首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
The aim of this study is to investigate whether reliable and accurate 3D geometrical models of the murine aortic arch can be constructed from sparse-view data in vivo micro-CT acquisitions. This would considerably reduce acquisition time and X-ray dose. In vivo contrast-enhanced micro-CT datasets were reconstructed using a conventional filtered back projection algorithm (FDK), the image space reconstruction algorithm (ISRA) and total variation regularized ISRA (ISRA-TV). The reconstructed images were then semi-automatically segmented. Segmentations of high- and low-dose protocols were compared and evaluated based on voxel classification, 3D model diameters and centerline differences. FDK reconstruction does not lead to accurate segmentation in the case of low-view acquisitions. ISRA manages accurate segmentation with 1024 or more projection views. ISRA-TV needs a minimum of 256 views. These results indicate that accurate vascular models can be obtained from micro-CT scans with 8 times less X-ray dose and acquisition time, as long as regularized iterative reconstruction is used.  相似文献   

2.
PURPOSE: Demonstrate noninvasive imaging methods for in vivo characterization of cardiac structure and function in mice using a micro-CT system that provides high photon fluence rate and integrated motion control. MATERIALS AND METHODS: Simultaneous cardiac- and respiratory-gated micro-CT was performed in C57BL/6 mice during constant intravenous infusion of a conventional iodinated contrast agent (Isovue-370), and after a single intravenous injection of a blood pool contrast agent (Fenestra VC). Multiple phases of the cardiac cycle were reconstructed with contrast to noise and spatial resolution sufficient for quantitative assessment of cardiac function. RESULTS: Contrast enhancement with Isovue-370 increased over time with a maximum of approximately 500 HU (aorta) and 900 HU (kidney cortex). Fenestra VC provided more constant enhancement over 3 hr, with maximum enhancement of approximately 620 HU (aorta) and approximately 90 HU (kidney cortex). The maximum enhancement difference between blood and myocardium in the heart was approximately 250 HU for Isovue-370 and approximately 500 HU for Fenestra VC. In mice with Fenestra VC, volumetric measurements of the left ventricle were performed and cardiac function was estimated by ejection fraction, stroke volume, and cardiac output. CONCLUSION: Image quality with Fenestra VC was sufficient for morphological and functional studies required for a standardized method of cardiac phenotyping of the mouse.  相似文献   

3.

Background

The pathomechanisms of atherosclerosis and vascular remodelling are under intense research. Only a few in vivo tools to study these processes longitudinally in animal experiments are available. Here, we evaluated the potential of micro-CT technology.

Methods

Lumen areas of the common carotid arteries (CCA) in the ApoE-/- partial carotid artery ligation mouse model were compared between in vivo and ex vivo micro-CT technique and serial histology in a total of 28 animals. AuroVist-15 nm nanoparticles were used as in vivo blood pool contrast agent in a Skyscan 1176 micro-CT at resolution of 18 μmeter voxel size and a mean x-ray dose of 0.5 Gy. For ex vivo imaging, animals were perfused with MicroFil and imaged at 9 μmeter voxel size. Lumen area was evaluated at postoperative days 7, 14, and 28 first by micro-CT followed by histology.

Results

In vivo micro-CT and histology revealed lumen loss starting at day 14. The lumen profile highly correlated (r = 0.79, P<0.0001) between this two methods but absolute lumen values obtained by histology were lower than those obtained by micro-CT. Comparison of in vivo and ex vivo micro-CT imaging revealed excellent correlation (r = 0.83, P<0.01). Post mortem micro-CT yielded a higher resolution than in vivo micro-CT but there was no statistical difference of lumen measurements in the partial carotid artery ligation model.

Conclusion

These data demonstrate that in vivo micro-CT is a feasible and accurate technique with low animal stress to image remodeling processes in the murine carotid artery.  相似文献   

4.
The initial phase of malaria infection is the pre-erythrocytic phase, which begins when parasites are injected by the mosquito into the dermis and ends when parasites are released from hepatocytes into the blood. We present here a protocol for the in vivo imaging of GFP-expressing sporozoites in the dermis of rodents, using the combination of a high-speed spinning-disk confocal microscope and a high-speed charge-coupled device (CCD) camera permitting rapid in vivo acquisitions. The steps of this protocol indicate how to infect mice through the bite of infected Anopheles stephensi mosquitoes, record the sporozoites' fate in the mouse ear and to present the data as maximum-fluorescence-intensity projections, time-lapse representations and movie clips. This protocol permits investigating the various aspects of sporozoite behavior in a quantitative manner, such as motility in the matrix, cell traversal, crossing the endothelial barrier of both blood and lymphatic vessels and intravascular gliding. Applied to genetically modified parasites and/or mice, these imaging techniques should be useful for studying the cellular and molecular bases of Plasmodium sporozoite infection in vivo.  相似文献   

5.
PurposeMicron-scale computed tomography (micro-CT) imaging is a ubiquitous, cost-effective, and non-invasive three-dimensional imaging modality. We review recent developments and applications of micro-CT for preclinical research.MethodsBased on a comprehensive review of recent micro-CT literature, we summarize features of state-of-the-art hardware and ongoing challenges and promising research directions in the field.ResultsRepresentative features of commercially available micro-CT scanners and some new applications for both in vivo and ex vivo imaging are described. New advancements include spectral scanning using dual-energy micro-CT based on energy-integrating detectors or a new generation of photon-counting x-ray detectors (PCDs). Beyond two-material discrimination, PCDs enable quantitative differentiation of intrinsic tissues from one or more extrinsic contrast agents. When these extrinsic contrast agents are incorporated into a nanoparticle platform (e.g. liposomes), novel micro-CT imaging applications are possible such as combined therapy and diagnostic imaging in the field of cancer theranostics. Another major area of research in micro-CT is in x-ray phase contrast (XPC) imaging. XPC imaging opens CT to many new imaging applications because phase changes are more sensitive to density variations in soft tissues than standard absorption imaging. We further review the impact of deep learning on micro-CT. We feature several recent works which have successfully applied deep learning to micro-CT data, and we outline several challenges specific to micro-CT.ConclusionsAll of these advancements establish micro-CT imaging at the forefront of preclinical research, able to provide anatomical, functional, and even molecular information while serving as a testbench for translational research.  相似文献   

6.
《Médecine Nucléaire》2007,31(4):153-159
Respiratory motion reduces overall qualitative and quantitative accuracy in emission tomography imaging. The impact of respiratory motion has been further highlighted in the use of multi-modality imaging devices, where differences in respiratory conditions between the acquisition of anatomical and functional datasets can lead to significant artefacts. Current state of the art in accounting for such effects is the use of respiratory-gated acquisitions. Although such acquisitions may lead to a certain reduction in respiratory motion effects, the improvement is reduced as a result of using only part of the available data to reconstruct the individual gated frames. Approaches to correct the differences in the respiratory motion between the individual gated frames, in order to allow their combination, can be divided in two categories, namely, image or raw data based. The image-based approaches make use of registration algorithms to realign the gated images and, subsequently, sum them together; while the raw data approaches, based on the incorporation of transformations, account for differences in the respiratory motion between individual frames, either prior or during the reconstruction of all of the acquired data. Previous research in this field has demonstrated that a non-rigid local-based model leads to better results compared with an affine model in accounting for respiratory motion between gated frames. In addition, a superior image contrast can be obtained by incorporating the necessary transformation in the reconstruction process in comparison to an image-based approach.  相似文献   

7.
Skeletogenesis is an exquisitely orchestrated and dynamic process, culminating in the formation of highly variable and complex mineralized structures that are optimized for their function. While cellular and molecular biology studies have provided tremendous recent progress toward understanding how patterns of bone formation are regulated, high resolution imaging techniques such as microcomputed tomography (micro-CT) can provide complementary quantitative information about the progressive changes in three-dimensional (3-D) skeletal morphology and density that occur during early skeletal development and postnatal growth. Furthermore, recently developed in vivo micro-CT systems promise to be a powerful and efficient tool for noninvasively monitoring normal skeletogenesis, as well as for evaluating the effects of genetic or environmental manipulation. This review focuses on the use of micro-CT imaging and analysis to better understand normal and abnormal skeletal development and growth.  相似文献   

8.
Airway remodeling is a major pathological feature of asthma. Up to now, its quantification still requires invasive methods. In this study, we aimed at determining whether in vivo micro-computed tomography (micro-CT) is able to demonstrate allergen-induced airway remodeling in a flexible mouse model of asthma. Sixty Balb/c mice were challenged intranasally with ovalbumin or saline at 3 different endpoints (Days 35, 75, and 110). All mice underwent plethysmography at baseline and just prior to respiratory-gated micro-CT. Mice were then sacrificed to assess bronchoalveolar lavage and lung histology. From micro-CT images (voxel size = 46×46×46 µm), the numerical values of total lung attenuation, peribronchial attenuation (PBA), and PBA normalized by total lung attenuation were extracted. Each parameter was compared between OVA and control mice and correlation coefficients were calculated between micro-CT and histological data. As compared to control animals, ovalbumin-sensitized mice exhibited inflammation alone (Day 35), remodeling alone (Day 110) or both inflammation and remodeling (Day 75). Normalized PBA was significantly greater in mice exhibiting bronchial remodeling either alone or in combination with inflammation. Normalized PBA correlated with various remodeling markers such as bronchial smooth muscle size or peribronchial fibrosis. These findings suggest that micro-CT may help monitor remodeling non-invasively in asthmatic mice when testing new drugs targeting airway remodeling in pre-clinical studies.  相似文献   

9.
本研究以云南寒武纪澄江生物群节肢动物周小姐虫(Misszhouia longicaudata)为例,使用显微CT(Computed Tomography,计算机断层扫描的简写)技术对其保存在化石围岩内部的结构信息进行提取。通过Drishti软件对CT数据进行处理后,研究者可以在不破坏标本的前提下复原该动物腿肢较为完整的三维细节。此研究方法一方面对传统研究方法进行了重要补充,另一方面在研究中也对保存精美的澄江生物群化石起到保护作用,对这类标本的研究和保护具有重要意义。  相似文献   

10.
Before in vivo micro-CT scanning can be used to investigate femoral trabecular microarchitecture over time in rabbits, its repeatability and reproducibility must be demonstrated. To accomplish this, both distal femurs of two 6-month-old New Zealand white rabbits were scanned five times each in 1 day under different conditions (repeatability). Scanning was done at 28 microm isotropic voxel size to produce five image stacks of each femur. Three operators then followed a standard image processing protocol (reproducibility) to isolate two separate cubes from each anterior femoral condyle [total n = (8 cube sites)(5 scans)(3 operators) = 120]. Bone volume fraction (BV/TV) of the eight different cube sites (sample) ranged from 0.408 to 0.501 (mean: 0.453); trabecular thickness (Tb.Th) ranged from 158.1 to 185.5 microm (mean: 168.6 microm); and trabecular separation (Tb.Sp) ranged from 179.4 to 233.1 microm (mean: 204.7 microm). Using ANOVA and the variance component method, the total process variation was +/- 14.1% of the mean BV/TV of 0.453. The sample variation was +/- 13.9% (p < 0.001), the repeatability was +/- 2.1% (p < 0.001), and the reproducibility was +/- 0.1% (p > 0.05). Results were similar for Tb.Th and Tb.Sp. Though the contribution due to repeatability was statistically significant for each of the three indices, the natural sample differences were far greater than differences caused by repeated scanning under different conditions or by different operators processing the images. These findings suggest that in vivo micro-CT scanning of rabbit distal femurs was repeatable and reproducible and can be used with confidence to measure differences in trabecular bone microarchitecture at a single location in a longitudinal study design.  相似文献   

11.
We aim to demonstrate the application of free-breathing prospectively gated carbon nanotube (CNT) micro-CT by evaluating a myocardial infarction model with a delayed contrast enhancement technique. Evaluation of murine cardiac models using micro-CT imaging has historically been limited by extreme imaging requirements. Newly-developed CNT-based x-ray sources offer precise temporal resolution, allowing elimination of physiological motion through prospective gating. Using free-breathing, cardiac-gated CNT micro-CT, a myocardial infarction model can be studied non-invasively and with high resolution. Myocardial infarction was induced in eight male C57BL/6 mice aged 8–12 weeks. The ischemia reperfusion model was achieved by surgically occluding the LAD artery for 30 minutes followed by 24 hours of reperfusion. Tail vein catheters were placed for contrast administration. Iohexol 300mgI/mL was administered followed by images obtained in diastole. Iodinated lipid blood pool contrast agent was then administered, followed with images at systole and diastole. Respiratory and cardiac signals were monitored externally and used to gate the scans of free-breathing subjects. Seven control animals were scanned using the same imaging protocol. After imaging, the heart was harvested, cut into 1mm slices and stained with TTC. Post-processing analysis was performed using ITK-Snap and MATLAB. All animals demonstrated obvious delayed contrast enhancement in the left ventricular wall following the Iohexol injection. The blood pool contrast agent revealed significant changes in cardiac function quantified by 3-D volume ejection fractions. All subjects demonstrated areas of myocardial infarct in the LAD distribution on both TTC staining and micro-CT imaging. The CNT micro-CT system aids straightforward, free-breathing, prospectively-gated 3-D murine cardiac imaging. Delayed contrast enhancement allows identification of infarcted myocardium after a myocardial ischemic event. We demonstrate the ability to consistently identify areas of myocardial infarct in mice and provide functional cardiac information using a delayed contrast enhancement technique.  相似文献   

12.
Non-invasive three-dimensional imaging of live rodents is a powerful research tool that has become critical for advances in many biomedical fields. For investigations into adipose development, obesity, or diabetes, accurate and precise techniques that quantify adiposity in vivo are critical. Because total body fat mass does not accurately predict health risks associated with the metabolic syndrome, imaging modalities should be able to stratify total adiposity into subcutaneous and visceral adiposity. Micro-computed tomography (micro-CT) acquires high-resolution images based on the physical density of the material and can readily discriminate between subcutaneous and visceral fat. Here, a micro-CT based method to image the adiposity of live rodents is described. An automated and validated algorithm to quantify the volume of discrete fat deposits from the computed tomography is available. Data indicate that scanning the abdomen provides sufficient information to estimate total body fat. Very high correlations between micro-CT determined adipose volumes and the weight of explanted fat pads demonstrate that micro-CT can accurately monitor site-specific changes in adiposity. Taken together, in vivo micro-CT is a non-invasive, highly quantitative imaging modality with greater resolution and selectivity, but potentially lower throughput, than many other methods to precisely determine total and regional adipose volumes and fat infiltration in live rodents.  相似文献   

13.
Micron-scale computed tomography (micro-CT) is an essential tool for phenotyping and for elucidating diseases and their therapies. This work is focused on preclinical micro-CT imaging, reviewing relevant principles, technologies, and applications. Commonly, micro-CT provides high-resolution anatomic information, either on its own or in conjunction with lower-resolution functional imaging modalities such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT). More recently, however, advanced applications of micro-CT produce functional information by translating clinical applications to model systems (e.g. measuring cardiac functional metrics) and by pioneering new ones (e.g. measuring tumor vascular permeability with nanoparticle contrast agents). The primary limitations of micro-CT imaging are the associated radiation dose and relatively poor soft tissue contrast. We review several image reconstruction strategies based on iterative, statistical, and gradient sparsity regularization, demonstrating that high image quality is achievable with low radiation dose given ever more powerful computational resources. We also review two contrast mechanisms under intense development. The first is spectral contrast for quantitative material discrimination in combination with passive or actively targeted nanoparticle contrast agents. The second is phase contrast which measures refraction in biological tissues for improved contrast and potentially reduced radiation dose relative to standard absorption imaging. These technological advancements promise to develop micro-CT into a commonplace, functional and even molecular imaging modality.  相似文献   

14.
Non-bone in vivo micro-CT imaging has many potential applications for preclinical evaluation. Specifically, the in vivo quantification of changes in the vascular network and organ morphology in small animals, associated with the emergence and progression of diseases like bone fracture, inflammation and cancer, would be critical to the development and evaluation of new therapies for the same. However, there are few published papers describing the in vivo vascular imaging in small animals, due to technical challenges, such as low image quality and low vessel contrast in surrounding tissues. These studies have primarily focused on lung, cardiovascular and brain imaging. In vivo vascular imaging of mouse hind limbs has not been reported. We have developed an in vivo CT imaging technique to visualize and quantify vasculature and organ structure in disease models, with the goal of improved quality images. With 1–2 minutes scanning by a high speed in vivo micro-CT scanner (Quantum CT), and injection of a highly efficient contrast agent (Exitron nano 12000), vasculature and organ structure were semi-automatically segmented and quantified via image analysis software (Analyze). Vessels of the head and hind limbs, and organs like the heart, liver, kidneys and spleen were visualized and segmented from density maps. In a mouse model of bone metastasis, neoangiogenesis was observed, and associated changes to vessel morphology were computed, along with associated enlargement of the spleen. The in vivo CT image quality, voxel size down to 20 μm, is sufficient to visualize and quantify mouse vascular morphology. With this technique, in vivo vascular monitoring becomes feasible for the preclinical evaluation of small animal disease models.  相似文献   

15.
Functional photoacoustic microscopy (fPAM) is a hybrid technology that permits noninvasive imaging of the optical absorption contrast in subcutaneous biological tissues. fPAM uses a focused ultrasonic transducer to detect high-frequency photoacoustic (PA) signals. Volumetric images of biological tissues can be formed by two-dimensional raster scanning, and functional parameters can be further extracted from spectral measurements. fPAM is safe and applicable to animals as well as humans. This protocol provides guidelines for parameter selection, system alignment, imaging operation, laser safety and data processing for in vivo fPAM. It currently takes approximately 100 min to carry out this protocol, including approximately 50 min for data acquisition using a 10-Hz pulse-repetition-rate laser system. The data acquisition time, however, can be significantly reduced by using a laser system with a higher pulse repetition rate.  相似文献   

16.
Lung morphology and function in human subjects can be monitored with computed tomography (CT). Because many human respiratory diseases are routinely modeled in rodents, a means of monitoring the changes in the structure and function of the rodent lung is desired. High-resolution images of the rodent lung can be attained with specialized micro-CT equipment, which provides a means of monitoring rodent models of lung disease noninvasively with a clinically relevant method. Previous studies have shown respiratory-gated images of intubated and respirated mice. Although the image quality and resolution are sufficient in these studies to make quantitative measurements, these measurements of lung structure will depend on the settings of the ventilator and not on the respiratory mechanics of the individual animals. In addition, intubation and ventilation can have unnatural effects on the respiratory dynamics of the animal, because the airway pressure, tidal volume, and respiratory rate are selected by the operator. In these experiments, important information about the symptoms of the respiratory disease being studied may be missed because the respiration is forced to conform to the ventilator settings. In this study, we implement a method of respiratory-gated micro-CT for use with anesthetized free-breathing rodents. From the micro-CT images, quantitative analysis of the structure of the lungs of healthy unconscious mice was performed to obtain airway diameters, lung and airway volumes, and CT densities at end expiration and during inspiration. Because the animals were free breathing, we were able to calculate tidal volume (0.09 +/- 0.03 ml) and functional residual capacity (0.16 +/- 0.03 ml).  相似文献   

17.
Recently, there has been tremendous interest in developing techniques such as MRI, micro-CT, micro-PET, and SPECT to image function and processes in small animals. These technologies offer deep tissue penetration and high spatial resolution, but compared with noninvasive small animal optical imaging, these techniques are very costly and time consuming to implement. Optical imaging is cost-effective, rapid, easy to use, and can be readily applied to studying disease processes and biology in vivo. In vivo optical imaging is the result of a coalescence of technologies from chemistry, physics, and biology. The development of highly sensitive light detection systems has allowed biologists to use imaging in studying physiological processes. Over the last few decades, biochemists have also worked to isolate and further develop optical reporters such as GFP, luciferase, and cyanine dyes. This article reviews the common types of fluorescent and bioluminescent optical imaging, the typical system platforms and configurations, and the applications in the investigation of cancer biology.  相似文献   

18.
Clinical considerations in rodent bioimaging   总被引:2,自引:0,他引:2  
Imaging modalities such as micro-computed tomography (micro-CT), micro-positron emission tomography (micro-PET), high-resolution magnetic resonance imaging (MRI), optical imaging, and high-resolution ultrasound are rapidly becoming invaluable research tools. These advanced imaging technologies are now commonly used to investigate rodent biology, metabolism, pharmacokinetics, and disease in vivo. Choosing an appropriate anesthetic regimen as well as monitoring and supporting the animal's physiologic balance is key to obtaining images that truly represent the biologic process or disease state of interest. However, there are many challenges in rodent bioimaging such as limited animal access, small sample volumes, anesthetic complications, strain and gender variability, and the introduction of image artifacts. Because each imaging study presents unique challenges, a thorough understanding of the imaging modality used, the animal's health status, and the research data desired is required. This article addresses these issues along with other common laboratory animal clinical considerations such as biosecurity and radiation safety in in vivo rodent bioimaging.  相似文献   

19.
Articular cartilage covers the temporomandibular joint (TMJ) and provides smooth and nearly frictionless articulation while distributing mechanical loads to the subchondral bone. The thickness of the cartilage is considered to be an indicator of the stage of development, maturation, aging, loading history, and disease. The aim of our study was to develop a method for ex vivo assessment of the thickness of the cartilage that covers the TMJ and to compare that with two other existing methods. Eight porcine TMJ condyles were used to measure cartilage thickness. Three different methods were employed: needle penetration, micro-computed tomography (micro-CT), and histology; the latter was considered the gold standard. Histology and micro-CT scanning results showed no significant differences between thicknesses throughout the condyle. Needle penetration produced significantly higher values than histology, in the lateral and anterior regions. All three methods showed the anterior region to be thinner than the other regions. We concluded that overestimated thickness by the needle penetration is caused by the penetration of the needle through the first layer of subchondral bone, in which mineralization is less than in deeper layers. Micro-CT scanning method was found to be a valid method to quantify the thickness of the cartilage, and has the advantage of being non-destructive.  相似文献   

20.
Micro-computed tomographic (micro-CT) imaging provides a unique opportunity to capture 3-D architectural information in bone samples. In this study of pathological joint changes in a rat model of adjuvant-induced arthritis (AA), quantitative analysis of bone volume and roughness were performed by micro-CT imaging and compared with histopathology methods and paw swelling measurement. Micro-CT imaging of excised rat hind paws (n = 10) stored in formalin consisted of approximately 600 30-mum slices acquired on a 512 x 512 image matrix with isotropic resolution. Following imaging, the joints were scored from H&E stained sections for cartilage/bone erosion, pannus development, inflammation, and synovial hyperplasia. From micro-CT images, quantitative analysis of absolute bone volumes and bone roughness was performed. Bone erosion in the rat AA model is substantial, leading to a significant decline in tarsal volume (27%). The result of the custom bone roughness measurement indicated a 55% increase in surface roughness. Histological and paw volume analyses also demonstrated severe arthritic disease as compared to controls. Statistical analyses indicate correlations among bone volume, roughness, histology, and paw volume. These data demonstrate that the destructive progression of disease in a rat AA model can be quantified using 3-D micro-CT image analysis, which allows assessment of arthritic disease status and efficacy of experimental therapeutic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号