首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Norman JA  Shiekhattar R 《Biochemistry》2006,45(9):3014-3019
Ubiquitin-like proteins modify target proteins, altering their activities or causing them to be slated for degradation. These modifications are used to efficiently regulate key events in the cell. To explore the set of proteins modified by a small ubiquitin-like protein, we have developed a proteomic approach. Affinity purification of an epitope-tagged Nedd8 allowed the identification of the majority of proteins known to be involved with the neddylation pathway. This purification not only isolated the known targets of neddylation but also the constellation of enzymes and complexes known to regulate neddylation and deneddylation, including the COP9 signalosome, Nub1, and enzymes in the neddylation cascade. This purification scheme can be applied to other small ubiquitin-like proteins, especially those with limited protein targets such as the SUMOs (1, 2, and 3), Isg15, or FAT10.  相似文献   

2.
Wu JT  Lin HC  Hu YC  Chien CT 《Nature cell biology》2005,7(10):1014-1020
Cullin family proteins organize ubiquitin ligase (E3) complexes to target numerous cellular proteins for proteasomal degradation. Neddylation, the process that conjugates the ubiquitin-like polypeptide Nedd8 to the conserved lysines of cullins, is essential for in vivo cullin-organized E3 activities. Deneddylation, which removes the Nedd8 moiety, requires the isopeptidase activity of the COP9 signalosome (CSN). Here we show that in cells deficient for CSN activity, cullin1 (Cul1) and cullin3 (Cul3) proteins are unstable, and that to preserve their normal cellular levels, CSN isopeptidase activity is required. We further show that neddylated Cul1 and Cul3 are unstable - as suggested by the evidence that Nedd8 promotes the instability of both cullins - and that the unneddylatable forms of cullins are stable. The protein stability of Nedd8 is also subject to CSN regulation and this regulation depends on its cullin-conjugating ability, suggesting that Nedd8-conjugated cullins are degraded en bloc. We propose that while Nedd8 promotes cullin activation through neddylation, neddylation also renders cullins unstable. Thus, CSN deneddylation recycles the unstable, neddylated cullins into stable, unneddylated ones, and promotes cullin-organized E3 activity in vivo.  相似文献   

3.
The conjugation of proteins with the ubiquitin-like protein Nedd8 is an essential cellular process and an important anti-cancer therapeutic target. The major known role of Nedd8 is the attachment to and activation of Cullin RING E3 ubiquitin ligases (CRL). The attachment of Nedd8 to its substrates occurs via a process analogous to ubiquitin transfer, involving a Nedd8 E1 activating enzyme and a Nedd8 E2 conjugating enzyme, Ubc12, which transfers Nedd8 onto lysine residues of target proteins. In this study, we utilize dominant-negative Ubc12 (dnUbc12) and the Nedd8 E1 inhibitor MLN4924 to inhibit cellular neddylation. We demonstrate that dnUbc12 functions by depleting cellular Nedd8 concentrations. Inhibition of cellular neddylation leads to rapid accumulation of CRL substrates and an enlarged and flattened morphology in HEK293 cells. Inhibiting Nedd8 conjugation also causes abnormalities in the actin cytoskeleton. This is likely at least partially mediated via accumulation of the small GTPase RhoA, a recently identified CRL substrate. We indeed found that siRNA mediated knockdown of RhoA can reverse the morphological changes observed upon inhibition of cellular neddylation. In conclusion, the Nedd8 pathway plays an important role in regulating the actin cytoskeleton and cellular morphology. Dysfunction of the actin cytoskeleton may contribute to the anti-cancer effect of Nedd8 inhibition.  相似文献   

4.
BACKGROUND: SCF (Skp1-Cullin-F-box) complexes are a major class of E3 ligases that are required to selectively target substrates for ubiquitin-dependent degradation by the 26S proteasome. Conjugation of the ubiquitin-like protein Nedd8 to the cullin subunit (neddylation) positively regulates activity of SCF complexes, most likely by increasing their affinity for the E2 conjugated to ubiquitin. The Nedd8 conjugation pathway is required in C. elegans embryos for the ubiquitin-mediated degradation of the microtubule-severing protein MEI-1/Katanin at the meiosis-to-mitosis transition. Genetic experiments suggest that this pathway controls the activity of a CUL-3-based E3 ligase. Counteracting the Nedd8 pathway, the COP9/signalosome has been shown to promote deneddylation of the cullin subunit. However, little is known about the role of neddylation and deneddylation for E3 ligase activity in vivo. RESULTS: Here, we identified and characterized the COP9/signalosome in C. elegans and showed that it promotes deneddylation of CUL-3, a critical target of the Nedd8 conjugation pathway. As in other species, the C. elegans signalosome is a macromolecular complex containing at least six subunits that localizes in the nucleus and the cytoplasm. Reducing COP9/signalosome function by RNAi results in a failure to degrade MEI-1, leading to severe defects in microtubule-dependent processes during the first mitotic division. Intriguingly, reducing COP9/signalosome function suppresses a partial defect in the neddylation pathway; this suppression suggests that deneddylation and neddylation antagonize each other. CONCLUSIONS: We conclude that both neddylation and deneddylation of CUL-3 is required for MEI-1 degradation and propose that cycles of CUL-3 neddylation and deneddylation are necessary for its ligase activity in vivo.  相似文献   

5.
Conjugation of ubiquitin-like protein Nedd8 to cullins (neddylation) is essential for the function of cullin-RING ubiquitin ligases (CRLs). Here, we show that neddylation stimulates CRL activity by multiple mechanisms. For the initiator ubiquitin, the major effect is to bridge the approximately 50 A gap between naked substrate and E2 approximately Ub bound to SCF. The gap between the acceptor lysine of ubiquitinated substrate and E2 approximately Ub is much smaller, and, consequentially, the impact of neddylation on transfer of subsequent ubiquitins by Cdc34 arises primarily from improved E2 recruitment and enhanced amide bond formation in the E2 active site. The combined effects of neddylation greatly enhance the probability that a substrate molecule acquires >or= 4 ubiquitins in a single encounter with a CRL. The surprisingly diverse effects of Nedd8 conjugation underscore the complexity of CRL regulation and suggest that modification of other ubiquitin ligases with ubiquitin or ubiquitin-like proteins may likewise have major functional consequences.  相似文献   

6.
7.
Neddylation is a posttranslational modification that attaches ubiquitin-like protein Nedd8 to protein targets via Nedd8-specific E1-E2-E3 enzymes and modulates many important biological processes. Nedd8 attaches to a lysine residue of a substrate, not for degradation, but for modulation of substrate activity. We previously identified the HECT-type ubiquitin ligase Smurf1, which controls diverse cellular processes, is activated by Nedd8 through covalent neddylation. Smurf1 functions as a thioester bond-type Nedd8 ligase to catalyze its own neddylation. Numerous ubiquitination substrates of Smurf1 have been identified, but the neddylation substrates of Smurf1 remain unknown. Here, we show that Smurf1 interacts with RRP9, a core component of the U3 snoRNP complex, which is involved in pre-rRNA processing. Our in vivo and in vitro neddylation modification assays show that RRP9 is conjugated with Nedd8. RRP9 neddylation is catalyzed by Smurf1 and removed by the NEDP1 deneddylase. We identified Lys221 as a major neddylation site on RRP9. Deficiency of RRP9 neddylation inhibits pre-rRNA processing and leads to downregulation of ribosomal biogenesis. Consequently, functional studies suggest that ectopic expression of RRP9 promotes tumor cell proliferation, colony formation, and cell migration, whereas unneddylated RRP9, K221R mutant has no such effect. Furthermore, in human colorectal cancer, elevated expression of RRP9 and Smurf1 correlates with cancer progression. These results reveal that Smurf1 plays a multifaceted role in pre-rRNA processing by catalyzing RRP9 neddylation and shed new light on the oncogenic role of RRP9.  相似文献   

8.
Substrate-mediated regulation of cullin neddylation   总被引:1,自引:0,他引:1  
  相似文献   

9.
10.
When appended to the epidermal growth factor receptor (EGFR), ubiquitin serves as a sorting signal for lysosomal degradation. Here we demonstrate that the ubiquitin ligase of EGFR, namely c-Cbl, also mediates receptor modification with the ubiquitin-like molecule Nedd8. EGF stimulates receptor neddylation, which enhances subsequent ubiquitylation, as well as sorting of EGFR for degradation. Multiple lysine residues, located within the tyrosine kinase domain of EGFR, serve as attachment sites for Nedd8. A set of clathrin coat-associated binders of ubiquitin also bind Nedd8, but they undergo ubiquitylation, not neddylation. We discuss the emerging versatility of the concerted action of ubiquitylation and neddylation in the process that desensitizes growth factor-activated receptor tyrosine kinases.  相似文献   

11.
12.
The expression of the ubiquitin related protein Nedd8/RUB is essential for growth in most organisms. Nedd8/RUB has been shown to modify the cullin subunit of culling-based ubiquitin protein ligases (E3). Neddylation acts to regulate the function of these E3s and organisms with lesions in the neddylation process exhibit severe growth defects. In this review we describe the proteins that participate in neddylation and discuss a model for Nedd8/RUB regulation of ubiquitin ligase function.  相似文献   

13.
The Nedd8 conjugation pathway is conserved from yeast to humans and is essential in many organisms. Nedd8 is conjugated to cullin proteins in a process that alters SCF E3 ubiquitin ligase activity, and it is presumed that Nedd8 deconjugation would reverse these effects. We now report the X-ray structures of the human Nedd8-specific protease, Den1, in a complex with the inhibitor Nedd8 aldehyde, thus revealing a model for the tetrahedral transition state intermediate generated during proteolysis. Although Den1 is closely related to the SUMO-specific protease family (Ulp/Senp family), structural analysis of the interface suggests determinants involved in Nedd8 selectivity by Den1 over other ubiquitin-like family members and suggests how the Ulp/Senp architecture has been modified to interact with different ubiquitin-like modifiers.  相似文献   

14.
15.
16.
Cullin-based E3 ubiquitin ligases are activated through modification of the cullin subunit with the ubiquitin-like protein Nedd8. Dcn1 regulates cullin neddylation and thus ubiquitin ligase activity. Here we describe the 1.9 A X-ray crystal structure of yeast Dcn1 encompassing an N-terminal ubiquitin-binding (UBA) domain and a C-terminal domain of unique architecture, which we termed PONY domain. A conserved surface on Dcn1 is required for direct binding to cullins and for neddylation. The reciprocal binding site for Dcn1 on Cdc53 is located approximately 18 A from the site of neddylation. Dcn1 does not require cysteine residues for catalytic function, and directly interacts with the Nedd8 E2 Ubc12 on a surface that overlaps with the E1-binding site. We show that Dcn1 is necessary and sufficient for cullin neddylation in a purified recombinant system. Taken together, these data demonstrate that Dcn1 is a scaffold-like E3 ligase for cullin neddylation.  相似文献   

17.
Nedd8, a ubiquitin-like modifier, is covalently attached to various proteins. Although Nedd8 has higher sequence identity (57%) with ubiquitin, its conserved K48 residue cannot form covalent linkage with ubiquitin. To decipher the reason why Nedd8 cannot be an effective ubiquitin-acceptor, we compared the non-covalent interaction between Nedd8 and ubiquitin for various E2s using cross-saturation NMR technique. However, both Nedd8 and ubiquitin displayed almost identical non-covalent E2-binding properties. The K60 of Nedd8 was not present at the E2-binding surface, but its mutation to Asn converted Nedd8 into a ubiquitin-acceptor. The N60 ubiquitin mutants also displayed a decreased ubiquitin-accepting activity. These results suggest the presence of an uncharacterized determinant for the K48 ubiquitin-linkage that is not related to non-covalent E2-bindings.

Structured summary

MINT-7263328: NEDD8 (uniprotkb:Q15843) and Ubiquitin (uniprotkb:P62988) physically interact (MI:0914) by enzymatic studies (MI:0415)  相似文献   

18.
The periodic expression of cell cycle proteins is important for the regulation of cell cycle progression. The amount of CDK inhibitor, p27(kip1), one such protein, seems to be regulated by the ubiquitin-proteasome system. The ubiquitin ligase (E3) toward p27(kip1) is thought to be SCF(skp2). The activity of SCF(skp2) was increased by the addition of Roc1 protein to the complex. Furthermore, the ubiquitination of p27(kip1) seemed to be dependent on the phosphorylation of T187 of p27(kip1) because the mutant T187A was not ubiquitinated at all in an in vitro ubiquitination system. Cullin-1, a component of SCF, is modified by ubiquitin-like protein Nedd8. The modification site of cullin-1 was shown to be K696 because the K696R mutant was not modified. When the effect of the Nedd8 modification on the SCF(skp2) activity toward p27(kip1) was investigated, the activity was markedly decreased by using the Nedd8-unmodified mutant cullin-1 (K696R), indicating that the modification may play an important role on the SCF(skp2) activity toward p27(kip1).  相似文献   

19.
Saifee NH  Zheng N 《Cell》2008,135(2):209-211
Modification of cullin-RING ubiquitin ligases by the ubiquitin-like molecule Nedd8 promotes substrate ubiquitination. A crystal structure of a cullin modified by Nedd8 recently reported in Cell (Duda et al., 2008) and a biochemical study in Molecular Cell (Saha and Deshaies, 2008) reveal the dramatic impact on the ligase machinery by conjugation of ubiquitin or ubiquitin-like proteins.  相似文献   

20.
目前已经鉴定出17种类泛素蛋白(ubiquitin like proteins,UBLs),这些蛋白与底物的结合方式与泛素相似.根据进化特征,可将UBLs分为9类,分别为:NEDD8、SUMO、ISG15、FUB1、FAT10、Atg8、Atg12、Urm1和UFM1.NEDD8是目前研究最多的UBLs之一,与泛素的氨基酸序列具有高度相似性.NEDD化修饰是一种动态的可逆蛋白质翻译后修饰方式,可以将NEDD8共价结合到靶蛋白之上,也可以将NEDD8从靶蛋白上去除.NEDD化修饰对蛋白功能具有重要的调节作用,如改变蛋白质的空间构象、阻碍底物与其它蛋白质的相互作用和招募与NEDD8相互作用的蛋白等.最新研究表明,NEDD化与肿瘤的发生发展密切相关,但具体的机制还不清楚.本文将就NEDD化修饰在肿瘤发展过程中的作用机制做一综述.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号