首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Historically, most methods for detecting linkage disequilibrium were designed for use with diallelic marker loci, for which the analysis is straightforward. With the advent of polymorphic markers with many alleles, the normal approach to their analysis has been either to extend the methodology for two-allele systems (leading to an increase in df and to a corresponding loss of power) or to select the allele believed to be associated and then collapse the other alleles, reducing, in a biased way, the locus to a diallelic system. I propose a likelihood-based approach to testing for linkage disequilibrium, an approach that becomes more conservative as the number of alleles increases, and as the number of markers considered jointly increases in a multipoint test for linkage disequilibrium, while maintaining high power. Properties of this method for detecting associations and fine mapping the location of disease traits are investigated. It is found to be, in general, more powerful than conventional methods, and it provides a tractable framework for the fine mapping of new disease loci. Application to the cystic fibrosis data of Kerem et al, is included to illustrate the method.  相似文献   

2.
Hirotsu C  Aoki S  Inada T  Kitao Y 《Biometrics》2001,57(3):769-778
The association analysis between the disease and genetic alleles is one of the simple methods for localizing the susceptibility locus in the genes. For revealing the association, several statistical tests have been proposed without discussing explicitly the alternative hypotheses. We therefore specify two types of alternative hypotheses (i.e., there is only one susceptibility allele in the locus, and there is an extension or shortening of alleles associated with the disease) and derive exact tests for the respective hypotheses. We also propose to combine these two tests when the prior knowledge is not sufficient enough to specify one of these two hypotheses. In particular, these ideas are extended to the haplotype analysis of three-way association between the disease and bivariate allele frequencies at two closely linked loci. As a by-product, a factorization of the probability distribution of the three-way cell frequencies under the null hypothesis of no three-way interaction is obtained.  相似文献   

3.
There is great expectation that the levels of association found between genetic markers and disease status will play a role in the location of disease genes. This expectation follows from regarding association as being proportional to linkage disequilibrium and therefore inversely related to recombination value. For disease genes with more than two alleles, the association measure is instead a weighted average of linkage disequilibria, with the weights depending on allele frequencies and genotype susceptibilities at the disease loci. There is no longer a simple relationship, even in expectation, with recombination. We adopt a general framework to examine association mapping methods which helps to clarify the nature of case-control and transmission/disequilibrium-type tests and reveals the relationship between measures of association and coefficients of linkage disequilibrium. In particular, we can show the consequences of additive and nonadditive effects at the trait locus on the behavior of these tests. These concepts have a natural extension to marker haplotypes. The association of two-locus marker haplotypes with disease phenotype depends on a weighted average of three-locus disequilibria (two markers with each disease locus). It is likely that these two-marker analyses will provide additional information in association mapping studies.  相似文献   

4.
Recent admixture between genetically differentiated populations can result in high levels of association between alleles at loci that are <=10 cM apart. The transmission/disequilibrium test (TDT) proposed by Spielman et al. (1993) can be a powerful test of linkage between disease and marker loci in the presence of association and therefore could be a useful test of linkage in admixed populations. The degree of association between alleles at two loci depends on the differences in allele frequencies, at the two loci, in the founding populations; therefore, the choice of marker is important. For a multiallelic marker, one strategy that may improve the power of the TDT is to group marker alleles within a locus, on the basis of information about the founding populations and the admixed population, thereby collapsing the marker into one with fewer alleles. We have examined the consequences of collapsing a microsatellite into a two-allele marker, when two founding populations are assumed for the admixed population, and have found that if there is random mating in the admixed population, then typically there is a collapsing for which the power of the TDT is greater than that for the original microsatellite marker. A method is presented for finding the optimal collapsing that has minimal dependence on the disease and that uses estimates either of marker allele frequencies in the two founding populations or of marker allele frequencies in the current, admixed population and in one of the founding populations. Furthermore, this optimal collapsing is not always the collapsing with the largest difference in allele frequencies in the founding populations. To demonstrate this strategy, we considered a recent data set, published previously, that provides frequency estimates for 30 microsatellites in 13 populations.  相似文献   

5.
The potential of association studies for fine-mapping loci with common disease susceptibility alleles for complex genetic diseases in outbred populations is unclear. For a battery of tightly linked anonymous genetic markers spanning a candidate region centered around a disease locus, simulation methods based on a coalescent process with mutation, recombination, and genetic drift were used to study the spatial distribution of markers with large noncentrality parameters in a case-control study design. Simulations with a disease allele at intermediate frequency, presumably representing an old mutation, tend to exhibit the largest noncentrality parameter values at markers near the disease locus. In contrast, simulations with a disease allele at low frequency, presumably representing a young mutation, often exhibit the largest noncentrality parameter values at markers scattered over the candidate region. In the former case, sample sizes or marker densities sufficient to detect association are likely to lead to useful localization, whereas, in the latter case, localization of the disease locus within the candidate region is much less likely, regardless of the sample size or density of the map. The simulations suggest that for a single marker analysis, the simple strategy of choosing the marker with smallest associated P value to begin a laboratory search for the disease locus performs adequately for a common disease allele.  相似文献   

6.
One approach frequently used for identifying genetic factors involved in the process of a complex disease is the comparison of patients and controls for a number of genetic markers near a candidate gene. The analysis of such association studies raises some specific problems because of the fact that genotypic and not gametic data are generally available. We present a log-linear-model analysis providing a valid method for analyzing such studies. When studying the association of disease with one marker locus, the log-linear model allows one to test for the difference between allelic frequencies among affected and unaffected individuals, Hardy-Weinberg (H-W) equilibrium in both groups, and interaction between the association of alleles at the marker locus and disease. This interaction provides information about the dominance of the disease susceptibility locus, with dominance defined using the epidemiological notion of odds ratio. The degree of dominance measured at the marker locus depends on the strength of linkage disequilibrium between the marker locus and the disease locus. When studying the association of disease with several linked markers, the model becomes rapidly complex and uninterpretable unless it is assumed that affected and unaffected populations are in H-W equilibrium at each locus. This hypothesis must be tested before going ahead in the analysis. If it is not rejected, the log-linear model offers a stepwise method of identification of the parameters causing the difference between populations. This model can be extended to any number of loci, alleles, or populations.  相似文献   

7.
Richard R. Hudson 《Genetics》1985,109(3):611-631
The sampling distributions of several statistics that measure the association of alleles on gametes (linkage disequilibrium) are estimated under a two-locus neutral infinite allele model using an efficient Monte Carlo method. An often used approximation for the mean squared linkage disequilibrium is shown to be inaccurate unless the proper statistical conditioning is used. The joint distribution of linkage disequilibrium and the allele frequencies in the sample is studied. This estimated joint distribution is sufficient for obtaining an approximate maximum likelihood estimate of C = 4Nc, where N is the population size and c is the recombination rate. It has been suggested that observations of high linkage disequilibrium might be a good basis for rejecting a neutral model in favor of a model in which natural selection maintains genetic variation. It is found that a single sample of chromosomes, examined at two loci cannot provide sufficient information for such a test if C less than 10, because with C this small, very high levels of linkage disequilibrium are not unexpected under the neutral model. In samples of size 50, it is found that, even when C is as large as 50, the distribution of linkage disequilibrium conditional on the allele frequencies is substantially different from the distribution when there is no linkage between the loci. When conditioned on the number of alleles at each locus in the sample, all of the sample statistics examined are nearly independent of theta = 4N mu, where mu is the neutral mutation rate.  相似文献   

8.
The phenomenon of genomic imprinting describes the differential behavior of genes depending on their parental origin, and has been demonstrated in a few rare genetic disorders. In complex diseases, parent-of-origin effects have not been systematically studied, although there may be heuristic value in such an approach. Data from a genome scan performed using 356 affected sibling pair families with type 1 diabetes were examined looking for evidence of excess sharing of either maternal or paternal alleles. At the insulin gene (IDDM2), evidence for excess sharing of alleles transmitted from mothers was detected, which is consistent with transmission disequilibrium results published elsewhere. We also identified additional loci that demonstrate allele sharing predominantly from one parent: IDDM8 shows a paternal origin effect, IDDM10 shows a maternal effect, and a locus on chromosome 16q demonstrates a paternal effect. We have also evaluated these loci for confounding by differences in sex-specific meiotic recombination by performing linkage analysis using sex-specific genetic maps. The analysis of the parental origin of shared alleles from genome scans of complex disorders may provide additional evidence for linkage for known loci, help identify regions containing additional susceptibility loci, and assist the cloning of the genes involved.  相似文献   

9.
Detecting gene-gene interaction in complex diseases is a major challenge for common disease genetics. Most interaction detection approaches use disease-marker associations and such methods have low power and unknown reliability in real data. We developed and tested a powerful linkage-analysis-based gene-gene interaction detection strategy based on conditioning the family data on a known disease-causing allele or disease-associated marker allele. We computer-generated multipoint linkage data for a disease caused by two epistatically interacting loci (A and B). We examined several two-locus epistatic inheritance models: dominant-dominant, dominant-recessive, recessive-dominant, recessive-recessive. At one of the loci (A), there was a known disease-related allele. We stratified the family data on the presence of this allele, eliminating family members who were without it. This elimination step has the effect of raising the “penetrance” at the second locus (B). We then calculated the lod score at the second locus (B) and compared the pre- and post-stratification lod scores at B. A positive difference indicated interaction. We also examined if it was possible to detect interaction with locus B based on a disease-marker association (instead of an identified disease allele) at locus A. We also tested whether the presence of genetic heterogeneity would generate false positive evidence of interaction. The power to detect interaction for a known disease allele was 60–90%. The probability of false positives, based on heterogeneity, was low. Decreasing linkage disequilibrium between the disease and marker at locus A decreased the likelihood of detecting interaction. The allele frequency of the associated marker made little difference to the power.  相似文献   

10.
Within the last 3 years, genome-wide association studies (GWAS) have had unprecedented success in identifying loci that are involved in common diseases. For example, more than 35 susceptibility loci have been identified for type 2 diabetes and 32 for obesity thus far. However, the causal gene and variant at a specific linkage disequilibrium block is often unclear. Using a combination of different mouse alleles, we can greatly facilitate the understanding of which candidate gene at a particular disease locus is associated with the disease in humans, and also provide functional analysis of variants through an allelic series, including analysis of hypomorph and hypermorph point mutations, and knockout and overexpression alleles. The phenotyping of these alleles for specific traits of interest, in combination with the functional analysis of the genetic variants, may reveal the molecular and cellular mechanism of action of these disease variants, and ultimately lead to the identification of novel therapeutic strategies for common human diseases. In this Commentary, we discuss the progress of GWAS in identifying common disease loci for metabolic disease, and the use of the mouse as a model to confirm candidate genes and provide mechanistic insights.  相似文献   

11.
针对人类疾病基因的精细定位,本文利用稠密的标记位点,通过比较标记的熵和条件熵,给出了一个基于熵的指数。该指数可以度量标记基因和性状位点间连锁不平衡(LD)程度。该指数的特性是它不依赖于标记基因的频率。同时它对应疾病易感位点(DSL)精细定位的哈迪-温伯格不平衡(HWD)指数。通过计算机模拟,文章调查了不同遗传参数下该指数的性质。模拟结果表明该指数用作疾病易感位点精细定位是有效的。  相似文献   

12.
Jones HB  Faham M 《Human heredity》2005,59(3):176-184
OBJECTIVE: The aim of this study was to utilize information on monozygotic twin concordance rates and linkage studies results for common diseases to predict the likely mode of interaction between susceptibility loci. METHODS: We calculated combinations of allele frequency and genotypic relative risk (GRR) that would generate linkage results typically observed in common human diseases. Given these single locus effects, we calculated the expected monozygotic twin concordance assuming different numbers of loci under different interaction models. RESULTS: We demonstrate that, for disorders like schizophrenia, a purely additive model of interaction among loci is not consistent with the available evidence. Instead there are likely significant multiplicative or stronger interactions. Given these interactions, we show that in a diagnostic test based on a subset of predisposing loci, the marginal increase of predictive value rises with each additional locus that is discovered. Our model was consistent with susceptibility alleles being common or rare. CONCLUSIONS: Evidence from monozygotic twin concordance rates and linkage results point to a significant degree of multiplicative interaction among loci.  相似文献   

13.
Statistics for linkage disequilibrium (LD), the non-random association of alleles at two loci, depend on the frequencies of the alleles at the loci under consideration. Here, we examine the r(2) measure of LD and its mathematical relationship to allele frequencies, quantifying the constraints on its maximum value. Assuming independent uniform distributions for the allele frequencies of two biallelic loci, we find that the mean maximum value of r(2) is approximately 0.43051, and that r(2) can exceed a threshold of 4/5 in only approximately 14.232% of the allele frequency space. If one locus is assumed to have known allele frequencies--the situation in an association study in which LD between a known marker locus and an unknown trait locus is of interest--we find that the mean maximum value of r(2) is greatest when the known locus has a minor allele frequency of approximately 0.30131. We find that in 1/4 of the space of allowed values of minor allele frequencies and haplotype frequencies at a pair of loci, the unconstrained maximum r(2) allowing for the possibility of recombination between the loci exceeds the constrained maximum assuming that no recombination has occurred. Finally, we use r(max)(2) to examine the connection between r(2) and the D(') measure of linkage disequilibrium, finding that r(2)/r(max)(2)=D('2) for approximately 72.683% of the space of allowed values of (p(a),p(b),p(ab)). Our results concerning the properties of r(2) have the potential to inform the interpretation of unusual LD behavior and to assist in the design of LD-based association-mapping studies.  相似文献   

14.
Interest in searching for genetic linkage between diseases and marker loci has been greatly increased by the recent introduction of DNA polymorphisms. However, even for the most well-behaved Mendelian disorders, those with clear-cut mode of inheritance, complete penetrance, and no phenocopies, genetic heterogeneity may exist; that is, in the population there may be more than one locus that can determine the disease, and these loci may not be linked. In such cases, two questions arise: (1) What sample size is necessary to detect linkage for a genetically heterogeneous disease? (2) What sample size is necessary to detect heterogeneity given linkage between a disease and a marker locus? We have answered these questions for the most important types of matings under specified conditions: linkage phase known or unknown, number of alleles involved in the cross at the marker locus, and different numbers of affected and unaffected children. In general, the presence of heterogeneity increases the recombination value at which lod scores peak, by an amount that increases with the degree of heterogeneity. There is a corresponding increase in the number of families necessary to establish linkage. For the specific case of backcrosses between disease and marker loci with two alleles, linkage can be detected at recombination fractions up to 20% with reasonable numbers of families, even if only half the families carry the disease locus linked to the marker. The task is easier if more than two informative children are available or if phase is known. For recessive diseases, highly polymorphic markers with four different alleles in the parents greatly reduce the number of families required.  相似文献   

15.
Hitchhiking: A Comparison of Linkage and Partial Selfing   总被引:5,自引:2,他引:3       下载免费PDF全文
Philip W. Hedrick 《Genetics》1980,94(3):791-808
Genetic hitchhiking occurs when alleles at unselected loci are changed in frequency because of an association with alleles at a selected locus. This association may be mediated either by linkage or partial selfing (inbreeding) and can affect the gene frequency and gametic disequilibrium at the neutral loci. Hitchhiking from partial selfing (unlinked loci) occurs more quickly than linkage hitchhiking and generally has a greater effect. In addition, partial-selfing hitchhiking can cause increases or changes in sign in gametic disequilibrium between neutral loci. The effects of the two types of hitchhiking with different levels of dominance, zygotic frequencies and number of selected loci are also examined. The general conditions for linkage and partial-selfing hitchhiking are outlined and the implications of hitchhiking are discussed for marker or electrophoretic loci.  相似文献   

16.
Summary A symmetric viability model for two loci with two alleles at one locus and m alleles at the other is suggested and analyzed. The analysis of the equilibria is complete if the two loci are absolutely linked, while if recombination is allowed the analysis is incomplete. The dynamics of the mode! resemble those of the two locus two allele model, namely that for loose linkage there will be no correlation between the loci and for tight linkage there may be strong correlation. The major caveats to this are: 1. The equilibria stable for tight linkage may belong to an array of different structures dependent on the selection and the number of alleles. 2. If both loci are overdominant in viability, the stable equilibria always contain all alleles segregating in the population; otherwise, the stable equilibria may only be two locus two allele high complementarity equilibria for tight linkage. 3. For intermediate linkage values and special selection values the boundary two locus two allele high complementarity equilibria may be stable simultaneously with the totally polymorphic central point at which there is no association between the loci.Dedicated to the memory of Ove Frydenberg.Research supported in part by a grant from the Danish Natural Science Research Council, a grant from National Science Foundation, U.S.A., and by USPHS grant NIH 10452-09-11.  相似文献   

17.
E. Zouros 《Genetica》1993,89(1-3):35-46
Expressions are obtained for the expected phenotypic values of homozygous and heterozygous genotypes for a neutral marker locus linked to a locus segregating for a recessive deleterious gene. The phenotypic values are functions of the allele frequencies at the marker locus, the inbreeding coefficient and the degree of association of the deleterious gene with the marker alleles. The analysis is extended to more than two alleles at the marker locus. Either linkage disequilibrium or inbreeding alone can produce an apparent superiority of heterozygotes for the marker locus (unless specified otherwise, the terms ‘homozygote’ and ‘heterozygote’ will refer to the marker locus). The effect of linkage disequilibrium on the difference between the heterozygote and homozygote values can be positive (associative overdominance) or negative (associative underdominance), depending on the frequencies of the marker alleles and the degree of their association with the deleterious gene. Inbreeding has always a positive effect. In general, the expected value of a homozygote is a positive function of its allele frequency. When the various homozygous genotypes are combined into one class and the various heterozygous genotypes into another, the phenotypic difference of the two classes is a function of the evenness of the allelic frequency distribution. Inbreeding is a more likely explanation of associative overdominance if the frequency of the deleterious gene is low, but its effect on the character high. Conversely, linkage disequilibrium is more likely if the frequency is high and the effect low. The degrees of association between marker alleles and the deleterious gene can, in principle, be estimated from the observed phenotypic scores and used to calculate expected multi-locus genotype scores. This could provide the basis for statistical tests of the associative overdominance hypothesis as an explanation of observed correlations between multi-locus heterozygosity and phenotypic traits.  相似文献   

18.
The transmission/disequilibrium (TD) test (TDT), proposed, by Spielman et al., for binary traits is a powerful method for detection of linkage between a marker locus and a disease locus, in the presence of allelic association. As a test for linkage disequilibrium, the TDT makes the assumption that any allelic association present is due to linkage. Allison proposed a series of TD-type tests for quantitative traits and calculated their power, assuming that the marker locus is the disease locus. All these tests assume that the observations are independent, and therefore they are applicable, as a test for linkage, only for nuclear-family data. In this report, we propose a regression-based TD-type test for linkage between a marker locus and a quantitative trait locus, using information on the parent-to-offspring transmission status of the associated allele at the marker locus. This method does not require independence of observations, thus allowing for analysis of pedigree data as well, and allows adjustment for covariates. We investigate the statistical power and validity of the test by simulating markers at various recombination fractions from the disease locus.  相似文献   

19.
Duplicated loci, for example those associated with major histocompatibility complex (MHC) genes, often have similar DNA sequences that can be coamplified with a pair of primers. This results in genotyping difficulties and inaccurate analyses. Here, we present a method to assign alleles to different loci in amplifications of duplicated loci. This method simultaneously considers several factors that may each affect correct allele assignment. These are the sharing of identical alleles among loci, null alleles, copy number variation, negative amplification, heterozygote excess or heterozygote deficiency, and linkage disequilibrium. The possible multilocus genotypes are extracted from the alleles for each individual and weighted to estimate the allele frequencies. The likelihood of an allele configuration is calculated and is optimized with a heuristic algorithm. Monte‐Carlo simulations and three empirical MHC data sets are used as examples to evaluate the efficacy of our method under different conditions. Our new software, mhc‐typer V1.1, is freely available at https://github.com/huangkang1987/mhc-typer .  相似文献   

20.
Case-control studies are used to map loci associated with a genetic disease. The usual case-control study tests for significant differences in frequencies of alleles at marker loci. In this paper, we consider the problem of comparing two or more marker loci simultaneously and testing for significant differences in haplotype rather than allele frequencies. We consider two situations. In the first, genotypes at marker loci are resolved into haplotypes by making use of biochemical methods or by genotyping family members. In the second, genotypes at marker loci are not resolved into haplotypes, but, by assuming random mating, haplotypes can be inferred using a likelihood method such as the expectation-maximization (EM) algorithm. We assume that a causative locus has two alleles with a multiplicative effect on the penetrance of a disease, with one allele increasing the penetrance by a factor pi. We find, for small values of pi-1 and large sample sizes, asymptotic results that predict the statistical power of a test for significant differences in haplotype frequencies between cases and a random sample of the population, both when haplotypes can be resolved and when haplotypes have to be inferred. The increase in power when haplotypes can be resolved can be expressed as a ratio R, which is the increase in sample size needed to achieve the same power when haplotypes are resolved over when they are not resolved. In general, R depends on the pattern of linkage disequilibrium between the causative allele and the marker haplotypes but is independent of the frequency of the causative allele and, to a first approximation, is independent of pi. For the special situation of two di-allelic marker loci, we obtain a simple expression for R and its upper bound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号