首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the antioxidative response of glutathione metabolism in Urtica dioica L. to a cadmium induced oxidative stress, activities of glutathione reductase (GR), glutathione-S-transferase (GST), and glutathione peroxidase (GSH-Px), content of reduced (GSH) and oxidized (GSSG) glutathione, lipid peroxidation (LPO), and also accumulation of Fe, Zn, Mn, Cu besides Cd were determined in the roots, stems, and leaves of plants exposed to 0 (control), 0.045, and 0.09 mM CdCl2 for 58 h. Whereas the Cd content continuously increased in all organs, the Fe, Zn, Mn, and Cu content decreased in dependence on the applied Cd concentration and incubation time. The Cd treatment resulted in increased GR and GST activities in all organs, however, GSH-Px activity was dependent on Cd concentration and plant organ. The GSH/GSSG ratio maintained above the control level in the stems at both Cd concentrations. The LPO was generally close to the control values in the roots and stems but it increased in the leaves especially at 0.09 mM Cd.  相似文献   

2.
The effect of 20-hydroxyecdysone (20E) and juvenile hormone (JH) on the glutathione pathway of the greater wax moth Galleria mellonella (Lepidoptera: Pyralidae) was determined by investigating glutathione peroxidase (GSH-Px), glutathione S-transferases (GST), and glutathione reductase (GR) activities as well as reduced and oxidized glutathione (GSH and GSSG) content with respect to developmental stage. The continuous decreases of GSH-Px and GST activities dependent on the growth period of G. mellonella occurred in JH and 20E groups over and under their controls, respectively. While the GR activities of G. mellonella showed increases in young pupa (YP) for both control and in old larvae (OL) for the 20E groups after the minimum at these periods, they also increased after old pupa (OP) for the JH group with a maximum in OL period. Although GR activity levels in the JH group were significantly higher compared with controls and 20E groups up to OP period, the activity levels for the control and 20E groups were higher than those of the JH group at adult (AD) and old pupa (OP) periods, respectively. In spite of increases in the GR activity of 20E and control groups of G. mellonella, decreased GSH and increased GSSG levels were observed at aging period. GSH levels in the JH group reached a maximum at prepupa (PP) and then decreased with non-significant changes from OL to AD period. According to the results, GSH and GSSG levels, as well as GSH/GSSG ratios, were below and over control levels in 20E and JH groups, respectively, during all of the investigated developmental stages. On the contrary, the LPO levels were higher than the control for 20E and lower for the JH groups during the developmental period. These results show that while ecdysone hormone has a negative effect on the glutathione-related detoxication capacity of G. mellonella, the juvenile hormone has a positive effect on this process.  相似文献   

3.
Total glutathione (t-GSH), reduced glutathione (GSH), glutathione disulphide (GSSG) levels, t-GSH/GSSG ratio, glutathione peroxidase (GSH-Px) activity and lipid peroxidation (LPO) levels were investigated during the development period of a predominantly aquatic amphibian R.r.ridibunda and a predominantly terrestrial amphibian B. viridis. While t-GSH and GSH showed a similar trend, GSSG concentration increased significantly (p<0.05) during the larval stages in R.r.ridibunda larvae. In contrast to R.r.ridibunda larvae, there was no significant (p>0.05) change between 1 and 5 weeks in the t-GSH and GSH concentrations of B. viridis. t-GSH and GSH concentrations of B. viridis larvae became sharply elevated after the fifth week, GSSG levels increased 3.25-fold during the metamorphosis. The t-GSH/GSSG ratio fluctuated and the lowest t-GSH/GSSG ratios were observed at the third week for both species. GSH-Px activities for both species increased significantly (p<0.05) during the growing period. The highest GSH-Px activities in R.r.ridibunda and B.viridis were observed at the eighth week and they were 3.45 +/- 0.17 and 4.1 +/- 0.21 IU mg(-1), respectively. The membrane LPO levels in the R.r.ridibunda and B. viridis tadpoles significantly (p<0.001) decreased from 206 +/- 10.3 to 146 +/- 7.3 and from 198 +/- 9.9 to 23 +/- 1.15 nmol MDA g(-1) w.w., respectively.  相似文献   

4.
A high Cd-tolerant dark septate endophyte (DSE), Exophiala pisciphila, was inoculated into maize (Zea mays L.) roots under Cd stress. The Cd content, enzymes activity and thiol compound content relevant to glutathione (GSH) metabolism in maize leaves were analyzed. The Cd content in maize shoots increased with increasing Cd stress, but the DSE significantly reduced the Cd content at the 40?mg/kg Cd treatment. Cd stress increased the enzyme activity of glutathione reductase (GR), glutathione S-transferase (GST) and glutathione peroxidase (GSH-Px) as well as the thiol compound contents of sulfur, thiols (-SH) and oxidized glutathione (GSSG). The content of reduced GSH and the GSH/GSSG ratio reached a peak at the 5?mg/kg Cd treatment but then decreased with increasing Cd stress. Furthermore, the DSE significantly enhanced the GR and GSH-Px activity and increased the contents of -SH and GSH under low Cd stress (5 and 10?mg/kg), but decreased the γ-glutamylcysteine synthetase and GST activity under high Cd stress (20 and 40?mg/kg). Highly positive correlations between the Cd content with enzymes activity and enzymes activity with thiol compound content were observed. Results indicated that DSE played a role in activating GSH metabolism in maize leaves under Cd stress.  相似文献   

5.
The following parameters related to oxygen free radicals (OFR) were determined in erythrocytes and the epidermis of hairless rats: catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), reduced (GSH) and oxidized (GSSG) glutathione, glutathione S-transferase (GST), superoxide dismutase (SOD) and thiobarbituric acid reactive substances (TBARS). GSH, GSSG and TBARS were also analyzed in plasma. In erythrocytes, the Pearson correlation coefficients (r) were significant (p < 0.001) between glutathione and other parameters as follows: GSH correlated negatively with GSSG (r = -0.665) and TBARS (r = -0.669); GSSG correlated positively with SOD (r = 0.709) and TBARS (r = 0.752). Plasma GSSG correlated negatively with erythrocytic thermostable GST activity (r = -0.608; p=0.001) and with erythrocytic total GST activity (r = -0.677; p < 0.001). In epidermis (p < 0.001 in all cases), GSH content correlated with GSSG (r = 0.682) and with GPx (r = 0.663); GSSG correlated with GPx (r = 0.731) and with GR (r = 0.794). By multiple linear regression analysis some predictor variables (R(2)) were found: in erythrocytes, thermostable GST was predicted by total GST activity and GSSG, GSSG content was predicted by GSH and by the GSH/GSSG ratio and GPx activity was predicted by GST, CAT and SOD activities; in epidermis, GSSG was predicted by GR and SOD activities and GR was predicted by GSSG, TBARS and GPx. It is concluded that the hairless rat is a good model for studying OFR-related parameters simultaneously in blood and skin, and that it may provide valuable information about other animals under oxidative stress.  相似文献   

6.
In this meta-analysis, studies reporting arsenic-induced oxidative damage in mouse models were systematically evaluated to provide a scientific understanding of oxidative stress mechanisms associated with arsenic poisoning. Fifty-eight relevant peer-reviewed publications were identified through exhaustive database searching. Oxidative stress indexes assessed included superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx), glutathione-s-transferase (GST), glutathione reductase (GR), oxidized glutathione (GSSG), malondialdehyde (MDA), and reactive oxygen species (ROS). Our meta-analysis showed that arsenic exposure generally suppressed measured levels of the antioxidants, SOD, CAT, GSH, GPx, GST, and GR, but increased levels of the oxidants, GSSG, MDA, and ROS. Arsenic valence was important and GR and MDA levels increased to a significantly (P < 0.05) greater extent upon exposure to As3+ than to As5+. Other factors that contributed to a greater overall oxidative effect from arsenic exposure included intervention time, intervention method, dosage, age of animals, and the sample source from which the indexes were estimated. Our meta-analysis effectively summarized a wide range of studies and detected a positive relationship between arsenic exposure and oxidative damage. These data provide a scientific basis for the prevention and treatment of arsenic poisoning.  相似文献   

7.
We investigated the protective role of selenium (Se) in minimizing high temperature-induced damages to rapeseed (Brassica napus L. cv. BINA Sarisha 3) seedlings. Ten-day-old seedlings which had been supplemented with Se (25 μM Na2SeO4) or not were grown separately under control temperature (25 °C) or high temperature (38 °C) for a period of 24 or 48 h in nutrient solution. Heat stress caused decrease in chlorophyll and leaf relative water content (RWC) and increased malondialdehyde (MDA), hydrogen peroxide (H2O2), proline (Pro), and methylglyoxal (MG) contents. Ascorbate (AsA) content decreased at any duration of heat treatment. The content of reduced glutathione (GSH) increased only at 24 h of stress, while glutathione disulfide (GSSG) markedly increased at both duration of heat exposure with associated decrease in GSH/GSSG ratio. Upon heat treatment the activities of ascorbate peroxidase (APX), glutathione S-transferase (GST) and glyoxalase I (Gly I) were increased, while the activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and catalase (CAT) were decreased. The activities of glutathione reductase (GR) and glutathione peroxidase (GPX) remained unchanged under heat stress. However, heat-treated seedlings which were supplemented with Se significantly decreased the lipid peroxidation, H2O2, and MG content and enhanced the content of chlorophyll, Pro, RWC, AsA, and GSH as well as the GSH/GSSG ratio. Selenium supplemented heat-treated seedlings also showed enhanced activities of MDHAR, DHAR, GR, GPX, CAT, Gly I, and Gly II as compared to heat-treated seedlings without Se supplementation. This study concludes that exogenous Se application confers heat stress tolerance in rapeseed seedlings by upregulating the antioxidant defense mechanism and methylglyoxal detoxification system.  相似文献   

8.
The effect of 0.5–1.5 mM salicylic acid (SA) on modulating reactive oxygen species metabolism and ascorbate–glutathione cycle in NaCl-stressed Nitraria tangutorum seedlings was investigated. The individual plant fresh weight (PFW) and plant dry weight (PDW) significantly increased under 100 mM NaCl while remained unchanged or decreased under 200–400 mM NaCl compared to the control. Superoxide anion (O 2 ·? ), hydrogen peroxide (H2O2), thiobarbituric acid reactive substances (TBARS), reduced ascorbate (AsA), dehydroascorbate (DHA), reduced glutathione (GSH) and oxidized glutathione (GSSG) increased whereas the ratios of AsA/DHA and GSH/GSSG decreased under varied NaCl treatments. Ascorbate peroxidase (APX) and glutathione reductase (GR) activities were enhanced while dehydroascorbate reductase (DHAR) and monodehydroascorbate reductase (MDHAR) activities remained unvaried under 100–400 mM NaCl stresses. In addition, exogenous SA further increased PFW, PDW and root/shoot ratio. SA effectively diminished O 2 ·? accumulation. H2O2 and TBARS decreased under 0.5 and 1.0 mM SA treatments compared to those without SA. 0.5 mM of SA increased while 1.0 and 1.5 mM SA decreased APX activities. DHAR activities were elevated by 0.5 and 1.0 mM SA but not by 1.5 mM SA. MDHAR and GR activities kept constant or significantly increased at varying SA concentrations. Under SA treatments, AsA and GSH contents further increased, DHA and GSSG levels remained unaltered, while the decreases in AsA/DHA and GSH/GSSG ratios were inhibited. The above results demonstrated that the enhanced tolerance of N. tangutorum seedlings conferred by SA could be attributed mainly to the elevated GR and DHAR activities as well as the increased AsA/DHA and GSH/GSSG ratios.  相似文献   

9.
For the bivoltine (Dazao) strain of the silkworm Bombyx mori L., diapause expression in progeny is induced by exposure to conditions of 25 °C and continuous illumination (LL) during the maternal generation, whereas an environment of 15 °C and constant darkness (DD) results in nondiapause progeny. Initiation of diapause in progeny can be prevented by treatment of diapause‐programmed eggs with hydrochloric acid (HCl) at approximately 24 h post‐oviposition. To investigate whether glutathione is involved in the regulation of diapause induction and initiation in this species, measurements of total glutathione, reduced glutathione (GSH), oxidised glutathione (GSSG), GSH/GSSG ratio, glutathione S‐transferase (GST) and peroxiredoxins (Prdx) are compared in eggs incubated under LL and DD conditions, and between diapause eggs and those treated with HCl. Compared with DD, eggs incubated under LL have higher total glutathione (GSH + 2GSSG), lower GSH, higher GSSG, a lower GSH/GSSG ratio, lower GST activity and higher Prdx activity at stages 20–25 of maternal embryogenesis. The lower ratio of GSH/GSSG is indicative of pro‐oxidative conditions during diapause induction, which may result from the stronger oxidation of GSH. Compared with HCl‐treated eggs, diapause eggs have lower total glutathione, no difference in GSH, lower GSSG, a higher GSH/GSSG ratio, no difference in GST activity and lower Prdx between 36 and 72 h post‐oviposition. The higher ratio GSH/GSSG is indicative of reducing conditions during diapause initiation, which may a result of the weaker oxidation of GSH. Moreover, variations of Prdx and GST suggest that Prdx rather than GST plays an important role in the oxidation of GSH during the induction and initiation of diapause.  相似文献   

10.
To determine whether the enhanced stress tolerance of ZnSO4 with NiSO4-treated Mimulus guttatus Fischer ex DC. plants was associated with the glutathione (GR-GSH) system, we investigated the changes in glutathione redox state (reduced (GSH), oxidized (GSSG) forms, total reduced (GSHt) glutathione, and GSH/GSSG ratio) and in the enzymatic activities of glutathione reductase (GR) and peroxidatic glutathione S-transferases (GST). The 6-week-old plants were grown in water culture during 4 weeks on a modified Rorison’s medium with ZnSO4 (50, 100, and 200 μM) and NiSO4 (20 and 80 μM) in a condition of separate or simultaneous supply of the components. Dry biomass accumulations of roots and shoots were not influenced by the examined treatments. The positive correlations between the total external concentrations of ZnSO4 and NiSO4 and the total Zn and Ni contents in roots and leaves were found. It was determined that the MDA content was higher in the ZnSO4-treated plants than in the NiSO4-treated ones. The supplementation of the ZnSO4-treated plants with varied concentrations of NiSO4 decreased the Zn-induced increase in the MDA levels. The inverse proportionality between the MDA and pigment levels in leaves was found. The Zn-Ni interactions were shown to induce the decreases in the GR activity, the total peroxidatic GST activity, and the GSH/GSSG ratio in roots. However, in leaves, the GR activity and the GSH/GSSG ratio were significantly increased and the total peroxidatic GST activity was decreased. The supplementation of the ZnSO4-treated plants with varied concentrations of NiSO4 restored the Zn-induced reduction in the GSHt levels in roots and decreased the Zn-induced increase in the GSSG levels in leaves, which resulted in more reduced state of the intracellular environment. It was likely to cause a decrease of the MDA level. Thus, our studies on the Zn?Ni interactions identified the antagonizing role of Ni in Zn toxicity by the GR-GSH system.  相似文献   

11.
Administration of lead (1.25 and 2.5 mumol/kg egg weight) to 14-day-old chick embryos enhanced the level of lipid peroxides (LPO) in tissues of liver, brain, and heart. Accumulation of LPO was maximum at 9 h after treatment with lead and returned to normal level by 72 h. Further, we have studied the levels of glutathione-S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase. At 9 h posttreatment, the hepatic GR was reduced significantly with the induction of GST and considerable depletion of GSH. However, in brain and heart, both GR and GST activities were unaltered with significant reduction of GSH. Further, an increase of non-Se-dependent GPx and SOD activities were observed in liver, brain, and heart. Similarly, at 72 h, although the GPx activity was found decreased in liver and brain, the GST, catalase, and SOD activities were significantly increased in all the three tissues alike, suggesting tissue-specific changes of antioxidant defense components in response to lead treatment. Our results suggests that the elevated levels of GST, SOD, and catalase at 72 h were successful in bringing LPO levels back to normal.  相似文献   

12.
Melatonin (MEL) displays antioxidant and free radical scavenger properties. In the present study, the effect of MEL on the oxidative stress induced by ochratoxin A (OTA) administration in rats was investigated. Four groups of 15 rats each were used: controls, MEL-treated rats (5 mg/kg body mass), OTA-treated rats (250 μg/kg) and MEL+OTA-treated rats. After 4 weeks of treatment, the levels of malondialdehyde (MDA), a lipid peroxidation product (LPO) were measured in serum and homogenates of liver and kidney. Also, the levels of glutathione (GSH), and activities of glutathione reductase (GR), glutathione peroxidase (GSPx), superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST) in liver and kidney were determined. In OTA-treated rats, the levels of LPO in serum and in both liver and kidney were significantly increased compared to levels in controls. Concomitantly, the levels of GSH and enzyme activities of SOD, CAT, GSPx and GR in both liver and kidney were significantly decreased in comparison with controls. In rats received MEL+OTA, the changes in the levels of LPO in serum and in liver and kidney were not statistically significant compared to controls. Concomitantly, the levels of GSPx, GR and GST activities in both liver and kidney tissues were significantly increased in comparison with controls. Similar increases in GSPx, GR and GST activities were also observed in MEL-treated rats when compared with controls. In conclusion, the oxidative stress may be a major mechanism for the toxicity of OTA. MEL has a protective effect against OTA toxicity through an inhibition of the oxidative damage and stimulation of GST activities. Thus, clinical application of melatonin as therapy should be considered in cases of ochratoxicosis.  相似文献   

13.
Many cardiac patients undergo exercise conditioning with or without medication. Therefore, we investigated the interaction of exercise training and chronic nitroglycerin treatment on blood pressure (BP), aortic nitric oxide (NO), oxidants and antioxidants in rats. Fisher 344 rats were divided into four groups and treated as follows: (1) sedentary control, (2) exercise training (ET) for 8 weeks, (3) nitroglycerin (15 mg/kg, s.c. for 8 weeks) and (4) ET+nitroglycerin. BP was monitored with tail-cuff method. The animals were sacrificed 24 h after the last treatments and thoracic aorta was isolated and analyzed. Exercise training on treadmill for 8 weeks significantly increased respiratory exchange ratio (RER), aortic NO levels, and endothelial nitric oxide synthase (eNOS) protein expression. Training significantly enhanced aortic glutathione (GSH), reduced to oxidized glutathione (GSH/GSSG) ratio, copper/zinc-superoxide dismutase (CuZn-SOD), Mn-SOD, catalase (CAT), glutathione peroxidase (GSH-Px) glutathione disulfide reductase (GR) activities and protein expressions. Training significantly depleted aortic malondialdehyde (MDA) and protein carbonyls without change in BP. Nitroglycerin administration for 8 weeks significantly increased aortic NO levels and eNOS protein expression. Nitroglycerin significantly enhanced aortic Mn-SOD, CAT, GR and glutathione-S-transferase (GST) activities and protein expressions with decreased MDA levels, protein carbonyls and BP. Interaction of training and nitroglycerin treatment significantly increased aortic NO levels, eNOS protein expression, GSH/GSSG ratio, antioxidant enzymes and normalized BP. The data suggest that the interaction of training and nitroglycerin maintained BP by up-regulating the aortic NO and antioxidants and reducing the oxidative stress in rats.  相似文献   

14.
The age-courses of concentrations of reduced (GSH) and oxidized (GSSG) glutathione, of GSH synthesizing enzyme activities, of glutathione S-transferase (GST), of GSSG-reductase (GR) and of biliary GSH and GSSG export were measured in livers from male Uje:WIST rats. Additionally, the age-courses of plasma GSH and GSSG concentrations were investigated. The hepatic level of GSH showed a biphasic pattern with a first maximum immediately after birth and a small second peak at the 50th day of life. The GSSG level increased continuously up to day 60 of life. The cytosolic GSH synthesizing enzyme activities showed diverse developmental patterns indicating different regulation principles. The hepatic activity of GR was relatively constant in the different age groups after birth. The GST activity (with o-dinitrobenzene as substrate) was relatively low at birth (about 30% of the maximum measured at day 60 of life). The maximum of GSH plasma level was found at birth. With increasing age a significant decrease in this level was observed. The excretion rate of total GSH (GSH + 2 GSSG) in bile was found to increase about 9-fold between 15 and 105 days of age. The results indicate that changes of hepatic GSH concentration with age are dependent on numerous factors. The balance between synthesis, catabolism and export is important for the maintenance of this level.  相似文献   

15.
Treatment with the antioxidant butylated hydroxyanisole (BHA) or the azo dye Sudan III during two weeks led to changes in the brain enzymatic antioxidant defense of Syrian golden hamsters. BHA was able to induce liver superoxide dismutase (SOD) 2-fold but had no effect on the brain SOD activity, whereas SOD activity was reduced to 50% in brain and remained unchanged in liver with Sudan III. These two substances are known inducers of DT-diaphorase and in fact this enzymatic activity was induced 4- and 6-fold in liver with BHA and Sudan III, respectively. However, BHA promoted a significant 40% reduction, whereas no change was observed with Sudan III in brain DT-diaphorase activity. Glutathione(GSH)-related enzymatic activities were also assayed in brain and liver. No induction was observed with BHA or Sudan III for any of the activities tested in hamster brain: GSH S-transferase (GST), GSH peroxidase (GSH-Px) and glutathione disulfide (GSSG) reductase (GR). Only 1.3- and 1. 4-fold increases of GST and GR activities were observed in liver and no change in any of these enzymatic activities in brain with BHA; a partial limitation of permeability to BHA of the blood-brain barrier may explain this results. Furthermore, Sudan III promoted reductions in all these GSH-related enzymatic activities in brain and liver. The possible explanations for these results are discussed.Deceased 4th November 1998  相似文献   

16.
17.
Altered redox dynamics contribute to physiological aging and Parkinson’s disease (PD). This is reflected in the substantia nigra (SN) of PD patients as lowered antioxidant levels and elevated oxidative damage. Contrary to this observation, we previously reported that non-SN regions such as caudate nucleus and frontal cortex (FC) exhibited elevated antioxidants and lowered mitochondrial and oxidative damage indicating constitutive protective mechanisms in PD brains. To investigate whether the sub-cellular distribution of antioxidants could contribute to these protective effects, we examined the distribution of antioxidant/oxidant markers in the neuropil fractions [synaptosomes, non-synaptic mitochondria and cytosol] of FC from PD (n = 9) and controls (n = 8). In the control FC, all the antioxidant activities [Superoxide dismutase (SOD), glutathione (GSH), GSH peroxidase (GPx), GSH-S-transferase (GST)] except glutathione reductase (GR) were the highest in cytosol, but several fold lower in mitochondria and much lower in synaptosomes. However, FC synaptosomes from PD brains had significantly higher levels of GSH (p = 0.01) and related enzymes [GPx (p = 0.02), GR (p = 0.06), GST (p = 0.0001)] compared to controls. Conversely, mitochondria from the FC of PD cases displayed elevated SOD activity (p = 0.02) while the GSH and related enzymes were relatively unaltered. These changes in the neuropil fractions were associated with unchanged or lowered oxidative damage. Further, the mitochondrial content in the synaptosomes of both PD and control brains was ≥five-fold lower compared to the non-synaptic mitochondrial fraction. Altered distribution of oxidant/antioxidant markers in the neuropil fractions of the human brain during aging and PD has implications for (1) degenerative and protective mechanisms (2) distinct antioxidant mechanisms in synaptic terminals compared to other compartments.  相似文献   

18.
研究了浓度为0、1、5、10、15、20 mg/L的新兴离子液体溴化1-己基-3-甲基咪唑([C6mim]Br)在24h、48h、72h和96h对斜生栅藻还原型谷胱甘肽(GSH)及其代谢酶-谷胱甘肽过氧化物酶(GPX)、谷胱甘肽转硫酶(GST)和谷胱甘肽还原酶(GR)的影响。结果表明:GSH含量在24h、48h和72h时,在最低处理浓度下不变,其他处理浓度下随胁迫浓度增加而降低,96h时则与对照无差异或较小;GPX和GST的活性在72h之前明显升高(最高浓度组的GST活性有波动),96h时均降低至对照水平;GR活性在24h时,[C6mim]Br=1 mg/L时升高,之后降低,在48h增高至对照水平,72h时,[C6mim]Br≥10 mg/L的处理组高于对照水平,96h时,除最低处理组外,均降至对照水平以下。GR是GSH系统中的限速酶,GST则是该系统中活性和灵敏性最高的酶,可作为[C6mim]Br胁迫时的敏感的生物标志物。1 mg/L的[C6mim]Br可引起藻细胞的氧化胁迫,具有环境毒性。  相似文献   

19.
20.
Invasion of the Mediterranean Sea by the two world-wide famous exotic algae species, Caulerpa taxifolia and Caulerpa racemosa, is still a problem and has adverse effects on the Mediterranean sublittoral ecosystem. Biological control studies revealed that the two native Sacoglossans, Oxynoe olivacea and Lobiger serradifalci, may have an effect on the expansion of invasive Caulerpa spp. in the Mediterranean. In the framework of this study, antioxidant enzyme activities, such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), lipid peroxidation (LPO) and oxidized glutathione (GSSG) levels, as oxidative stress markers in L. serradifalci and O. olivacea were determined at two different temperature conditions (20 and 27 °C). In both species, SOD, CAT and GSH-Px activities were found to be positively correlated with temperature. The SOD activities in L. serradifalci were higher than those in O. olivacea at both temperatures, whereas the CAT and GSH-Px activities were significantly (p<0.05) higher in O. olivacea, compared to L. serradifalci. As expected, both species showed decreased LPO levels at 27 °C compared to 20 °C. GSSG level at 27 °C in O.olivacea was significantly (p<0.05) higher than that of 20 °C. On the other hand, no statistical (p>0.05) difference in L.serradifalci existed between GSSG levels at two temperatures. But, despite the variations in the antioxidant enzyme activities, there was no significant difference in LPO levels between the species, suggesting that the oxidative consequences of a given environmental condition may vary among different species. Inasmuch as the GSSG levels were in accordance with antioxidant enzyme activities, GSH might have acted as a cofactor of GSH-Px and an individual antioxidant in these sea slugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号