首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Studies examining the effects of anthropogenic habitat fragmentation on both neutral and adaptive genetic variability are still scarce. We compared tadpole fitness-related traits (viz. survival probability and body size) among populations of the common frog (Rana temporaria) from fragmented (F) and continuous (C) habitats that differed significantly in population sizes (C > F) and genetic diversity (C > F) in neutral genetic markers. Using data from common garden experiments, we found a significant positive relationship between the mean values of the fitness related traits and the amount of microsatellite variation in a given population. While genetic differentiation in neutral marker loci (F(ST)) tended to be more pronounced in the fragmented than in the continuous habitat, genetic differentiation in quantitative traits (Q(ST)) exceeded that in neutral marker traits in the continuous habitat (i.e. Q(ST) > F(ST)), but not in the fragmented habitat (i.e. Q(ST) approximately F(ST)). These results suggest that the impact of random genetic drift relative to natural selection was higher in the fragmented landscape where populations were small, and had lower genetic diversity and fitness as compared to populations in the more continuous landscape. The findings highlight the potential importance of habitat fragmentation in impairing future adaptive potential of natural populations.  相似文献   

2.
Reduced genetic variation at marker loci in small populations has been well documented, whereas the relationship between quantitative genetic variation and population size has attracted little empirical investigation. Here we demonstrate that both neutral and quantitative genetic variation are reduced in small populations of a fragmented plant metapopulation, and that both drift and selective change are enhanced in small populations. Measures of neutral genetic differentiation (F(ST)) and quantitative genetic differentiation (Q(ST)) in two traits were higher among small demes, and Q(ST) between small populations exceeded that expected from drift alone. This suggests that fragmented populations experience both enhanced genetic drift and divergent selection on phenotypic traits, and that drift affects variation in both neutral markers and quantitative traits. These results highlight the need to integrate natural selection into conservation genetic theory, and suggests that small populations may represent reservoirs of genetic variation adaptive within a wide range of environments.  相似文献   

3.
Genetic differentiation in 20 hierarchically sampled populations of wild barley was analyzed with quantitative traits, allozymes and Random Amplified Polymorphic DNAs (RAPDs), and compared for three marker types at two hierarchical levels. Regional subdivision for both molecular markers was much lower than for quantitative traits. For both allozymes and RAPDs, most loci exhibited minor or no regional differentiation, and the relatively high overall estimates of the latter were due to several loci with exceptionally high regional differentiation. The allozyme- and RAPD-specific patterns of differentiation were concordant in general with one another, but not with quantitative trait differentiation. Divergent selection on quantitative traits inferred from very high regional Q(ST) was in full agreement with our previous results obtained from a test of local adaptation and multilevel selection analysis. In contrast, most variation in allozyme and RAPD variation was neutral, although several allozyme loci and RAPD markers were exceptional in their levels of regional differentiation. However, it is not possible to answer the question whether these exceptional loci are directly involved in the response to selection pressure or merely linked to the selected loci. The fact that Q(ST) and F(ST) did not differ at the population scale, that is, within regions, but differed at the regional scale, for which local adaptation has been previously shown, implies that comparison of the level of subdivision in quantitative traits, as compared with molecular markers, is indicative of adaptive population differentiation only when sampling is carried out at the appropriate scale.  相似文献   

4.
Sequence polymorphisms in coding genes and variability in quantitative trait loci (QTL)-linked markers can be used to uncover the evolutionary mechanisms of traits involved in adaptive processes. We studied sequence variation in the EDA gene and allelic variation in 18 microsatellites - one of which (Gac4174) is linked with the EDA QTL - in low, partially and completely plated morphs from eight threespine stickleback European populations. The results agree with previous studies in that EDA polymorphism is closely related to plate number variation: EDA sequences grouped populations into low and completely plated morphs, whereas microsatellites failed to do so. Furthermore, partially plated fish were heterozygous with respect to the distinctive EDA alleles for completely and low plated morphs, indicating that completely plated morph alleles are not entirely dominant in controlling the expression of lateral plate number. An examination of population differentiation in plate number with quantitative genetic methods revealed that the degree of differentiation exceeded that expected from genetic drift alone (Q(ST) > F(ST)). Our results support the adaptive genetic differentiation of plate morphs and the view that distinctive EDA gene polymorphism occurs in similar sites across the distribution range of this species. Yet, allele frequency differentiation in the Gac4174 microsatellite locus, informative in experimental crosses for plate number variation, did not differ from that of neutral markers and, was therefore unable to detect the signature of natural selection responsible for population divergence.  相似文献   

5.
Most adaptive traits are controlled by large number of genes that may all together be the targets of selection. Adaptation may thus involve multiple but not necessarily substantial allele frequency changes. This has important consequences for the detection of selected loci and implies that a quantitative genetics framework may be more appropriate than the classical 'selective sweep' paradigm. Preferred methods to detect loci involved in local adaptation are based on the detection of 'outlier' values of the allelic differentiation F(ST) . A quantitative genetics framework is adopted here to review theoretical expectations for how allelic differentiation at quantitative trait loci (F(STQ) ) relates to (i), neutral genetic differentiation (F(ST) ) and (ii), phenotypic differentiation (Q(ST) ). We identify cases where results of outlier-based methods are likely to be poor and where differentiation at selected loci conveys little information regarding local adaptation. A first case is when neutral differentiation is high, so that local adaptation does not necessitate increased differentiation. A second case is when local adaptation is reached via an increased covariance of allelic effects rather than via allele frequency changes, which is more likely under high gene flow when the number of loci is high and selection is recent. The comparison of theoretical predictions with observed data from the literature suggests that polygenic local adaptation involving only faint allele frequency changes are very likely in some species such as forest trees and for climate-related traits. Recent methodological improvements that may alleviate the weakness of F(ST) -based detection methods are presented.  相似文献   

6.
Relating geographic variation in quantitative traits to underlying population structure is crucial for understanding processes driving population differentiation, isolation and ultimately speciation. Our study represents a comprehensive population genetic survey of the yellow dung fly Scathophaga stercoraria, an important model organism for evolutionary and ecological studies, over a broad geographic scale across Europe (10 populations from the Swiss Alps to Iceland). We simultaneously assessed differentiation in five quantitative traits (body size, development time, growth rate, proportion of diapausing individuals and duration of diapause), to compare differentiation in neutral marker loci (F(ST)) to that of quantitative traits (Q(ST)). Despite long distances and uninhabitable areas between sampled populations, population structuring was very low but significant (F(ST) = 0.007, 13 microsatellite markers; F(ST) = 0.012, three allozyme markers; F(ST) = 0.007, markers combined). However, only two populations (Iceland and Sweden) showed significant allelic differentiation to all other populations. We estimated high levels of gene flow [effective number of migrants (Nm) = 6.2], there was no isolation by distance, and no indication of past genetic bottlenecks (i.e. founder events) and associated loss of genetic diversity in any northern or island population. In contrast to the low population structure, quantitative traits were strongly genetically differentiated among populations, following latitudinal clines, suggesting that selection is responsible for life history differentiation in yellow dung flies across Europe.  相似文献   

7.
Loci targeted by directional selection are expected to show elevated geographical population structure relative to neutral loci, and a flurry of recent papers have used this rationale to search for genome regions involved in adaptation. Studies of functional mutations that are known to be under selection are particularly useful for assessing the utility of this approach. Antimalarial drug treatment regimes vary considerably between countries in Southeast Asia selecting for local adaptation at parasite loci underlying resistance. We compared the population structure revealed by 10 nonsynonymous mutations (nonsynonymous single-nucleotide polymorphisms [nsSNPs]) in four loci that are known to be involved in antimalarial drug resistance, with patterns revealed by 10 synonymous mutations (synonymous single-nucleotide polymorphisms [sSNPs]) in housekeeping genes or genes of unknown function in 755 Plasmodium falciparum infections collected from 13 populations in six Southeast Asian countries. Allele frequencies at known nsSNPs underlying resistance varied markedly between locations (F(ST) = 0.18-0.66), with the highest frequencies on the Thailand-Burma border and the lowest frequencies in neighboring Lao PDR. In contrast, we found weak but significant geographic structure (F(ST) = 0-0.14) for 8 of 10 sSNPs. Importantly, all 10 nsSNPs showed significantly higher F(ST) (P < 8 x 10(-5)) than simulated neutral expectations based on observed F(ST) values in the putatively neutral sSNPs. This result was unaffected by the methods used to estimate allele frequencies or the number of populations used in the simulations. Given that dense single-nucleotide polymorphism (SNP) maps and rapid SNP assay methods are now available for P. falciparum, comparing genetic differentiation across the genome may provide a valuable aid to identifying parasite loci underlying local adaptation to drug treatment regimes or other selective forces. However, the high proportion of polymorphic sites that appear to be under balancing selection (or linked to selected sites) in the P. falciparum genome violates the central assumption that selected sites are rare, which complicates identification of outlier loci, and suggests that caution is needed when using this approach.  相似文献   

8.
Three measures of divergence, estimated at nine putatively neutral microsatellite markers, 14 quantitative traits, and seven quantitative trait loci (QTL) were compared in eight populations of the three-spined stickleback (Gasterosteus aculeatus L.) living in the Scheldt river basin (Belgium). Lowland estuarine and polder populations were polymorphic for the number of lateral plates, whereas upland freshwater populations were low-plated. The number of short gill rakers and the length of dorsal and pelvic spines gradually declined along a coastal-inland gradient. Plate number, short gill rakers and spine length showed moderate to strong signals of divergent selection between lowland and upland populations in comparison between P(ST) (a phenotypic alternative for Q(ST)) and neutral F(ST). However, such comparisons rely on the unrealistic assumption that phenotypic variance equals additive genetic variance, and that nonadditive genetic effects and environmental effects can be minimized. In order to verify this assumption and to confirm the phenotypic signals of divergence, we tested for divergent selection at the underlying QTL. For plate number, strong genetic evidence for divergent selection between lowland and upland populations was obtained based on an intron marker of the Eda gene, of which the genotype was highly congruent with plate morph. Genetic evidence for divergent selection on short gill rakers was limited to some population pairs where F(ST) at only one of two QTL was detected as an outlier, although F(ST) at both loci correlated significantly with P(ST). No genetic confirmation was obtained for divergent selection on dorsal spine length, as no outlier F(ST)s were detected at dorsal spine QTL, and no significant correlations with P(ST) were observed.  相似文献   

9.
The significance of female color polymorphism in Odonata remains controversial despite many field studies. The importance of random factors (founder effects, genetic drift and migration) versus selective forces for the maintenance of this polymorphism is still discussed. In this study, we specifically test whether the female color polymorphism of Ischnura graellsii (Odonata, Coenagrionidae) is under selection in the wild. We compared the degree of genetic differentiation based on RAPD markers (assumed to be neutral) with the degree of differentiation based on color alleles. Weir and Cockerham's theta values showed a significant degree of population differentiation for both sets of loci (RAPD and color alleles) but the estimated degree of population differentiation (theta) was significantly greater for the set of RAPD loci. This result shows that some sort of selection contributes to the maintenance of similar color morph frequencies across the studied populations. Our results combined with those of previous field studies suggest that at least in some I. graellsii populations, density-dependent mechanisms might help to prevent the loss of this polymorphism but cannot explain the similarity in morph frequencies among populations.  相似文献   

10.
The impact of natural selection on the adaptive divergence of invasive populations can be assessed by testing the null hypothesis that the extent of quantitative genetic differentiation (Q(ST) ) would be similar to that of neutral molecular differentiation (F(ST) ). Using eight microsatellite loci and a common garden approach, we compared Q(ST) and F(ST) among ten populations of an invasive species Ambrosia artemisiifolia (common ragweed) in France. In a common garden study with varying water and nutrient levels, we measured Q(ST) for five traits (height, total biomass, reproductive allocation, above- to belowground biomass ratio, and days to flowering). Although low F(ST) indicated weak genetic structure and strong gene flow among populations, we found significant diversifying selection (Q(ST) > F(ST) ) for reproductive allocation that may be closely related to fitness. It suggests that abiotic conditions may have exerted selection pressure on A. artemisiifolia populations to differentiate adaptively, such that populations at higher altitude or latitude evolved greater reproductive allocation. As previous studies indicate multiple introductions from various source populations of A. artemisiifolia in North America, our results suggest that the admixture of introduced populations may have increased genetic diversity and additive genetic variance, and in turn, promoted the rapid evolution and adaptation of this invasive species.  相似文献   

11.
A correct timing of growth cessation and dormancy induction represents a critical ecological and evolutionary trade-off between survival and growth in most forest trees (Rehfeldt et al. 1999; Horvath et al. 2003; Howe et al. 2003). We have studied the deciduous tree European Aspen (Populus tremula) across a latitudinal gradient and compared genetic differentiation in phenology traits with molecular markers. Trees from 12 different areas covering 10 latitudinal degrees were cloned and planted in two common gardens. Several phenology traits showed strong genetic differentiation and clinal variation across the latitudinal gradient, with Q(ST) values generally exceeding 0.5. This is in stark contrast to genetic differentiation at several classes of genetic markers (18 neutral SSRs, 7 SSRs located close to phenology candidate genes and 50 SNPs from five phenology candidate genes) that all showed F(ST) values around 0.015. We thus find strong evidence for adaptive divergence in phenology traits across the latitudinal gradient. However, the strong population structure seen at the quantitative traits is not reflected in underlying candidate genes. This result fit theoretical expectations that suggest that genetic differentiation at candidate loci is better described by F(ST) at neutral loci rather than by Q(ST) at the quantitative traits themselves.  相似文献   

12.
Y Takahashi  N Nagata  M Kawata 《Heredity》2014,112(4):391-398
Understanding the relative importance of selection and stochastic factors in population divergence of adaptive traits is a classical topic in evolutionary biology. However, it is difficult to separate these factors and detect the effects of selection when two or more contrasting selective factors are simultaneously acting on a single locus. In the damselfly Ischnura senegalensis, females exhibit color dimorphism and morph frequencies change geographically. We here evaluated the role of selection and stochastic factors in population divergence of morph frequencies by comparing the divergences in color locus and neutral loci. Comparisons between population pairwise FST for neutral loci and for the color locus did not detect any stochastic factors affecting color locus. Although comparison between population divergence in color and neutral loci using all populations detected only divergent selection, we detected two antagonistic selective factors acting on the color locus, that is, balancing and divergent selection, when considering geographical distance between populations. Our results suggest that a combination of two antagonistic selective factors, rather than stochastic factors, establishes the geographic cline in morph frequency in this system.  相似文献   

13.
Disentangling the relative importance and potential interactions of selection and genetic drift in driving phenotypic divergence of species is a classical research topic in population genetics and evolutionary biology. Here, we evaluate the role of stochastic and selective forces on population divergence of a colour polymorphism in seven damselfly species of the genus Ischnura, with a particular focus on I. elegans and I. graellsii. Colour-morph frequencies in Spanish I. elegans populations varied greatly, even at a local scale, whereas more similar frequencies were found among populations in eastern Europe. In contrast, I. graellsii and the other five Ischnura species showed little variation in colour-morph frequencies between populations. F(ST)-outlier analyses revealed that the colour locus deviated strongly from neutral expectations in Spanish populations of I. elegans, contrasting the pattern found in eastern European populations, and in I. graellsii, where no such discrepancy between morph divergence and neutral divergence could be detected. This suggests that divergent selection has been operating on the colour locus in Spanish populations of I. elegans, whereas processes such as genetic drift, possibly in combination with other forms of selection (such as negative frequency-dependent selection), appear to have been present in other regions, such as eastern Europe. Overall, the results indicate that both selective and stochastic processes operate on these colour polymorphisms, and suggest that the relative importance of factors varies between geographical regions.  相似文献   

14.
Comparative studies of quantitative genetic and neutral marker differentiation have provided means for assessing the relative roles of natural selection and random genetic drift in explaining among-population divergence. This information can be useful for our fundamental understanding of population differentiation, as well as for identifying management units in conservation biology. Here, we provide comprehensive review and meta-analysis of the empirical studies that have compared quantitative genetic (Q(ST)) and neutral marker (F(ST)) differentiation among natural populations. Our analyses confirm the conclusion from previous reviews - based on ca. 100% more data - that the Q(ST) values are on average higher than F(ST) values [mean difference 0.12 (SD 0.27)] suggesting a predominant role for natural selection as a cause of differentiation in quantitative traits. However, although the influence of trait (life history, morphological and behavioural) and marker type (e.g. microsatellites and allozymes) on the variance of the difference between Q(ST) and F(ST) is small, there is much heterogeneity in the data attributable to variation between specific studies and traits. The latter is understandable as there is no reason to expect that natural selection would be acting in similar fashion on all populations and traits (except for fitness itself). We also found evidence to suggest that Q(ST) and F(ST) values across studies are positively correlated, but the significance of this finding remains unclear. We discuss these results in the context of utility of the Q(ST)-F(ST) comparisons as a tool for inferring natural selection, as well as associated methodological and interpretational problems involved with individual and meta-analytic studies.  相似文献   

15.
Across large spatial scales, plants often exhibit genetically based differentiation in traits that allow adaptation to local sites. At smaller spatial scales, sharp boundaries between edaphic conditions also can create strong gradients in selection that counteract gene flow and result in local adaptation. Few studies, however, have examined the degree to which continuous populations of perennial plants exhibit genetically based differentiation in life-history traits over small spatial scales. We quantified the degree of genetically based differentiation in adaptive traits among bush lupine (Lupinus arboreus) from nearby dune and grassland sites (sites separated by < 0.75 km) that formed part of a larger continuous population of L. arboreus. We also investigated the spatial genetic structure of bush lupine by examining how genetic structure differed between seeds and juvenile plants that were less than two years old. We calculated F-statistics from gel electrophoresis of 10 polymorphic loci. We then used these values to infer levels of gene flow. To examine differentiation in adaptive traits, we created full-sibling/half-sibling families of lupine within each area and established reciprocal common gardens at each site. Across two years, we measured canopy volume, flowering time, seed set, and mortality of progeny planted in each garden. Spatial genetic structure among seeds was virtually nonexistent (F(ST) = 0.002), suggesting that gene flow between the three areas could be quite high. However, genetic structure increased 20-fold among juvenile plants (F(ST) = 0.041). We found strong evidence for fine-scale genetically based differentiation and local adaptation in adaptive traits such as plant size, flowering phenology, fecundity, and mortality. Thus, it is likely that strong but differing selection regimes within each area drive spatial differentiation in lupine life-history traits.  相似文献   

16.
Funk DJ  Egan SP  Nosil P 《Molecular ecology》2011,20(22):4671-4682
This study tests how divergent natural selection promotes genomic differentiation during ecological speciation. Specifically, we use adaptive ecological divergence (here, population divergence in host plant use and preference) as a proxy for selection strength and evaluate the correlation between levels of adaptive and genetic differentiation across pairwise population comparisons. Positive correlations would reveal the pattern predicted by our hypothesis, that of 'isolation by adaptation' (IBA). Notably, IBA is predicted not only for selected loci but also for neutral loci. This may reflect the effects of divergent selection on neutral loci that are 'loosely linked' to divergently selected loci or on geneflow restriction that facilitates genetic drift at all loci, including neutral loci that are completely unlinked to those evolving under divergent selection. Here, we evaluate IBA in maple- and willow-associated populations of Neochlamisus bebbianae leaf beetles. To do so, we collected host preference data to construct adaptive divergence indices and used AFLPs (amplified fragment length polymorphisms) and mitochondrial sequences to quantify genetic differentiation. Partial Mantel tests showed significant IBA in 'pooled' analyses of putatively neutral and of putatively selected ('outlier') AFLP loci. This pattern was also recovered in 12% of 'locus-specific' analyses that separately evaluated genetic differentiation at individual neutral loci. These results provided evidence for widespread effects of selection on neutral genomic divergence. Our collective findings indicate that host-related selection may play important roles in the population genomic differentiation of both neutral and selected gene regions in herbivorous insects.  相似文献   

17.
Evolutionary biologists have long been interested in the processes influencing population differentiation, but separating the effects of neutral and adaptive evolution has been an obstacle for studies of population subdivision. A recently developed method allows tests of whether disruptive (ie, spatially variable) or stabilizing (ie, spatially uniform) selection is influencing phenotypic differentiation among subpopulations. This method, referred to as the F(ST) vs Q(ST) comparison, separates the total additive genetic variance into within- and among-population components and evaluates this level of differentiation against a neutral hypothesis. Thus, levels of neutral molecular (F(ST)) and quantitative genetic (Q(ST)) divergence are compared to evaluate the effects of selection and genetic drift on phenotypic differentiation. Although the utility of such comparisons appears great, its accuracy has not yet been evaluated in populations with known evolutionary histories. In this study, F(ST) vs Q(ST) comparisons were evaluated using laboratory populations of house mice with known evolutionary histories. In this model system, the F(ST) vs Q(ST) comparisons between the selection groups should reveal quantitative trait differentiation consistent with disruptive selection, while the F(ST) vs Q(ST) comparisons among lines within the selection groups should suggest quantitative trait differentiation in agreement with drift. We find that F(ST) vs Q(ST) comparisons generally produce the correct evolutionary inference at each level in the population hierarchy. Additionally, we demonstrate that when strong selection is applied between populations Q(ST) increases relative to Q(ST) among populations diverging by drift. Finally, we show that the statistical properties of Q(ST), a variance component ratio, need further investigation.  相似文献   

18.
Sahli HF  Conner JK  Shaw FH  Howe S  Lale A 《Genetics》2008,180(2):945-955
Weedy species with wide geographical distributions may face strong selection to adapt to new environments, which can lead to adaptive genetic differentiation among populations. However, genetic drift, particularly due to founder effects, will also commonly result in differentiation in colonizing species. To test whether selection has contributed to trait divergence, we compared differentiation at eight microsatellite loci (measured as F(ST)) to differentiation of quantitative floral and phenological traits (measured as Q(ST)) of wild radish (Raphanus raphanistrum) across populations from three continents. We sampled eight populations: seven naturalized populations and one from its native range. By comparing estimates of Q(ST) and F(ST), we found that petal size was the only floral trait that may have diverged more than expected due to drift alone, but inflorescence height, flowering time, and rosette formation have greatly diverged between the native and nonnative populations. Our results suggest the loss of a rosette and the evolution of early flowering time may have been the key adaptations enabling wild radish to become a major agricultural weed. Floral adaptation to different pollinators does not seem to have been as necessary for the success of wild radish in new environments.  相似文献   

19.
In plants, ecologically important life history traits often display clinal patterns of population divergence. Such patterns can provide strong evidence for spatially varying selection across environmental gradients but also may result from nonselective processes, such as genetic drift, population bottlenecks and spatially restricted gene flow. Comparison of population differentiation in quantitative traits (measured as Q(ST) ) with neutral molecular markers (measured as F(ST) ) provides a useful tool for understanding the relative importance of adaptive and nonadaptive processes in the formation and maintenance of clinal variation. Here, we demonstrate the existence of geographic variation in key life history traits in the diploid perennial sunflower species Helianthus maximiliani across a broad latitudinal transect in North America. Strong population differentiation was found for days to flowering, growth rate and multiple size-related traits. Differentiation in these traits greatly exceeds neutral predictions, as determined both by partial Mantel tests and by comparisons of global Q(ST) values with theoretical F(ST) distributions. These findings indicate that clinal variation in these life history traits likely results from local adaptation driven by spatially heterogeneous environments.  相似文献   

20.
We compared genetic variation and population differentiation at RFLP marker loci with seven quantitative characters including fungicide resistance, temperature sensitivity, pycnidial size, pycnidial density, colony size, percentage of leaves covered by pycnidia (PLACP) and percentage of leaves covered by lesions (PLACL) in Mycosphaerella graminicola populations sampled from four regions. Wide variation in population differentiation was found across the quantitative traits assayed. Fungicide resistance, temperature sensitivity, and PLACP displayed a significantly higher Q(ST) than G(ST), consistent with selection for local adaptation, while pycnidial size, pycnidial density and colony size displayed a lower or significantly lower Q(ST) than G(ST), consistent with constraining selection. There was not a statistical difference between Q(ST) and G(ST) in PLACL. We also found a positive and significant correlation between genetic variation in molecular marker loci and quantitative traits at the multitrait scale, suggesting that estimates of overall genetic variation for quantitative traits in M. graminicola could be derived from analysis of the molecular genetic markers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号