首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The present work focuses on impact assessment of noise disturbance in the framework of LCA studies. A number of difficulties arose in the course of the study, namely expressing noise measurements in an easy-to-handle unit, imputing disturbance engendered by several simultaneous sources to every single source, handling additive quantities non-linearly, taking into account the space and time dependence of potential impacts associated with noise, It is shown how all these issues were tackled in a I.CA study that assessed different modes of transportation. The methodology developed takes into account the disturbance to noise level exceeding a set threshold and no other kinds of noise effects. It is obvious that disturbance due to noise emissions depends on people density in the neighborhood of the emission source. In this context, a “site-dependent approach” was taken, meaning that we did include local factors into the valuation. The methodology developed in this article may be extended to other types of emissions when it is necessary to integrate local factors in the assessment phase of LCA. This document is the property of Ecobilan and can not be reproduced without its prior authorization  相似文献   

2.
Goal, Scope and Background In face of continued declines in global fisheries landings and concurrent rapid aquaculture development, the sustainability of seafood production is of increasing concern. Life Cycle Assessment (LCA) offers a convenient means of quantifying the impacts associated with many of the energetic and material inputs and outputs in these industries. However, the relevant but limited suite of impact categories currently used in most LCA research fails to capture a number of important environmental and social burdens unique to fisheries and aquaculture. This article reviews the impact categories used in published LCA research of seafood production to date, reports on a number of methodological innovations, and discusses the challenges to and opportunities for further impact category developments. Main Features The range of environmental and socio-economic impacts associated with fisheries and aquaculture production are introduced, and both the commonly used and innovative impact categories employed in published LCA research of seafood production are discussed. Methodological innovations reported in agricultural LCAs are also reviewed for possible applications to seafood LCA research. Challenges and options for including additional environmental and socioeconomic impact categories are explored. Results A review of published LCA research in fisheries and aquaculture indicates the frequent use of traditional environmental impact categories as well as a number of interesting departures from the standard suite of categories employed in LCA studies in other sectors. Notable examples include the modeling of benthic impacts, by-catch, emissions from anti-fouling paints, and the use of Net Primary Productivity appropriation to characterize biotic resource use. Socio-economic impacts have not been quantified, nor does a generally accepted methodology for their consideration exist. However, a number of potential frameworks for the integration of such impacts into LCA have been proposed. Discussion LCA analyses of fisheries and aquaculture call attention to an important range of environmental interactions that are usually not considered in discussions of sustainability in the seafood sector. These include energy use, biotic resource use, and the toxicity of anti-fouling paints. However, certain important impacts are also currently overlooked in such research. While prospects clearly exist for improving and expanding on recent additions to environmental impact categories, the nature of the LCA framework may preclude treatment of some of these impacts. Socio-economic impact categories have only been described in a qualitative manner. Despite a number of challenges, significant opportunities exist to quantify several important socio-economic impacts. Conclusion The limited but increasing volume of LCA research of industrial fisheries and aquaculture indicates a growing interest in the use of LCA methodology to understand and improve the sustainability performance of seafood production systems. Recent impact category innovations, and the potential for further impact category developments that account for several of the unique interactions characteristic of fisheries and aquaculture will significantly improve the usefulness of LCA in this context, although quantitative analysis of certain types of impacts may remain beyond the scope of the LCA framework. The desirability of incorporating socio-economic impacts is clear, but such integration will require considerable methodological development. Recommendations and Perspectives While the quantity of published LCA research for seafood production systems is clearly increasing, the influence this research will have on the ground remains to be seen. In part, this will depend on the ability of LCA researchers to advance methodological innovations that enable consideration of a broader range of impacts specific to seafood production. It will also depend on the ability of researchers to communicate with a broader audience than the currently narrow LCA community.  相似文献   

3.
Ecological footprint (EF) is a metric that estimates human consumption of biological resources and products, along with generation of waste greenhouse gas (GHG) emissions in terms of appropriated productive land. There is an opportunity to better characterize land occupation and effects on the carbon cycle in life cycle assessment (LCA) models using EF concepts. Both LCA and EF may benefit from the merging of approaches commonly used separately by practitioners of these two methods. However, few studies have compared or integrated EF with LCA. The focus of this research was to explore methods for improving the characterization of land occupation within LCA by considering the EF method, either as a complementary tool or impact assessment method. Biofuels provide an interesting subject for application of EF in the LCA context because two of the most important issues surrounding biofuels are land occupation (changes, availability, and so on) and GHG balances, two of the impacts that EF is able to capture. We apply EF to existing fuel LCA land occupation and emissions data and project EF for future scenarios for U.S. transportation fuels. We find that LCA studies can benefit from lessons learned in EF about appropriately modeling productive land occupation and facilitating clear communication of meaningful results, but find limitations to the EF in the LCA context that demand refinement and recommend that EF always be used along with other indicators and metrics in product‐level assessments.  相似文献   

4.
Intention, Goal and Scope: Dealing with data gaps, data asymmetries, and inconsistencies in life cycle inventories (LCI) is a general prohlem in Life Cycle Assessment (LCA) studies. An approach to deal with these difficulties is the simplification of LCA. A methodology that lowers the requirements for data quality (accuracy) for process emissions within a simplified LCA is introduced in this article. Background: Simplification is essential for applying LCA in the context of design for environment (DfE). The tool euroMat is a comprehensive DfE software tool that is based on a specific, simplified LCA approach, the Iterative Screening LCA (IS-LCA). Within the scope of the IS-LCA, there is a quantitative assessment of energy-related processes, as well as a semi-quantitative assessment of non-energy related emissions which supplement each other. Objectives: The semi-quantitative assessment, which is in the focus of this article, aims at lowering the requirements for the quality of non-energy related emissions data through combined use of qualitative and quantitative inventory data. Methods: Potential environmental impacts are assessed based on ABC-categories for qualities (harmfulness) of emissions and XYZ-categories for quantities of emitted substances. Employing statistical methods assignment rules for the ABC/XYZ-categories were derived from literature data and databases on emissions to air, water, and soil. Statistical tests as well as a DfE case study (comparing the materials aluminum and carbon fiber reinforced epoxy for a lightweight container to be used in an aerospace application) were conducted in order to evaluate the level of confidence and practicality of the proposed, simplified impact assessment. Results: Statistical and technical consistency checks show that the method bears a high level of confidence. Results obtained by the simplified assessment correlate to those of a detailed quantitative LCA. Conclusions: Therefore, the application of the ABC/XYZ-categories (together with the cumulative energy demand) can be considered a practical and consistent approach for determining the environmental significance of products when only incomplete emission data is available. Future Prospects: The statistical base of the method is expanded continuously since it is an integral part of the DfE software tool euroMat, which is currently being further developed. That should foster the application of the method. Outside DfE, the method should also be capable of facilitating simplified LCAs in general.  相似文献   

5.
LCA practice focuses on impacts resulting from the release of chemicals into the environment, but consideration of ‘non-chemical impacts’ is as important for LCA, particularly as it relates to sustainability. Methodologies and philosophies exist for addressing non-chemical impacts, particularly in the area of resource depletion and land use, but the problem of comparing or integrating chemical and non-chemical impacts remains. A new approach for identifying and integrating impacts involves the use of an object-oriented modeling and simulation platform, such as Department of Energy Argonne National Laboratory’s Dynamic Information Architecture System (DIAS). LCA and impact categories can be described as ‘objects’ (at any level of detail or specificity) and any combination of objects and behaviors can be brought into a DIAS analysis frame. Related models that address objects’ behavior characteristics are linked only to their respective objects, not to each other. Thus, maximum flexibility and speed is possible. The process of dividing LCA and impact assessment into a hierarchy of objects provides new insights into the complex mixture of dynamic things, activities, and relationships inherent in LCA and sustainability. Ultimately, embracing the complexity of LCA may be the way to simplify it.  相似文献   

6.
A case study of a life-cycle assessment (LCA) is performed concerning the treatment of household solid wastes in a landfill. The stages considered in this LCA study are: goal and scope definition, inventory analysis and impact assessment. The data of the inventory include the consumption of raw materials and energy through the transport of wastes and the management of landfill, and the corresponding emissions to the environment. Abiotic resource depletion, global warming, acidification, eutrophication and human toxicological impacts have been considered as impact categories for the impact assessment phase of the LCA. A comparison of the environmental impact of the landfilling with and without energy recovery is carried out. Members of the Spanish Association for LCA Development (APRODACV)  相似文献   

7.
There is a strong need for methods within life cycle assessment (LCA) that enable the inclusion of all complex aspects related to land use and land use change (LULUC). This article presents a case study of the use of one hectare (ha) of forest managed for the production of wood for bioenergy production. Both permanent and temporary changes in above‐ground biomass are assessed together with the impact on biodiversity caused by LULUC as a result of forestry activities. The impact is measured as a product of time and area requirements, as well as by changes in carbon pools and impacts on biodiversity as a consequence of different management options. To elaborate the usefulness of the method as well as its dependency on assumptions, a range of scenarios are introduced in the study. The results show that the impact on climate change from LULUC dominates the results, compared to the impact from forestry operations. This clearly demonstrates the need to include LULUC in an LCA of forestry products. For impacts both on climate change and biodiversity, the results show large variability based on what assumptions are made; and impacts can be either positive or negative. Consequently, a mere measure of land used does not provide any meaning in LCA, as it is not possible to know whether this contributes a positive or negative impact.  相似文献   

8.
Urbanization often entails a surge in urban temperature compared to the rural surroundings: the Urban Heat Island (UHI) effect. Such a temperature increase triggers the formation of pollutants worsening the urban air quality. Jointly, bad air quality and UHI affect ecosystems and human health. To alleviate the impacts on the population and the environment, it is crucial to design effective UHI‐mitigation measures. Life Cycle Assessment (LCA) is an assessment tool able to capture the complexity of urban settlements and quantify their impact. Yet, as currently implemented, LCA neglects the interactions between the built environment and the local climate, omitting the resulting impacts. This study reviews the existing literature, showing the lack of studies that organically include interactions between the built environment and local climate in LCA. This forms the basis to identify the unsuitability of the current LCA framework for comprehensively capturing the impact of urban settlements. To overcome this limitation, this research offers a pathway to expand the LCA methodology, indicating the necessity to (a) couple the LCA methodology with climate models or physical relations that quantify the interactions between the local climate and the built environment; (b) include novel impact categories in LCA to address such interactions; and (c) use existing or ad hoc developed characterization factors to assess the impacts related to the UHI effect. The LCA community can build on the frame of reference offered by this research to overcome the current limitations of LCA and enable its use for a comprehensive assessment of the impacts of UHI and its mitigation measures.  相似文献   

9.
Life-cycle assessment (LCA) is a technique for systematically analyzing a product from cradle-to-grave, that is, from resource extraction through manufacture and use to disposal. LCA is a mixed or hybrid analytical system. An inventory phase analyzes system inputs of energy and materials along with outputs of emissions and wastes throughout life cycle, usually as quantitative mass loadings. An impact assessment phase then examines these loadings in light of potential environmental issues using a mixed spectrum of qualitative and quantitative methods. The constraints imposed by inventory's loss of spatial, temporal, dose-response, and threshold information raise concerns about the accuracy of impact assessment. The degree of constraint varies widely according to the environmental issue in question and models used to extrapolate the inventory data. LCA results may have limited value in two areas: (I) local and/ortransient biophysical processes and (2) issues involving biological parameters, such as biodiversity, habitat alteration, and toxicity. The end result is that impact assessment does not measure actual effects or impacts, nor does it calculate the likelihood of an effect or risk Rather, LCA impact assessment results are largely directional environmental indicaton. The accuracy and usefulness of indicators need to be assessed individually and in a circumstance-specific manner prior to decision making. This limits LCAs usefulness as the sole basis for comprehensive assessments and the comparisons of alternatives. In conclusion, LCA may identify potential issues from a systemwide perspective, but more-focused assessments using other analytical techniques are often necessary to resolve the issues.  相似文献   

10.
A key requirement for those in industry and elsewhere who wish to reduce the environmental impact of a product is to develop priorities for action. Life cycle assessment (LCA) is increasingly used to identify such priorities but can be misleading. This article draws attention to two effects that can occur when the system boundary for a product LCA is not defined correctly. We illustrate the "washing machine effect" by showing that in separate life cycle studies of clothing, detergents, and washing machines, the use of energy is dominated by operation of the washing machine. All three studies prioritize the use phase for action, but in an aggregated study, double counting of the use-phase impact occurs. We demonstrate the "inverse washing machine effect" with an example related to energy used in transport. We show that some activities that are significant on a cumulative basis consistently fall outside the chosen system boundary for individual products. A consequence is that when LCA studies are used for prioritization, they are in danger of overemphasizing the use-phase impacts and overlooking the impacts from indirect activities. These effects, which are broadly understood by LCA developers, appear not to be understood properly by those who use LCA to direct priorities for action. Therefore, practitioners should be wary of using LCA for prioritizing action, and LCA guidance documents should reflect this caution.  相似文献   

11.
Life-cycle assessment (LCA) is a tool for evaluating various health and environmental impacts throughout a product's life. When used as a screening tool, LCA can potentially identify the processes and materials most likely to pose a threat to human health and the environment, and to determine where a risk assessment is warranted. The European Union has issued a ban on lead-based solder from use in electronic equipment beginning in July 2006. In response, the Lead-Free Solder Partnership, involving the U.S. Environmental Protection Agency, several electronics manufacturers, and the University of Tennessee afforded a vehicle for conducting a thorough LCA of leaded and lead-free solders used in the electronics industry. Sixteen impact categories were evaluated in the LCA, including human toxicity.

A primary conclusion of the assessment for human and aquatic toxicity, across the entire life cycle of tin-lead solder, was the potential for impacts derived from the landfilling of lead. These results, based on broad assumptions about exposure, suggest that a more detailed risk assessment of the landfilling process would assist in better understanding the potential for health and environmental risks. We believe LCA data can be used to identify the need for focused risk assessments, allowing the two tools to effectively complement one another. Use of both methods could assist in understanding the effectiveness of the European ban on lead solder and its potential to improve public health.  相似文献   


12.
The screening level LCA places itself amongst the many approaches to LCA, including full LCA and streamlined LCA. The screening level LCA combines the quantitative nature of the full LCA with the low effort of the streamlined LCA. This paper presents, as an example, a screening level LCA of the EU 2000 air handling unit from ABB Ventilation Products AB, Sweden, using the Danish EDIP impact assessment method, the EDIP software and database. This study proved that major improvement potentials can indeed be identified with screening level LCA, and argues that the screening level LCA is a suitable approach in the early stages of a company’s life cycle engineering efforts Contact for the screening level LCA method Corresponding author at ABB Corporate Research  相似文献   

13.
The environmental impact of the water consumption of four typical crop rotations grown in Spain, including energy crops, was analyzed and compared against Spanish agricultural and natural reference situations. The life cycle assessment (LCA) methodology was used for the assessment of the potential environmental impact of blue water (withdrawal from water bodies) and green water (uptake of soil moisture) consumption. The latter has so far been disregarded in LCA. To account for green water, two approaches have been applied: the first accounts for the difference in green water demand of the crops and a reference situation. The second is a green water scarcity index, which measures the fraction of the soil‐water plant consumption to the available green water. Our results show that, if the aim is to minimize the environmental impacts of water consumption, the energy crop rotations assessed in this study were most suitable in basins in the northeast of Spain. In contrast, the energy crops grown in basins in the southeast of Spain were associated with the greatest environmental impacts. Further research into the integration of quantitative green water assessment in LCA is crucial in studies of systems with a high dependence on green water resources.  相似文献   

14.
Goal, Scope and Background  Two methods of simplified LCA were evaluated and compared to the results of a quantitative LCA. These are the Environmentally responsible product assessment matrix developed by Graedel and Allenby and the MECO-method developed in Denmark. Methods  We used these in a case study and compared the results with the results from a quantitative LCA. The evaluation also included other criteria, such as the field of application and the level of arbitrariness. Results and Discussion  The MECO-method has some positive qualities compared to the Environmentally responsible product assessment matrix. Examples of this are that it generates information complementary to the quantitative LCA and provides the possibility to consider quantitative information when such is available. Some of the drawbacks with the Environmentally responsible product assessment matrix are that it does not include the whole lifecycle and that it allows some arbitrariness. Conclusions  Our study shows that a simplified and semi-quantitative LCA (such as the MECO-method) can provide information that is complementary to a quantitative LCA. In this case the method generates more information on toxic substances and other impacts, than the quantitative LCA. We suggest that a simplified LCA can be used both as a pre-study to a quantitative LCA and as a parallel assessment, which is used together with the quantitative LCA in the interpretation. Recommendations and Outlook  A general problem with qualitative analyses is how to compare different aspects. Life cycle assessments are comparative. The lack of a quantitative dimension hinders the comparison and can thereby hinder the usefulness of the qualitative method. There are different approaches suggested to semiquantify simplified methods in order to make quantitative comparisons possible. We think that the use of fabricated scoring systems should be avoided. If quantitative information is needed, one should consider performing a simplified quantitative LCA instead.  相似文献   

15.
The environmental assessment of nanomanufacturing during the initial process design phase should lead to the development of competitive, safe, and environmentally responsible engineering and commercialization. Given the potential benefits and concerns regarding the use of single‐walled carbon nanotubes (SWNTs), three SWNT production processes have been investigated to assess their associated environmental impacts. These processes include arc ablation (arc), chemical vapor deposition (CVD), and high‐pressure carbon monoxide (HiPco). Without consideration of the currently unknown impacts of SWNT dispersion or other health impacts, life cycle assessment (LCA) methodology is used to analyze the environmental impact and provide a baseline for the environmental footprint of each manufacturing process. Although the technical attributes of the product resulting from each process may not be fully comparable, this study presents comparisons that show that the life cycle impacts are dominated by energy, specifically the electricity used in production. Under base case yield conditions, HiPco shows the lowest environmental impact, while the arc process has the lowest impact under best case yield conditions.  相似文献   

16.
The goal of this research work was to assist consumers in considering environmental aspects of food consumption. A simplified, modular LCA approach has been used to evaluate the impacts from the consumers’ point of view. Comparative LCA’s have been calculated for five single aspects of decisions: type of agricultural practice, origin, packaging material, type of preservation, and consumption. The inventory for one module includes the environmental impacts related to one particular product characteristic. The modular LCA allows one to investigate the trade-offs among different decision parameters. It could be shown that most of the decision parameters might have an influence on the overall impact of a vegetable product. Greenhouse production and vegetables transported by air cause the highest surplus environmental impact. For meat products, the agricultural production determines the overall environmental impact. The total impact for vegetable or meat purchases may vary by a factor of eight or two-and-a-half. Different suggestions for consumers have been ranked according to the variation of average impacts, due to a marginal change of behaviour. Avoiding air-transported food products leads to the highest decrease of environmental impacts.  相似文献   

17.
The reason to perform an LCA is essentially to use it in support of a decision. A decision gives rise to a change somewhere in society compared to a scenario in which this decision was not taken. The key requirement for the LCA in any application is therefore, that it shall reflect the environmental change caused by the decision. It is found, that the need to differentiate LCA methodology for the use in different applications is born by a few key characteristics of the decision to be supported. The first key characteristic is the environmental consequence of the decision, i.e. the nature and extent of the environmental change caused by the decision. When modelling the environmental change, its extent in time and space will differ between decision types, thus giving rise to different requirements, primarily for the scoping and inventory phases of the LCA. Furthermore, some decisions will imply trade-offs between different impact categories, while others will not, thus causing different requirements for the impact assessment. The second key characteristic is the social and economic consequence of the decision, the magnitude of which will influence the need for certainty, transparency and documentation. The third characteristic is the context in which the decision is taken, including the decision maker and interested parties, implicitly influencing the impact assessment and weighting.  相似文献   

18.
Goal, Scope and Background This paper describes the influence of the choice of the functional unit on the results of an environmental assessment of different battery technologies for electric and hybrid vehicles. Battery, hybrid and fuel cell electric vehicles are considered as being environmentally friendly. However, the batteries they use are sometimes said to be environmentally unfriendly. At the current state of technology different battery types can be envisaged: lead-acid, nickel-cadmium, nickel-metal hydride, lithium-ion and sodium-nickel chloride. The environmental impacts described in this paper are based on a life cycle assessment (LCA) approach. One of the first critical stages of LCA is the definition of an appropriate and specific functional unit for electric and hybrid vehicle application. Most of the known LCA studies concerning batteries were performed while choosing different functional units, although this choice can influence the final results. An adequate functional unit, allowing to compare battery technologies in their real life vehicle application should be chosen. The results of the LCA are important as they will be used as a decision support for the end-of-life vehicles directive 2000/53/EC (Official Journal of the European Communities L269/24 2000). As a consequence, a thorough analysis is required to define an appropriate functional unit for the assessment of batteries for electric vehicles. This paper discusses this issue and will mainly focus on traction batteries for electric vehicles. Main Features An overview of the different parameters to be considered in the definition of a functional unit to compare battery technologies for battery electric vehicle application is described and discussed. An LCA study is performed for the most relevant potential functional units. SimaPro 6 is used as a software tool and Eco-indicator 99 as an impact assessment method. The influence of the different selected functional units on the results (Eco-indicator Points) is discussed. The environmental impact of the different electric vehicle battery technologies is described. A sensitivity analysis illustrates the robustness of the obtained results. Results and Discussion Five main parameters are considered in each investigated functional unit: an equal depth of discharge is assumed, a relative number of batteries required during the life of the vehicle is calculated, the energy losses in the battery and the additional vehicle consumption due to the battery mass is included and the same lifetime distance target is taken into account. On the basis of the energy content, battery mass, number of cycles and vehicle autonomy three suitable functional units are defined: ‘battery packs with an identical mass’, ‘battery packs with an identical energy content’ and ‘battery packs with an identical one-charge range’. The results show that the differences in the results between these three functional units are small and imply less variation on the results than the other uncertainties inherent to LCA studies. On the other hand, the results obtained using other, less adequate, functional units can be quite different. Conclusions When performing an LCA study, it’s important to choose an appropriate functional unit. Most of the time, this choice is unambiguous. However, sometimes this choice is more complicated when different correlated parameters have to be considered, as it is the case for traction batteries. When using a realistic functional unit, the result is not influenced significantly by the choice of one out of the three suitable functional units. Additionally, the life cycle assessment allowed concluding that three electric vehicle battery technologies have a comparable environmental impact: lead-acid, nickel-cadmium and nickel-metal hydride. Lithium-ion and sodium-nickel chloride have lower environmental impacts than the three previously cited technologies when used in a typical battery electric vehicle application. Recommendations and Perspectives The article describes the need to consider all relevant parameters for the choice of a functional unit for an electric vehicle battery, as this choice can influence the conclusions. A more standardised method to define the functional unit could avoid these differences and could make it possible to compare the results of different traction battery LCA studies more easily.  相似文献   

19.
Life cycle assessment (LCA) has only had limited application in the geotechnical engineering discipline, though it has been widely applied to civil engineering systems such as pavements and roadways. A review of previous geotechnical LCAs showed that most studies have tracked a small set of impact categories, such as energy and global warming potential. Accordingly, currently reported environmental indicators may not effectively or fully capture important environmental impacts and tradeoffs associated with geotechnical systems, including those associated with land and soil resources. This research reviewed previous studies, methods, and models for assessment of land use and soil‐related impacts to understand their applicability to geotechnical LCA. The results of this review show that critical gaps remain in current knowledge and practice. In particular, further development or refinement of environmental indicators, impact categories, and cause–effect pathways is needed as they pertain to geotechnical applications—specifically those related to soil quality, soil functions, and the ecosystem services soils provide. In addition, many existing methods emerge from research on land use and land use change related to other disciplines (e.g., agriculture). For applicability to geotechnical projects, the resolution of many of these methods and resulting indicators need to be downscaled from the landscape/macro scale to the project scale. In the near term, practitioners of geotechnical LCA should begin tracking changes to soil properties and report impacts to land and soil resources qualitatively.  相似文献   

20.
The portfolio of impacts that are quantified in life cycle assessment (LCA) has grown to include rather different stressors than those that were the focus of early LCAs. Some of the newest life cycle impact assessment (LCIA) models are still in an early phase of development and have not yet been included in any LCA study. This is the case for sound emissions and noise impacts, which have been only recently modeled. Sound emissions are matter‐less, time dependent, and bound to the physical properties of waves. The way sound emissions and the relative noise impacts are modeled in LCA can show how new or existing matter‐less impacts can be addressed. In this study, we analyze, through the example of sound emissions, the specific features of a matter‐less impact that does not stem from the use of a kilogram of matter, nor is related to the emission of a kilogram of matter. We take as a case study the production of energy by means of wind turbines, contradicting the commonly held assumption that windmills have no emissions during use. We show how to account for sound emissions in the life cycle inventory phase of the life cycle of a wind turbine and then calculate the relative impacts using a noise LCIA model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号