首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aquatic prey encounter an array of threat cues from multiple predators and killed conspecifics, yet the vast majority of induced defenses are investigated using cues from single predator species. In most cases, it is unclear if odors from multiple predators will disrupt defenses observed in single-predator induction experiments. We experimentally compared the inducible defenses of the common marine mussel Mytilus edulis to waterborne odor from pairwise combinations of three predators representing two attack strategies. Predators included the sea star, Asterias vulgaris (= Asterias rubens ), and the crabs Carcinus maenas and Cancer irroratus . The mussels increased adductor muscle mass in response to cues from unfed Asterias (a predatory seastar that pulls mussel shells open) and increased shell thickness in response to unfed Carcinus, a predatory crab that crushes or peels shells. However, the mussels did not express either predator specific response when exposed to the combined cues of Asterias and Carcinus , and mussels did not increase shell thickness when exposed to cues from Cancer alone or any pairwise combination of the three predators. Shell closure or 'clamming up' did not occur in response to any predator combination. These results suggest that predator-specific responses to the Asterias and Carcinus are poorly integrated and cannot be expressed simultaneously. Simultaneous cues from multiple predators affect the integration of predator specific defenses and predator odors from functionally similar predators do not necessarily initiate similar defenses. Ultimately, the degree that prey can integrate potentially disparate defenses in a multiple predator environment may have ecological ramifications and represent a seldom explored facet of the evolution of inducible defenses.  相似文献   

2.
Carcinus manenas, Liocarcinus puber and Cancer pagurs are thought to be three likely crab predators of the gastropod Calliostoma Zizyphinum. In order to compare the strenghts of predators and their prey, the whole shell and aperture lip strengh of white and pink Calliostoma morphotypes and the maximum forces exerted by the chelipeds of three crab species were measured. Although white shells were thicker than pink shells, Calliostoma colour morphotyes did not differ significantly in either the force required to break the shell lip or the whole shell. Both Liocarcinus puber and Carcinus maenas have dimorphic chelipeds and their "crusher" chelipeds deliver almost double the forces generated by the'cutter'chelipeds. In constrast, Cancer pagurus has monomorphic chelipeds both delivering similar forces.
When compared with Calliostoma shell strenght, the forces generated by the'crusher'chelipeds of most L. puber tested were, in general, sufficient to break the shell lip of Calliostoma shells, whereas forces generated by the'cutter'chelipeds of only the larger individuals were sufficient to break the shell lip. In C. manenas , forces generated by both the'cutter'and'crusher'chelipeds often exceeded the minimum recorded force required to break the shell lip and the'crusher'cheliped reached the minimum force required to break whole Calliostoma shells. Both chelipeds of all C. pagurus tested generated forces in excess of the minimum required to break the shell lip, and the proportion of individuals capable of generating the minimum force required to break the whole shell increased with the size of the size of the crab. Carcinus maenas and Cancer pagurus were capable of breaking both the shell lips and the whole shells of a wider range of shell sizes than L. puber.  相似文献   

3.
Juvenile Nucella lapillus of two different shell phenotypes, exposed shore and protected shore, were maintained in running seawater under each of three experimental conditions for 94 d: a) laboratory control, b) exposed to the effluent of crabs (Cancer pagurus) fed frozen fish (fish-crab), and c) exposed to the effluent of crabs fed live conspecific snails (snail-crab). Rates of barnacle consumption and rates of body weight change varied significantly between phenotypes and among experimental conditions. Individuals from the protected-shore consumed consistently fewer barnacles and grew consistently less than those from the exposed shore. Body weight increases in the fish-crab treatments were from 25 to 50% less than those in the controls and body weights in the snail-crab treatment either did not change or actually decreased. The perceived risk of predation thus appears to have a dramatic effect on the rates of feeding and growth of N. lapillus.At the end of the experiment, size-adjusted final shell weights for both phenotypes were consistently higher than controls (no crab) in both the fish-crab and snail-crab treatments. In addition, apertural tooth height, thickness of the lip, and retractability (i.e. the extent to which a snail could withdraw into its shell), with few exceptions all varied in an adaptive manner in response to the various risk treatments. Similar changes in the shell form of starved snails exposed to the same stimuli suggest very strongly that the morphological responses of both phenotypes were not just due to differences in rates of growth. These differences, at least in part, represented a direct cueing of the shell form of Nucella lapillus to differences in the perceived risk of predation. Somewhat surprisingly, the extent of phenotypic plasticity appeared to differ between the populations examined. Both field and laboratory evidence suggest that the exposed-shore population was much more labile morphologically than the protected-shore population.In many instances, particularly among starved snails, the development of antipredatory shell traits was greater in the fish-crab treatment than in the snail-crab treatment. Because the scent of crabs was present in both treatments, these results suggest a) that, at the frequency/concentration used in the experiments, the scent of damaged conspecifics may have been a supernormal stimulus and b) that the morphological response in these treatments might have been greater if the stimulus had been provided at a lower level.  相似文献   

4.
The responses of the burrowing bivalves Macoma balthica and Cerastoderma edule to chemical cues emitted by feeding shore crabs Carcinus maenas were investigated. M. balthica held in the laboratory and exposed to chemical signals in effluent water discharging from tanks containing C. maenas fed 20 M. balthica day− 1 reacted by increasing their burial depths from approximately 30 mm to depths of > 60 mm, over a period of several days. When the signal was removed the bivalves gradually returned to their original depth over 5 days. C. edule similarly exposed to effluent from crabs feeding on conspecifics showed no response. In an attempt to identify the signal inducing this burrowing response, M. balthica were exposed to a variety of chemical signals. Crabs fed M. balthica elicited the strongest response, followed by crabs fed C. edule. There were also small responses to effluent from crabs fed on fish, crabs previously fed on M. balthica and to crab faeces, but no responses to starved crabs, crushed M. balthica, or controls. We conclude that increased burrowing depth of M. balthica is induced by some as yet unidentified chemical cue produced by feeding crabs and is strongest when the crabs were fed on M. balthica. Unexpectedly, neither the presence of crabs themselves, nor of damaged conspecifics, was effective in eliciting a burrowing response. The mortality rates of M. balthica and C. edule selected by crabs when burrowed at normal depths and after exposure to effluent from feeding crabs were different. Crabs selected 1.5 times more C. edule than M. balthica when both species were burrowed at their normal depths, but 15 times more after the tanks had been exposed to effluent from feeding crabs for 5 days. The burrowing response of M. balthica thus appears to reduce mortality significantly by displacing predation pressure on to the more accessible C. edule.  相似文献   

5.
Paul E. Bourdeau 《Oecologia》2010,162(4):987-994
Reliable cues that communicate current or future environmental conditions are a requirement for the evolution of adaptive phenotypic plasticity, yet we often do not know which cues are responsible for the induction of particular plastic phenotypes. I examined the single and combined effects of cues from damaged prey and predator cues on the induction of plastic shell defenses and somatic growth in the marine snail Nucella lamellosa. Snails were exposed to chemical risk cues from a factorial combination of damaged prey presented in isolation or consumed by predatory crabs (Cancer productus). Water-borne cues from damaged conspecific and heterospecific snails did not affect plastic shell defenses (shell mass, shell thickness and apertural teeth) or somatic growth in N. lamellosa. Cues released by feeding crabs, independent of prey cue, had significant effects on shell mass and somatic growth, but only crabs consuming conspecific snails induced the full suite of plastic shell defenses in N. lamellosa and induced the greatest response in all shell traits and somatic growth. Thus the relationship between risk cue and inducible morphological defense is dependent on which cues and which morphological traits are examined. Results indicate that cues from damaged conspecifics alone do not trigger a response, but, in combination with predator cues, act to signal predation risk and trigger inducible defenses in this species. This ability to “label” predators as dangerous may decrease predator avoidance costs and highlights the importance of the feeding habits of predators on the expression of inducible defenses.  相似文献   

6.
7.
Predators often have nonconsumptive effects (NCEs) on prey. For example, upon detection of predator cues, prey can reduce feeding activities to hamper being detected by predators. Previous research showed that waterborne chemical cues from green crabs (Carcinus maenas, predator) limit the dogwhelk (Nucella lapillus, prey) consumption of barnacles regardless of dogwhelk density, even though individual predation risk for dogwhelks decreases with conspecific density. Such NCEs might disappear with dogwhelk density if dogwhelks feed on mussels, as mussel stands constitute better antipredator refuges than barnacle stands. Through a laboratory experiment, we effectively found that crab chemical cues limit the per-capita consumption of mussels by dogwhelks at low dogwhelk density but not at high density. The combination of tactile and chemical cues from crabs, however, limited the dogwhelk consumption of mussels at both dogwhelk densities. The occurrence of such NCEs at both dogwhelk densities could have resulted from tactile cues indicating a stronger predation risk than chemical cues alone. Overall, the present study reinforces the notions that prey evaluate conspecific density when assessing predation risk and that predator cue type affects their perception of risk.  相似文献   

8.
Stanley JA  Radford CA  Jeffs AG 《PloS one》2011,6(12):e28572
A small number of studies have demonstrated that settlement stage decapod crustaceans are able to detect and exhibit swimming, settlement and metamorphosis responses to ambient underwater sound emanating from coastal reefs. However, the intensity of the acoustic cue required to initiate the settlement and metamorphosis response, and therefore the potential range over which this acoustic cue may operate, is not known. The current study determined the behavioural response thresholds of four species of New Zealand brachyuran crab megalopae by exposing them to different intensity levels of broadcast reef sound recorded from their preferred settlement habitat and from an unfavourable settlement habitat. Megalopae of the rocky-reef crab, Leptograpsus variegatus, exhibited the lowest behavioural response threshold (highest sensitivity), with a significant reduction in time to metamorphosis (TTM) when exposed to underwater reef sound with an intensity of 90 dB re 1 μPa and greater (100, 126 and 135 dB re 1 μPa). Megalopae of the mud crab, Austrohelice crassa, which settle in soft sediment habitats, exhibited no response to any of the underwater reef sound levels. All reef associated species exposed to sound levels from an unfavourable settlement habitat showed no significant change in TTM, even at intensities that were similar to their preferred reef sound for which reductions in TTM were observed. These results indicated that megalopae were able to discern and respond selectively to habitat-specific acoustic cues. The settlement and metamorphosis behavioural response thresholds to levels of underwater reef sound determined in the current study of four species of crabs, enables preliminary estimation of the spatial range at which an acoustic settlement cue may be operating, from 5 m to 40 km depending on the species. Overall, these results indicate that underwater sound is likely to play a major role in influencing the spatial patterns of settlement of coastal crab species.  相似文献   

9.
Laboratory experiments were carried out to investigate byssal thread production by the intertidal mytilid mussel Hormomya mutabilis in response to effluent from the predatory crab Eriphia smithii and the starfish Coscinasterias acutispina. During the early period of the experiment, large H. mutabilis exposed to crab effluent produced a significantly smaller number of functional byssal threads than mussels in crab-free water. No significant difference in the diameter of threads produced in the two treatments was detected. The number of functional byssal threads produced by small H. mutabilis exposed to crab effluent did not differ significantly from that of mussels in crab-free water. However, small H. mutabilis exposed to crab effluent tended to discard fewer byssal bundles, that is, they shifted their attaching sites less frequently than similar mussels in crab-free water. In the presence of waterborne cues from the crab, H. mutabilis tended to reduce both the secretion of byssal threads and movement across the substratum. No significant differences in behaviour were observed between large mussels exposed to effluent from the starfish and those unexposed. The adaptive significance of the responses shown by H. mutabilis is discussed in terms of protection against predators differing in foraging behaviour. Electronic Publication  相似文献   

10.
The common shore crab Carcinus maenas exhibits a range of carapace colours from green through orange to red, green forms showing some differences of distribution from red/orange forms. To test the hypothesis that colour differences were moult-related, large numbers of Carcinus were collected intertidally and subtidally in summer when moulting is most prevalent, and their moult stages determined. Red and orange coloration was found only to occur in the larger size classes in crabs in prolonged intermoult, but not solely in the largest crabs in terminal anecdysis. Red crabs were characterized by a heavier load of epibionts and a strong, thicker carapace. In contrast, green crabs were found over the entire size range and appeared to be actively moulting forms; they carried fewer epibionts and had a thinner integument than red forms. The significance of morphological differences between red/orange and green forms of Carcinus maenas is considered in relation to previously reported behavioural, physiological and ecological differences between the colour forms.  相似文献   

11.
Assessing the stability of animal personalities has become a major goal of behavioral ecologists. Most personality studies have utilized solitary individuals, but little is known on the extent that individuals retain their personality across ecologically relevant group settings. We conducted a field survey which determined that mud crabs, Panopeus herbstii, remain scattered as isolated individuals on degraded oyster reefs while high quality reefs can sustain high crab densities (>10 m?2). We examined the impact of these differences in social context on personality by quantifying the boldness of the same individual crabs when in isolation and in natural cohorts. Crabs were also exposed to either a treatment of predator cues or a control of no cue throughout the experiment to assess the strength of this behavioral reaction norm. Crabs were significantly bolder when in groups than as solitary individuals with predator cue treatments exhibiting severally reduced crab activity levels in comparison to corresponding treatments with no predator cues. Behavioral plasticity depended on the individual and was strongest in the presence of predator cues. While bold crabs largely maintained their personality in isolation and group settings, shy crabs would become substantially bolder when among conspecifics. These results imply that the shifts in crab boldness were a response to changes in perceived predation risk, and provide a mechanism for explaining variation in behavioral plasticity. Such findings suggest that habitat degradation may produce subpopulations with different behavioral patterns because of differing social interactions between individual animals.  相似文献   

12.
The relationship between branchial carbonic anhydrase (CA) activity, CA gene expression and salinity, and potential mechanisms of regulation, was investigated in the euryhaline green crab, Carcinus maenas, acclimated to 33 ppt and transferred to 10 ppt, and the stenohaline rock crab, Cancer irroratus, acclimated to 32 ppt and transferred to 18 ppt. CA activity in green crabs acclimated to high and low salinity was a function of CA mRNA expression, with low salinity exposure resulting in an increase in both CA expression and activity. Eyestalk ablation (ESA) in green crabs acclimated to high salinity resulted in an increase in CA expression in the posterior, ion-transporting gills, in the absence of the low salinity stimulus. There were no changes in CA activity or expression in the anterior, respiratory gills. ESA also potentiated low salinity-stimulated CA induction, again, only in posterior gills. There were no changes in CA activity in any gills of Cancer irroratus, in response to either ESA or low salinity. These results suggest that CA expression in euryhaline, osmoregulating species, is under inhibitory regulation by a putative repressor found in the eyestalk, and that this mechanism is absent in stenohaline, osmoconforming species. CA expression is maintained at low, baseline levels in crabs acclimated to high salinity by the presence and action of this compound. The effects of the repressor appear to be reduced upon exposure to low salinity, allowing CA induction to occur.  相似文献   

13.
The speed with which individuals can learn to identify and react appropriately to predation threats when transitioning to new life history stages and habitats will influence their survival. This study investigated the role of chemical alarm cues in both anti-predator responses and predator identification during a transitional period in a newly settled coral reef damselfish, Pomacentrus amboinensis. Individuals were tested for changes in seven behavioural traits in response to conspecific and heterospecific skin extracts. Additionally, we tested whether fish could learn to associate a previously novel chemical cue (i.e. simulated predator scent) with danger, after previously being exposed to a paired cue combining the conspecific skin extract with the novel scent. Fish exposed to conspecific skin extracts were found to significantly decreased their feeding rate whilst those exposed to heterospecific and control cues showed no change. Individuals were also able to associate a previously novel scent with danger after only a single previous exposure to the paired conspecific skin extract/novel scent cue. Our results indicate that chemical alarm cues play a large role in both threat detection and learned predator recognition during the early post-settlement period in coral reef fishes.  相似文献   

14.
1.?Studies examining the integration of constitutive and inducible aspects of multivariate defensive phenotypes are rare. 2.?I asked whether marine snails (Nucella lamellosa) from habitats with and without abundant predatory crabs differed in constitutive and inducible aspects of defensive shell morphology. 3.?I examined multivariate shell shape development of snails from each habitat in the presence and absence of waterborne cues from feeding crabs (Cancer productus). I also examined the influence of constitutive and inducible shell morphology on resistance to crushing. 4.?Regardless of the presence of crabs, snails from high-risk (HR) habitats developed rotund, short-spired shells, while snails from low-risk habitats developed elongate shells, tall-spired shells, indicating among-habitat divergence in constitutive shell shape. Moreover, allometry analyses indicated that constitutive developmental patterns underlying this variation also differed between habitats. However, snails from HR habitats showed greater plasticity for apertural lip thickness and apertural area in the presence of crab cues, indicating among-habitat variation in defence inducibility. 5.?Both shell shape and apertural lip thickness contributed to shell strength suggesting that constitutive shell shape development and inducible lip thickening have evolved jointly to form an effective defence in habitats where predation risk is high.  相似文献   

15.
Many organisms have evolved inducible defences in response to spatial and temporal variability in predation risk. These defences are assumed to incur large costs to prey; however, few studies have investigated the mechanisms and costs underlying these adaptive responses. I examined the proximate cause of predator-induced shell thickening in a marine snail (Nucella lamellosa) and tested whether induced thickening leads to an increase in structural strength. Results indicate that although predators (crabs) induce thicker shells, the response is a passive by-product of reduced feeding and somatic growth rather than an active physiological response to predation risk. Physical tests indicate that although the shells of predator-induced snails are significantly stronger, the increase in performance is no different than that of snails with limited access to food. Increased shell strength is attributable to an increase in the energetically inexpensive microstructural layer rather than to material property changes in the shell. This mechanism suggests that predator-induced shell defences may be neither energetically nor developmentally costly. Positive correlations between antipredator behaviour and morphological defences may explain commonly observed associations between growth reduction and defence production in other systems and could have implications for the evolutionary potential of these plastic traits.  相似文献   

16.
Classical views of trophic cascades emphasize the primacy of consumptive predator effects on prey populations to the transmission of indirect effects [density-mediated indirect interactions (DMIIs)]. However, trophic cascades can also emerge without changes in the density of interacting species because of non-consumptive predator effects on prey traits such as foraging behaviour [trait-mediated indirect interactions (TMIIs)]. Although ecologists appreciate this point, measurements of the relative importance of each indirect predator effect are rare. Experiments with a three-level, rocky shore food chain containing an invasive predatory crab ( Carcinus maenas ), an intermediate consumer (the snail, Nucella lapillus ) and a basal resource (the barnacle, Semibalanus balanoides ) revealed that the strength of TMIIs is comparable with, or exceeds, that of DMIIs. Moreover, the sign and strength of each indirect predator effect depends on whether it is measured in risky or refuge habitats. Because habitat shifts are often responsible for the emergence of TMIIs, attention to the sign and strength of these interactions in both habitats will improve our understanding of the link between individual behaviour and community dynamics.  相似文献   

17.
Crustacean olfaction is fundamental to most aspects of living and communicating in aquatic environments and more broadly, for individual- and population-level success. Accelerated ocean acidification from elevated CO2 threatens the ability of crabs to detect and respond to important olfactory-related cues. Here, we demonstrate that the ecologically and economically important Dungeness crab (Metacarcinus magister) exhibits reduced olfactory-related antennular flicking responses to a food cue when exposed to near-future CO2 levels, adding to the growing body of evidence of impaired crab behaviour. Underlying this altered behaviour, we find that crabs have lower olfactory nerve sensitivities (twofold reduction in antennular nerve activity) in response to a food cue when exposed to elevated CO2. This suggests that near-future CO2 levels will impact the threshold of detection of food by crabs. We also show that lower olfactory nerve sensitivity in elevated CO2 is accompanied by a decrease in the olfactory sensory neuron (OSN) expression of a principal chemosensory receptor protein, ionotropic receptor 25a (IR25a) which is fundamental for odorant coding and olfactory signalling cascades. The OSNs also exhibit morphological changes in the form of decreased surface areas of their somata. This study provides the first evidence of the effects of high CO2 levels at multiple levels of biological organization in marine crabs, linking physiological and cellular changes with whole animal behavioural responses.  相似文献   

18.
Experiments were conducted to investigate the sex-specific differences to feeding responses of the shore crab Carcinus maenas throughout the year. Results demonstrate that female shore crabs exhibit stronger feeding responses than males throughout the year with a significantly reduced feeding response in males during the summer months' reproductive season. We also studied the possible function(s) of the moulting hormone, 20-hydroxyecdysone (Crustecdysone) that has been described as a potential female-produced sex pheromone to initiate male reproductive behaviour in a number of crustaceans. We recently presented evidence that for shore crabs this is not the case and now show that the steroid is instead functioning as a sex-specific feeding deterrent protecting the moulting 'soft' female crabs. Whilst male shore crabs were deterred from prey (Mytilus edulis) and synthetic feeding stimulants glycine and taurine when these feeding stimulants were spiked with crustecdysone, intermoult female crabs were significantly less affected and rarely deterred from feeding. This sex specificity of the moulting hormone, in combination with the female sex pheromone, which has no anti-feeding properties, ensures that male crabs mate with soft-shelled, moulted females rather than engage in cannibalism, such as found frequently in cases when soft-shelled females are exposed to intermoult females.  相似文献   

19.
To manage the impacts of biological invasions, it is important to determine the mechanisms responsible for the effects invasive species have on native populations. When predation by an invader is the mechanism causing declines in a native population, protecting the native species will involve elucidating the factors that affect native vulnerability. To examine those factors, this study measured how a native species responded to an introduced predator, and whether the native response could result in a refuge from predation. Predation by the green crab, Carcinus maenas, has contributed to the decline in numbers of native soft-shell clams, Mya arenaria, and efforts to eradicate crabs have proven futile. We tested how crab foraging affected clam burrowing, and how depth in the sediment affected clam survival. Clams responded to crab foraging by burrowing deeper in the sediment. Clams at shallow depths were more vulnerable to predation by crabs. Results suggest soft-shell clam burrowing is an inducible defense in response to green crab predation because burrowing deeper results in a potential refuge from predation by crabs. For restoring the native clam populations, tents could exclude crabs and protect clams, but when tents must be removed, exposing the clams to cues from foraging crabs should induce the clams to burrow deeper and decrease vulnerability. In general, by exposing potential native prey to cues from introduced predators, we can test how the natives respond, identify whether the response results in a potential refuge, and evaluate the risks to native species survival in invaded communities.  相似文献   

20.
Juvenile shore crabs Carcinus maenas (L.) were observed feeding on rock barnacles Semibalanus balanoides (L.) on a Bay of Fundy rocky shore. This previously unreported predatory behaviour was further investigated in the laboratory. When given a choice of three common and abundant gastropods, Nucella lapillus (L.), Littorina littorea (L.), and Littorina obtusata (L.), and the rock barnacle Semibalanus balanoides, juvenile shore crabs of both sexes ate mainly barnacles and consumed proportionately more barnacles than gastropods compared with adults, which ate mainly gastropods. The rock barnacle is an abundant and readily available food source which may be important in sustaining the juvenile crab through periods of moults and rapid growth. As the shore crab attains a certain age (size), it must forage lower on the shore as gastropods become more important in its diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号