首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The conformation of the N-linked complex glycopeptide of fetuin was examined with hydrogen-exchange techniques. The glycopeptide molecule contains eight acetamido hydrogens stemming from five N-acetylglucosamine residues and three N-acetylneuraminic acid residues and also one from the remaining sugar-peptide linkage. The hydrogen-exchange rates of these secondary amides were compared with small molecule model compounds having identical primary structures at their exchangeable hydrogen sites. Differences between the model rates and glycopeptide rates therefore cannot be accounted for by primary structure effects but reflect conformational features of the glycopeptide. Two glycopeptide hydrogens exhibit significantly hindered exchange; the rest exchange at the model rates. Removal of the three N-acetylneuraminic acid residues from terminal positions on the three branches of the glycopeptide removes the slowed hydrogens. The remaining ones continue to exchange at the model rate. These results indicate that two of the eight sugar acetamido hydrogens are involved in intramolecular hydrogen bonds. A likely structure includes two hydrogen bonds between the three N-acetylneuraminic acid residues. These two hydrogens, slowed to a moderate degree, reflect a preferred conformation stabilized by about 1 kcal/mol in free energy. The solution conformation of the glycopeptide suggested by these results is one that is partially ordered and can be easily modulated, owing to the relatively small amount of energy stabilizing the preferred conformation.  相似文献   

2.
Effect of N-linked glycosylation on glycopeptide and glycoprotein structure   总被引:5,自引:0,他引:5  
Asparagine-linked glycosylation is an enzyme-catalyzed, co-translational protein modification reaction that has the capacity to influence either the protein folding process or the stability of the native glycoprotein conjugate. Advances in both glycoconjugate chemical synthesis and glycoprotein expression methods have increased the availability of these once elusive biopolymers. The application of spectroscopic methods to these proteins has begun to illuminate the various ways in which the saccharide affects the structure, function and stability of the proteins.  相似文献   

3.
The E. coli replication machinery employs a beta clamp that tethers the polymerase to DNA, thus ensuring high processivity. The replicase also contains a processivity switch that dissociates the polymerase from its beta clamp. The switch requires the tau subunit of the clamp loader and is regulated by different DNA structures. At a primed site, the switch is "off." When the replicase reaches the downstream primer to form a nick, the switch is flipped, and tau ejects the polymerase from beta. This switch has high fidelity for completed synthesis, remaining "off" until just prior to incorporation of the last nucleotide and turning "on" only after addition of the last dNTP. These actions of tau are confined to its C-terminal region, which is located outside the clamp loading apparatus. Thus, this highly processive replication machine has evolved a mechanism to specifically counteract processivity at a defined time in the lagging-strand cycle.  相似文献   

4.
Two types of linkages between the carbohydrate and the peptide moiety in the glycopeptide from Ascobolus furfuraceus are described. Treatment with mild alkali produced beta-elimination of a small oligosaccharide. Evidence for the O-glycosidic linkage was provided by increase in absorbance at 240 nm, decrease in threonine and serine content after the alkaline treatment and detection of tritiated oligosaccharide following alkaline NaB3H4 reduction. Mannose is the sugar involved in the O-glycosidic linkage. The remaining glycopeptide was branched by galactofuranose units, which were selectivity released by mild acid hydrolysis. The N-glycosidic linkage of the sugar chain was conclusively proved by cleavage with endo-beta-N-acetyl-glucosaminidase. Sequential NaB3H4 reduction and acid hydrolysis gave [3H]glucosaminitol. The structure of the sugar chain was studied by 13C NMR spectroscopy and by methylation analysis.  相似文献   

5.
6.
A study was undertaken to examine the effects of N-linked glycosylation on the structure-function of porcine pepsin. The N-linked motif was incorporated into four sites (two on the N-terminal domain and two on the C-terminal domain), and the recombinant protein expressed using Pichia pastoris. All four N-linked recombinants exhibited similar secondary and tertiary structure to nonglycosylated pepsin, that is, wild type. Similar K(m) values were observed, but catalytic efficiencies were approximately one-third for all mutants compared with the wild type; however, substrate specificity was not altered. Activation of pepsinogen to pepsin occurred between pH 1.0 to 4.0 for wild-type pepsin, whereas the glycosylated recombinants activated over a wider range, pH 1.0 to 6.0. Glycosylation on the C-terminal domain exhibited similar pH activity profiles to nonglycosylated pepsin, and glycosylation on the N-domain resulted in a change in activity profile. Overall, glycosylation on the C-domain led to a more global stabilization of the structure, which translated into enzymatic stability, whereas on the N-domain, an increase in structural stability had little effect on enzymatic stability. Finally, glycosylation on the flexible loop region also appeared to increase the overall structural stability of the protein compared with wild type. It is postulated that the presence of the carbohydrate residues added rigidity to the protein structure by reducing conformational mobility of the protein, thereby increasing the structural stability of the protein.  相似文献   

7.
Hojo H  Nakahara Y 《Biopolymers》2007,88(2):308-324
Glycosylation is a common post-translational modification of proteins. Although its significance in biological system is well recognized, approaches to analyze carbohydrate function are limited. This is because of difficulty in obtaining homogeneous glycoproteins from natural sources. Due to the progress of the carbohydrate and peptide chemistry, syntheses of various homogeneous glycopeptides and glycoproteins, which are suitable for biological studies, have been achieved by chemical means. In this review, we briefly summarize recent advances in the field of glycopeptide synthesis after 1999.  相似文献   

8.
Selective deamidation of Asn67 of RNase A to beta-Asp67 and Asp67 residues at neutral pH initially produces greater amounts of the beta-Asp derivative. As the reaction proceeds the relative concentration of [Asp67]-RNase A increases and, at equilibrium, becomes predominant. Such a discrepancy between the kinetic and thermodynamic control on reaction products is discussed in light of information from X-ray three-dimensional analysis and the lower thermodynamic stability of the beta-Asp derivative relative to the parent enzyme.  相似文献   

9.
The Fmoc-protected heptasaccharide asparagine building block β-GlcNAc-(1→2)-α-Man-(1→3)-[β-GlcNAc-(1→2)-α-Man-(1→6)]β-Man-(1→4)-β-GlcNAc-(1→4)-β-GlcNAc-(Fmoc)Asn was obtained by chemical synthesis. Two flexible strategies were developed with optimized conditions for the simultaneous debenzylation of the sugar and the amino acid part. The heptasaccharide asparagine building block is a partial structure of many glycoproteins and can be used for glycopeptide synthesis in solution and on the solid phase. In this work the heptasaccharide asparagine was elongated in solution to an Fmoc-glycopentapeptide methylester. After chemical cleavage of the Fmoc group the methylester was removed enzymatically by chymotrypsin. The use of β-(1→4)-galactosyltransferase and α-(2→6)-sialyltransferase in the presence of alkaline phosphatase allowed the efficient transfer of four sugar units to the acceptor resulting in an undecasaccharide glycopentapeptide.  相似文献   

10.
Two forms of recombinant trichosanthin (rTCS) were synthesized in high levels in Escherichia coli by putting the TCS cDNA under the control of a T7 RNA polymerase-directed promoter. Purification schemes were developed to isolate the recombinant protein from both soluble and insoluble fractions. Form I rTCS possessed the mature TCS sequence and had similar biological activities as the natural protein. Its IC50 was approximately 0.13 nM in an in vitro rabbit reticulocyte translational system and a dose of around 35 micrograms protein per 25 g body weight was sufficient to induce complete abortion in mice. Form II rTCS had a propeptide of 19 aa at the C-terminus and was five times less active than Form I in inhibiting protein synthesis by a rabbit reticulocyte lysate.  相似文献   

11.
The interaction of a highly purified glycopeptide isolated from ovalbumin with Concanavalin A has been investigated by measuring solvent proton relaxation rates over a wide range of magnetic fields. We find that binding of the glycopeptide to Mn-Ca-Concanavalin A uniformly reduces the solvent proton relaxation rates in the same manner as that of simple saccharides such as methyl α-D-mannopyranoside, but that the magnitude of the reduction is not as great. Furthermore, we observe that the glycopeptide is capable of precipitating the lectin, and that the precipitation reaction can be readily reversed by addition of methyl α-D-mannopyranoside. The latter results indicate that the branched chain glycopeptide appears to be bivalent with respect to binding by the lectin.  相似文献   

12.
A simple procedure for conjugating synthetic fragments of the capsular polysaccharide of Haemophilus influenzae type b, poly-3--D-ribose-(1, 1)-D-ribitol-5-phosphate (sPRP) to linear peptides is described. The procedure consists of (i) reacting the amino group of amino-heptyl sPRP with m-maleimidobenzoyl-N-hydroxysuccinimide (MBS) in phosphate buffer, pH 7.5; (ii) selectively coupling the MBS-modified sPRP to the sulfhydryl group of the cysteine residue of peptides containing functional T-helper cell epitope(s). The glycopeptide conjugates were purified by gel filtration chromatography, biochemically characterized, and elicited protective level of anti-PRP antibody responses in rabbits. Abbreviations: PRP, poly-3--D-ribose-(1, 1)-D-ribitol-5-phosphate; sPRP, synthetic oligo-3--D-ribose-(1, 1)-D-ribitol-5-phosphate; Hib, Haemophilus influenzae type b; MBS, m-maleimidobenzoyl-N-hydroxysuccinimide; PEG, polyethylene glycol monomethyl ether; CRM 197, a non-toxic diphtheria toxin mutant; TT, tetanus toxoid; DT, diphtheria toxoid; OMP, outer membrane protein; RP-HPLC reverse phase high pressure liquid chromatograph  相似文献   

13.
Cone snails are marine predators that use immobilizing venoms for catching prey. Chemical analysis of the venoms has revealed a variety of biologically active small and intermediate size peptides rich in post-translational modifications (modified amino acids, glycosylation). The glycopeptide contulakin-G (pGlu-Ser-Glu-Glu-Gly-Gly-Ser-Asn-Ala-[beta-D-Galp-(1-->3)-alpha-D-GalpNAc-(1-->]Thr-Lys-Lys-Pro-Tyr-Ile-Leu-OH) is a potent analgesic from Conus geographus venom. The in vivo activity of synthetic contulakin-G was previously found to be significantly higher compared to that of a peptide lacking the glycan. In order to further investigate the importance of the glycan, we have now synthesized analogs of contulakin-G where the glycan chain O-linked to threonine has been altered either to beta-D-Galp-(1-->3)-beta-D-GalpNAc-, alpha-D-Galp-(1-->3)-alpha-D-GalpNAc-, or beta-D-Galp-(1-->6)-alpha-D-GalpNAc-. The glycopeptides were assembled on a Wang resin using commercially available Fmoc amino acids and synthetically prepared Fmoc-protected threonine derivatives carrying O-acetyl protected sugar chains. The final products were thoroughly characterized by NMR and mass spectroscopy.  相似文献   

14.
The Fmoc-based SPPS of H-Xaa-Asp(OBzl)-Yaa-Gly-NH(2) sequences results in side reactions yielding not only aspartimide peptides and piperidide derivatives, but also 1,4-diazepine-2,5-dione-peptides. Evidence is presented to show that the 1,4-diazepine-2,5-dione derivative is formed from the aspartimide peptide. The rate of this ring transformation depends primarily on the tendency to aspartimide and piperidide formation, which is influenced by the nature of the amino acid following the aspartic acid beta-benzyl ester (Xaa). However the bulkiness of the amino acid side chain preceeding the aspartic acid beta-benzyl ester (Yaa) is also important. Under certain conditions the 1,4-diazepine-2,5-dione peptide derivative may even be formed dominantly, which is a highly undesirable side reaction in peptide synthesis, but which provides a new way for the synthesis of diazepine peptide derivatives with targeted biological or pharmacological activity.  相似文献   

15.
Hormone-regulated processing of N-acetyl-D-glucosamine was studied in an insect cell line derived from imaginal wing discs of the Indian meal moth, Plodia interpunctella (Hübner). The cell line, IAL-PID2, responded to treatment with 20-hydroxyecdysone with increased incorporation of GlcNAc into glycoproteins. Cycloheximide and tunicamycin counteracted the action of the hormone. In particular, treatment with 20-hydroxyecdysone resulted in the secretion of a 5,000 dalton N-acetyl-D-glucosamine-rich glycopeptide by the IAL-PID2 cells. Accumulation of this peptide was prevented by the use of teflubenzuron, a potent chitin synthesis inhibitor. A glycopeptide of similar molecular weight was observed in imaginal discs of P. interpunctella treated with 20-hydroxyecdysone in vitro, under conditions that induce chitin synthesis. Although the function of the 5,000 dalton glycopeptide is not known, we believe that the PID2 cell line is a promising model for molecular analysis of ecdysteroid-regulated processing of aminosugars by epidermal cells during insect development.  相似文献   

16.
17.
18.
Summary InRhizobium lupini bacterioids enzymes catalysing biosynthesis of aspartic acid have been found. The first enzyme termed aspartate dehydrogenase catalyses synthesis of aspartate from oxaloacetic acid and ammonia in the presence of NADH. The second enzyme, aspartase (L-aspartate ammonialyase, EC 4.3.1.1.), catalyses synthesis of aspartate from fumaric acid and ammonia. These data show that ammonia can be assimilated not only in the plant part of nodules but also in bacteroids. Biosynthesis of aspartate plays a very important role in the assimilation of ammonia in nodules.  相似文献   

19.
The preparation of the conserved core structure of asparagine-linked oligosaccharides found in eukaryotic glycoproteins is an important step towards the synthesis of homogeneous neoglycoproteins. So far, however, the convenient generation of the Manbeta4GlcNAcbeta4GlcNAc (Gn2M) core trisaccharide has proved to be a major obstacle because of the inherent difficulties associated with the synthesis of beta-mannosides. Here we report the overproduction in Escherichia coli of full-length and transmembrane-deleted yeast beta-1, 4-mannosyltransferases as novel N-terminal fusions bearing a decahistidinyl sequence and the minimal human Myc epitope. The recombinant enzymes were highly active and were amenable to immobilisation by nickel(II) chelation and to immunodetection with an anti-Myc monoclonal antibody. The immobilised, transmembrane-deleted enzyme exhibited an apparent Km of 14 microM for the synthetic acceptor substrate analogue, phytanyl-pyrophosphoryl-alpha-N,N'-diacetylchitobioside (PPGn2), under saturating donor conditions. This figure is comparable to those previously reported for native and recombinant yeast beta-1, 4-mannosyltransferases with, respectively, the natural dolichyl-linked acceptor and PPGn2. The validity of the reaction product was confirmed by chromatographic and spectroscopic analysis.  相似文献   

20.
A sialyl T-antigen-linked tetrapeptide was prepared by the combined method of chemical synthesis and enzymatic synthesis. The GalNAc-linked peptide was first obtained by using a commercial peptide synthesizer, and then a galactose residue was attached with beta-(1-->3)-linkage by transglycosylating with a recombinant beta-galactosidase from Bacillus circulans. The sialic acid residue was then combined by alpha-(2-->3)-linkage with sialytransferase from rat liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号