretion. We discuss the implications of specialist predators on determining host suitability to herbivorous insects.
  相似文献   

14.
ABSTRACT.
  • 1 Depressaria multifidae Clarke feeds on a broader variety of Umbelliferae plant parts than other Depressaria species.
  • 2 Early instar larvae feed in the sheaths surrounding floral buds and leaves. Later instar larvae feed in the sheaths and floral stems and on flowers and leaves.
  • 3 Floral stems bored by larvae had significantly larger basal stem diameters than floral stems that were not bored. Smaller stems usually have umbels with only male flowers, and wither after flowering, too soon for larvae to complete development. In contrast, larger stems often have umbels with some hermaphroditic flowers, which remain green and erect long enough for larvae to complete development. Hence, selection may favour larvae that bore only in relatively large stems.
  • 4 In the laboratory, larvae fed sheaths with enclosed floral buds, flowers, or leaves all pupated at the same weight, but larvae fed floral stems pupated at a significantly lower weight. Larval and pupal development time was the same on all plant parts.
  • 5 In the field, larvae restricted to a single umbel throughout development pupated at the same weight as those restricted to a single leaf.
  • 6 Unlike in other Depressaria species, nitrogen levels only partly correspond to the pattern of use of plant parts in D.multifidae. Nitrogen values varied as follows: floral buds > immature leaves ≥ flowers > floral stalks > sheaths excluding floral buds or leaves.
  • 7 The broad variety of plant parts used by D.multifidae may result partly from the problem of feeding on a small, seasonally restricted hostplant; the greater use of sheaths and floral stems than in other Depressaria species may result from selection for safety from parasites or predators.
  • 8 The results for D.multifidae indicate that the way in which an insect feeds on a plant species can vary broadly even at a single site.
  相似文献   

15.
Summary Early models of hostplant exploitation by phytophagous insects suffer from unwarranted assumptions and may not be generally applicable. Wordmodels of the co-evolutionary approach may assume unwarranted evolutionary stability in strategic explanations, whilst mathematical models derived from earlier optimal-diet studies are unrealistic and unwieldy. A simple arithmetic model synthesises these two approaches, using the two parameters of foodplant suitability and availability. Hostplant use by the butterfly Anthocharis cardamines, previously thought to be maladaptively polyphagous, is shown to be optimal under prevailing conditions of short search time. The predictions of the model for hostplant use and community structure of butterflies and other phytophagous insects are tested and, in large part, corroborated. Monophagy and monophagic forms of oligophagy are shown to be favoured by: long adult lifespan; low search costs to females; search images (Whether visual or olfactory); batch-laying of eggs; high differential in foodplant suitability.  相似文献   

16.
Summary The oviposition behaviour of the butterfly Anthocharis cardamines has been examined, using the methods of strong inference to investigate foodplant choice. Adaptive explanations for females ovipositing mainly on unshaded, young and large individuals of Alliaria petiolata are rejected in favour of explanations based on apparency to searching females. Floral characters shown to influence intraspecific foodplant apparency are then examined in comparisons between crucifer species, and are shown to explain well the observed deposition of A. cardamines eggs. Cruciferae such as Barbarea vulgaris and Hesperis matronalis, although poor for larval survival, receive many butterfly eggs as a result of large, persistent inflorescences. The contrasting and opposing effects of hostplant apparency and defence are discussed.  相似文献   

17.
The aims of this study were: (a) determine the prey stage preference of female Euseius hibisci (Chant) (Phytoseiidae) at constant densities of different stages of Tetranychus urticae Koch (Tetranychidae), (b) assess the functional response of the predator females to the varying densities of eggs, larvae, or protonymphs of T. urticae, and (c) estimate the functional response of E. hibisci when pollen of Ligustrum ovalifolium was present as well. We conducted experiments on excised pieces of strawberry leaf arenas (Fragaria ananassa) under laboratory conditions of 25 ± 2 °C, 60 ± 5% RH and 12 h photophase. Our results indicated that the predator consumed significantly more prey eggs than other prey stages. Consumption of prey deutonymphs and adults was so low that they were excluded from the non-choice functional response experiments. The functional response on all food items was of type II. The two parameters of the functional response were estimated for each prey type by means of the adjusted non-linear regression model. The highest estimated value a (instantaneous rate of discovery) and the lowest value of Th (handling time, including digestion) were found for the predator feeding on prey eggs, and a was lowest and Th highest when fed protonymphs. Using the jack-knife method, the values for the functional response parameters were estimated. The values of a and Th produced by the model were similar among all prey types except for the eggs, which were different. Using pollen simultaneously with prey larvae decreased the consumption of the latter over the full range of prey densities The suitability of this predator for biological control of T. urticae on strawberry is discussed.  相似文献   

18.
Summary We examined how predation by vespid wasps,Polistes dominulus andP. fuscatus, affected the behavior, growth rate and survivorship of aggregated caterpillars ofHemileuca lucina (Saturniidae). Although these larvae can exhibit a variety of defense and escape behaviors, in general larvae reacted to wasp attacks by clinging to the hostplant. Neighboring larvae in the aggregation responded by leaving the feeding site and moving to the interior or base of the plant. To determine wheter wasp attack affected the behavior and growth of the caterpillars that escaped, a field experiment was conducted with treatments of: 1) larvae exposed to wasps, 2) larvae protected from wasps, and 3) larvae protected from wasps but with the attack of wasps simulated (=harassment). Over just one instar, protected larvae gained significantly more weight than the harassed larvae, which in turn weighed significantly more than the larvae that escaped the wasps. The behavior of attacked and harassed larvae differed from that of the protected larvae; the disturbed larvae often fed in smaller groups and in shaded portions of the plant where only mature leaves were available. A laboratory experiment showed that at 35° C (daytime temperature) larvae had significantly higher relative growth rates and significantly shorter instar duration than larvae reared at 25° C. Our results suggest that wasps, in addition to killing caterpillars, indirectly affect larval fitness by slowing larval growth, at least in part by forcing larvae into cooler microhabitats where leaves are of lower quality.  相似文献   

19.
A colony ofAmblyomma parvum was started with engorged females collected from cattle in the Province of Salta (25°01 S, 63°56 W), Argentina. The progeny of those ticks were fed on rabbits and the non-parasitic stages maintained at 27±1°C, 83–86% RH in darkness. The life cycle (prefeeding period not evaluated) had a mean duration of 99.6 days. The mean time (days) for the different phases of the cycle were as follows: feeding period of females, 8.0; pre-oviposition period, 5.7; oviposition period, 17.5; minimum incubation period of the eggs, 31.8; feeding period of larvae, 3.2; premoult period to nymphs, 10.9; feeding period of nymphs, 4.7; premoult period to adults, 17.8. The oviposition pattern was typical of an ixodid tick, including a linear relationship between weights of engorged females and the number of eggs laid (r=0.8659). The males increased 18% in weight after feeding on hosts (P<0.01). The mean recovery rates of larvae, nymphs and females were 28.2%, 95.3% and 90.7%, respectively. The nymphs moulting to females were heavier (6.8±0.69 mg) than those moulting to males (3.2±0.29 mg) (P<0.01). A comparison of biological values ofA. parvum with American and non-AmericanAmblyomma species is presented.  相似文献   

20.
In laboratory dual-choice assays females of the cabbage root fly, Delia radicum, prefer for oviposition plants with roots damaged by conspecific larvae to undamaged controls. Cauliflower and kale plants were inoculated with root fly eggs (25 per plant) and the hatching larvae were allowed to feed on the roots for various periods of time (1–17 days). After 4 (cauliflower) or 5 (kale) days of larval feeding the oviposition preference was most pronounced and flies laid between 64% and 68% of their eggs near plants with damaged roots. Later, with increasing damage but fewer surviving, and thus actively feeding, larvae, the magnitude of the preference declined. The preference for plants already damaged by conspecific larvae may contribute to the previously observed aggregated distribution of D. radicum eggs in Brassica crop fields.Further experiments revealed that the sensory cues inducing this oviposition preference originate from the complex consisting of the damaged roots, the surrounding substrate (soil) and associated microbes, rather than from the aerial plant parts. In choice assays using the root-substrate complex of damaged and control plants (aerial parts removed), the observed preference for damaged roots was similar to that found for the entire plant but was more pronounced. The damaged roots alone, compared to control roots, received up to 72% (cauliflower) and 75% (kale) of the eggs. By contrast, surrogate leaves sprayed with methanolic leaf surface extracts from the most preferred plants which had been damaged were not discriminated from surrogate leaved sprayed with extracts of the respective control plants. Analysis of glucosinolate levels in methanolic leaf surface extracts revealed that root damage resulted in enhanced concentrations of indole-glucosinolates on the leaf surface in kale but not in cauliflower. Although indole-glucosinolates are oviposition stimulants for the cabbage root fly, the induced changes were apparently too small to influence oviposition behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号