首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 225 毫秒
1.
Binkley D  Stape JL  Takahashi EN  Ryan MG 《Oecologia》2006,148(3):447-454
The release of carbon as CO2 from belowground processes accounts for about 70% of total ecosystem respiration. Insights about factors controlling soil CO2 efflux are constrained by the challenge of apportioning sources of CO2 between autotrophic tree roots (and mycorrhizal fungi) and heterotrophic microorganisms. In some temperate conifer forests, the reduction in soil CO2 efflux after girdling (phloem removal) has been used to separate these sources. Girdling stops the flow of carbohydrates to the belowground portion of the ecosystem, which should slow respiration by roots and mycorrhizae while heterotrophic respiration should remain constant or be enhanced by the decomposition of newly dead roots. Therefore, the reduction in CO2 efflux after girdling should be a conservative estimate of the belowground flux of C from trees. We tested this approach in two tropical Eucalyptus plantations. Tree canopies remained intact for more than 3 months after girdling, showing no reduction in light interception. The reduction in soil CO2 efflux averaged 16–24% for the 3-month period after girdling. The reduction in CO2 efflux was similar for plots with one half of the trees girdled and those with all of the trees girdled. Girdling did not reduce live fine root biomass for at least 5 months after treatment, indicating that large reserves of carbohydrates in the root systems of Eucalyptus trees maintained the roots and root respiration. Our results suggest that the girdling approach is unlikely to provide useful insights into the contribution of tree roots and heterotrophs to soil CO2 efflux in this type of forest ecosystem.  相似文献   

2.
The boreal forest is expected to experience the greatest warming of all forest biomes, raising concerns that some of the large quantities of soil carbon in these systems may be added to the atmosphere as CO2. However, nitrogen deposition or fertilization has the potential to increase boreal forest production and retard the decomposition of soil organic matter, hence increasing both tree stand and soil C storage. The major contributors to soil‐surface CO2 effluxes are autotrophic and heterotrophic respiration. To evaluate the effect of nutrient additions on the relative contributions from autotrophic and heterotrophic respiration, a large‐scale girdling experiment was performed in a long‐term nutrient optimization experiment in a 40‐year‐old stand of Norway spruce in northern Sweden. Trees on three nonfertilized plots and three fertilized plots were girdled in early summer 2002, and three nonfertilized and three fertilized plots were used as control plots. Each plot was 0.1 ha and contained around 230 trees. Soil‐surface CO2 fluxes, soil moisture, and soil temperature were monitored in both girdled and nongirdled plots. In late July, the time of the seasonal maximum in soil‐surface CO2 efflux, the total soil‐CO2 efflux in nongirdled plots was 40% lower in the fertilized than in the nonfertilized plots, while the efflux in girdled fertilized and nonfertilized plots was 50% and 60% lower, respectively, than in the corresponding nongirdled controls. We attribute these reductions to losses of the autotrophic component of the total soil‐surface CO2 efflux. The estimates of autotrophic respiration are conservative as root starch reserves were depleted more rapidly in roots of girdled than in nongirdled trees. Thus, heterotrophic activity was overestimated. Calculated on a unit area basis, both the heterotrophic and autotrophic soil respiration was significantly lower in fertilized plots, which is especially noteworthy given that aboveground production was around three times higher in fertilized than in nonfertilized plots.  相似文献   

3.
The partitioning of soil respiration rates into the component processes of rhizospheric respiration (because of live roots and those microorganisms that subsist on root exudations) and heterotrophic respiration (because of decomposer microorganisms that subsist on the oxidation of soil organic matter) is difficult to accomplish through experimental observation. In order to minimize disturbance to the soil and maximize preservation of the natural relationships among roots, rhizospheric microorganisms, and decomposers, we conducted a girdling experiment in a subalpine forest dominated by lodgepole pine trees. In two separate years, we girdled trees in small forest plots (5–7 m in diameter) and trenched around the plots to sever invading roots in order to experimentally stop the transport of photosynthate from needles to roots, and eliminate rhizospheric respiration. Soil respiration rates in plots with trees girdled over 1 year prior to measurement were higher than those in plots with trees girdled 2–3 months prior to measurement. These results suggest that any stimulation of respiration because of the experimental artifact of fine root death and addition of labile carbon to the pool of decomposer substrates is slow, and occurs beyond the first growing season after girdling. Compared with control plots with nongirdled trees, soil respiration rates in plots with girdled trees were reduced by 31–44% at the mid‐summer respiratory maximum. An extreme drought during one of the 2 years used for observations caused greater reductions in the heterotrophic component of soil respiration compared with the rhizospheric component. In control plots, we observed a pulse in K2SO4‐extractable carbon during the spring snowmelt period, which was absent in plots with girdled trees. In control plots, soil microbial biomass increased from spring to summer, coincident with a seasonal increase in the rhizospheric component of soil respiration. In plots with girdled trees, the seasonal increase in microbial biomass was lower than in control plots. These results suggest that the observed seasonal increase in rhizospheric respiration rate in control plots was because of an increase in rhizospheric microbial biomass following ‘soil priming’ by a spring‐time pulse in dissolved organic carbon. Winter‐time, beneath‐snow microbial biomass was relatively high in control plots. Soil sucrose concentrations were approximately eight times higher during winter than during spring or summer, possibly being derived from the mechanical damage of shallow roots that use sucrose as protection against low‐temperature extremes. The winter‐time sucrose pulse was not observed in plots with girdled trees. The results of this study demonstrate that (1) the rhizospheric component of soil respiration rate at this site is significant in magnitude, (2) the heterotrophic component of soil respiration rate is more susceptible to seasonal drought than the rhizospheric component, and (3) the trees in this ecosystem exert a major control over soil carbon dynamics by ‘priming’ the soil with sugar exudates during the late‐spring snowmelt period and releasing high concentrations of sucrose to the soil during winter.  相似文献   

4.
We assessed the potential of using 14C contents of soil respired CO2 to calculate the contributions of heterotrophic and autotrophic respiration to total soil respiration. The partitioning of these fluxes is of utmost importance to evaluate implications of environmental change on soil carbon cycling and sequestration. At three girdled forest stands in Sweden and Germany, where the tree root (autotrophic) respiration had been eliminated, we measured both flux rates and 14C contents of soil respired CO2 in girdled and control plots in the summers of 2001 or 2002. At all stands, CO2 flux rates were slightly higher in the control plots, whereas the 14C contents of respired CO2 tended to be higher in the girdled plots. This was expected and confirmed that heterotrophically respired CO2 cycles more slowly through the forest ecosystem than autotrophically respired CO2. On the basis of these data, the contributions of hetero‐ and autotrophic respiration to total soil respiration were calculated using two separate approaches (i.e. based on flux rates or 14C). Fractions of heterotrophic respiration ranged from 53% to 87%. Values calculated by both approaches did not differ significantly from each other. Finally, we compared the 14C contents of soil respired CO2 in the girdled plots with the 14C contents of heterotrophically respired CO2 calculated by three different 14C models. None of the models matched the measured data sufficiently. In addition, we suspect that inherent effects of girdling may cause the 14C content of CO2 respired in the girdled plots to be lower than ‘true’ heterotrophically respired CO2 in an undisturbed plot. Nevertheless, we argue that measurements and modeling of 14C can be developed into a valuable tool for separating heterotrophic and autotrophic soil respiration (e.g. when girdling cannot be performed).  相似文献   

5.
Limitations in available techniques to separate autotrophic (root) and soil heterotrophic respiration have hampered the understanding of forest C cycling. The former is here defined as respiration by roots, their associated mycorrhizal fungi and other micro‐organisms in the rhizosphere directly dependent on labile C compounds leaked from roots. In order to separate the autotrophic and heterotrophic components of soil respiration, all Scots pine trees in 900 m2 plots were girdled to instantaneously terminate the supply of current photosynthates from the tree canopy to roots. Högberg et al. (Nature 411, 789–792, 2001) reported that autotrophic activity contributed up to 56% of total soil respiration during the first summer of this experiment. They also found that mobilization of stored starch (and likely also sugars) in roots after girdling caused an increased apparent heterotrophic respiration on girdled plots. Herein a transient increase in the δ13C of soil CO2 efflux after girdling, thought to be due to decomposition of 13C‐enriched ectomycorrhizal mycelium and root starch and sugar reserves, is reported. In the second year after girdling, when starch reserves of girdled tree roots were exhausted, calculated root respiration increased up to 65% of total soil CO2 efflux. It is suggested that this estimate of its contribution to soil respiration is more precise than the previous based on one year of observation. Heterotrophic respiration declined in response to a 20‐day‐long 6 °C decline in soil temperature during the second summer, whereas root respiration did not decline. This did not support the idea that root respiration should be more sensitive to variations in soil temperature. It is suggested that above‐ground photosynthetic activity and allocation patterns of recent photosynthates to roots should be considered in models of responses of forest C balances to global climate change.  相似文献   

6.
Partitioning of soil CO2 flux (FS) into autotrophic and heterotrophic components depends on how the plant carbon is allocated above- vs. belowground and how the belowground carbon is allocated for respiration and production of roots and their microbial associations. Data of litterfall (FA), root respiration (FR), and FS of world old-growth or mature forests (≥45 ages) were compiled, and the relationship between carbon allocation above- vs. belowground (indexed as the FA/FS ratio) and FS partitioning (indexed as the FR/FS ratio) was examined. The FA/FS ratio ranged from 0.08 to 0.64 and was positively correlated with mean annual air temperature and mean annual precipitation. The ratio increased from boreal to temperate to tropical forests, and was higher in broadleaved forests than in coniferous forests. Site-specific belowground carbon use efficiency (BCUE, root production per unit carbon used by roots and microbial associations) varied from 0.10 to 0.87, contrasting with the common assumption of a constant BCUE. Site-specific FR/FS ranged from 0.09 to 0.71 and increased with FS due to a decrease in BCUE. Deciduousness had a significant effect on the FR/FS ratios, with FR/FS ratios greater in deciduous forests than in evergreen forests. Methods of separating root respiration from soil heterotrophic respiration had a significant effect on estimated FR/FS. The estimated FR/FS ratio was negatively related to the FA/FS ratio, indicating that factors favouring carbon allocation belowground over aboveground will increase the autotrophic contribution to total soil respiration. The relatively low explaining power (r 2 = 0.270) of this relationship resulted from deviations from assumptions of constant BCUE and a near steady-state belowground pools.  相似文献   

7.
To better understand how management and restoration practices influence the response of terrestrial ecosystems to large-scale disturbances, it is critical to study above- and belowground effects. In this study, we examined the immediate effect of a major hurricane on aboveground forest structure, arbuscular mycorrhizae (AM) and belowground carbon pools in experimentally thinned plots in a tropical forest. The hurricane occurred five years after a thinning treatment, when thinned plots had similar aboveground carbon stocks but different forest structure compared to control plots. Thinned plots had more large diameter (>10 cm) trees compared to the control plots, which were characterized by a higher density of small diameter (<10 cm) trees. Despite pre-hurricane differences in forest structure, there were no significant differences between treatments in changes of canopy openness or number of affected trees following the hurricane. Thinned plots had larger belowground carbon pools than the controls plots before the hurricane, and these differences remained after the hurricane despite rapid decomposition of organic matter rich in nitrogen. There were no pre-hurricane differences in AM fungal spores or total AM root colonization. The hurricane reduced AM sporulation by nearly 50% in both treatments, yet we observed a significant increase in AM root colonization after the hurricane with greater AM colonization in the thinned plots. Hurricanes have well-known visible aboveground effects, but here we showed that less visible belowground effects are influenced by forest management and may play an important role in forest recovery.  相似文献   

8.
Limitations in the techniques used to separate root-derived and soil-organic-matter (SOM)-derived respiration have hampered the understanding of forest carbon cycling. Tree girdling is considered to be a robust approach with little disturbance to the root–soil system. Using this approach, we tried to separate root-derived respiration from SOM-derived respiration under Acacia crassicarpa and Eucalyptus urophylla plantations in South China. We found that girdling reduced soil respiration and temperature sensitivity of respiration (Q 10) under both plantations compared to controls, but the intensity of girdling effects was species specific. Six months after girdling, live fine root biomass was lower than the control in A. crassicarpa but not in E. urophylla. Soil microbial biomass (C mic) under A. crassicarpa was increased by girdling 17 days after treatment, but decreased thereafter. In contrast, there was no difference in C mic between girdled and control treatments under E. urophylla. Girdling significantly decreased soil organic carbon (SOC) and dissolved organic carbon (DOC) under A. crassicarpa, but not under E. urophylla. We ascribe differences in girdling effects on belowground carbon between the two species to differences in resprouting traits.  相似文献   

9.
Carbon allocation in forest ecosystems   总被引:4,自引:0,他引:4  
Carbon allocation plays a critical role in forest ecosystem carbon cycling. We reviewed existing literature and compiled annual carbon budgets for forest ecosystems to test a series of hypotheses addressing the patterns, plasticity, and limits of three components of allocation: biomass, the amount of material present; flux, the flow of carbon to a component per unit time; and partitioning, the fraction of gross primary productivity (GPP) used by a component. Can annual carbon flux and partitioning be inferred from biomass? Our survey revealed that biomass was poorly related to carbon flux and to partitioning of photosynthetically derived carbon, and should not be used to infer either. Are component fluxes correlated? Carbon fluxes to foliage, wood, and belowground production and respiration all increased linearly with increasing GPP (a rising tide lifts all boats). Autotrophic respiration was strongly linked to production for foliage, wood and roots, and aboveground net primary productivity and total belowground carbon flux (TBCF) were positively correlated across a broad productivity gradient. How does carbon partitioning respond to variability in resources and environment? Within sites, partitioning to aboveground wood production and TBCF responded to changes in stand age and resource availability, but not to competition (tree density). Increasing resource supply and stand age, with one exception, resulted in increased partitioning to aboveground wood production and decreased partitioning to TBCF. Partitioning to foliage production was much less sensitive to changes in resources and environment. Overall, changes in partitioning within a site in response to resource supply and age were small (<15% of GPP), but much greater than those inferred from global relationships. Across all sites, foliage production plus respiration, and total autotrophic respiration appear to use relatively constant fractions of GPP – partitioning to both was conservative across a broad range of GPP – but values did vary across sites. Partitioning to aboveground wood production and to TBCF were the most variable – conditions that favored high GPP increased partitioning to aboveground wood production and decreased partitioning to TBCF. Do priorities exist for the products of photosynthesis? The available data do not support the concept of priorities for the products of photosynthesis, because increasing GPP increased all fluxes. All facets of carbon allocation are important to understanding carbon cycling in forest ecosystems. Terrestrial ecosystem models require information on partitioning, yet we found few studies that measured all components of the carbon budget to allow estimation of partitioning coefficients. Future studies that measure complete annual carbon budgets contribute the most to understanding carbon allocation.  相似文献   

10.
In an old growth coniferous forest located in the central Cascade Mountains, Oregon, we added or removed aboveground litter and terminated live root activity by trenching to determine sources of soil respiration. Annual soil efflux from control plots ranged from 727 g C m−2 year−1 in 2002 to 841 g C m−2 year−1 in 2003. We used aboveground litter inputs (149.6 g C m−2 year−1) and differences in soil CO2 effluxes among treatment plots to calculate contributions to total soil efflux by roots and associated rhizosphere organisms and by heterotrophic decomposition of organic matter derived from aboveground and belowground litter. On average, root and rhizospheric respiration (Rr) contributed 23%, aboveground litter decomposition contributed 19%, and belowground litter decomposition contributed 58% to total soil CO2 efflux, respectively. These values fall within the range of values reported elsewhere, although our estimate of belowground litter contribution is higher than many published estimates, which we argue is a reflection of the high degree of mycorrhizal association and low nutrient status of this ecosystem. Additionally, we found that measured fluxes from plots with doubled needle litter led to an additional 186 g C m−2 year−1 beyond that expected based on the amount of additional carbon added; this represents a priming effect of 187%, or a 34% increase in the total carbon flux from the plots. This finding has strong implications for soil C storage, showing that it is inaccurate to assume that increases in net primary productivity will translate simply and directly into additional belowground storage.  相似文献   

11.
We show the potential of a new method combining tree-ring analyses on stems and on coarse roots of individual trees in order to advance the understanding of growth dynamics in forest trees. To this end, we studied the root–shoot allometry of trees and its dependence on site conditions. Along a gradient in water supply in Southern Germany from dry to moist sites we selected 43 Norway spruce trees (Picea abies [L.] H. Karst.) aged 65–100 years. Increment cores were taken from stem and main roots revealing aboveground and belowground growth course over the last 34 years. Annual growth rates in roots and stems and their allometric relationships were applied as surrogate variables for tree resource allocation to aboveground and belowground organs. The mean sensitivities of both stem and root chronologies were found to be site-specific, and increased from the moist through the dry sites. No temporal offset between aboveground and belowground growth reactions to climate conditions was found in Norway spruce at any of the sites. These results suggest that the root–shoot allometry depends on the specific site conditions only at the driest site, following the optimal biomass partitioning theory (the more restricted the water supply, the more organic matter allocation into the belowground organs).  相似文献   

12.
Soil mono- and disaccharides (SS) and total free amino acids (AA) can influence soil microbial activities, whether they are derived from decomposition of organic materials or from plant root exudates. To quantify the relative importance of aboveground plant litter input and belowground inputs of root exudates and root debris on SS and AA, we conducted litter removal, root trenching and tree girdling experiments in a subtropical moist forest of southwest China. We found that concentrations of SS and AA had pronounced seasonal fluctuations. Litter removal markedly reduced SS concentrations, but it had no effect on AA concentrations. Concentrations of SS were significantly correlated with litterfall that had occurred 2 months earlier in the control plots, but that correlation was not observed in the litter removal plots. Multiple-linear regressions of soil respiration and soil temperature on AA concentrations were significant in both control and litter removal plots, but not in the root trenching or tree girdling plots. These results suggest that SS levels are likely to be regulated by aboveground plant litter input, and concentrations of AA are affected by microbial activity that fluctuates with soil temperature and belowground carbon input.  相似文献   

13.
The aim of this study was to determine the effect of ultraviolet-B (UV-B) exposures (0.55 and 1.1 W m−2) on the distributional variations of plant carbon and nitrogen content in both below- and aboveground parts in Vallisneria gigantea Graebner in laboratory conditions for a 3-month period. Plant biomass, total organic nitrogen, total organic carbon, lignin, water soluble carbohydrates and chlorophyll a and b were analysed and compared using repeated measures of analysis of variance (ANOVA) between UV-B-exposed and nonexposed treatments. A significant reduction (F (2, 15) = 754.5, P < 0.001) was observed in leaf chlorophyll a concentrations at UV-B exposure levels. In the high UV-B irradiation group, a significant decrease (50.3%) was observed compared with the initial aboveground biomass. The total organic nitrogen content at both high and low UV-B exposure levels declined significantly by 25.6% and 24.3%, respectively, in aboveground samples, while significant increases of 39.6% and 40%, respectively, were observed in belowground tissues, compared with non-UV-B treatment groups. The partitioning of total organic carbon in the aboveground tissues was reflected by significant increase in lignin and water soluble carbohydrates in aboveground tissues under UV-B stress. However, total organic nitrogen demonstrated greater partitioning into the belowground tissues of V. gigantea. This study highlights the defense mechanisms of V. gigantea through changes in the percentage composition of carbon and nitrogen compounds with negative effects on nutrient regeneration, which can be accelerated in a system exposed to UV-B irradiation at or above biologically effective levels.  相似文献   

14.
Conversion of large areas of agricultural grassland is inevitable if European and UK domestic production of biomass is to play a significant role in meeting demand. Understanding the impact of these land‐use changes on soil carbon cycling and stocks depends on accurate predictions from well‐parameterized models. Key considerations are cultivation disturbance and the effect of autotrophic root input stimulation on soil carbon decomposition under novel biomass crops. This study presents partitioned parameters from the conversion of semi‐improved grassland to Miscanthus bioenergy production and compares the contribution of autotrophic and heterotrophic respiration to overall ecosystem respiration of CO2 in the first and second years of establishment. Repeated measures of respiration from within and without root exclusion collars were used to produce time‐series model integrations separating live root inputs from decomposition of grass residues ploughed in with cultivation of the new crop. These parameters were then compared to total ecosystem respiration derived from eddy covariance sensors. Average soil surface respiration was 13.4% higher in the second growing season, increasing from 2.9 to 3.29 g CO2‐C m?2 day?1. Total ecosystem respiration followed a similar trend, increasing from 4.07 to 5.4 g CO2‐C m?2 day?1. Heterotrophic respiration from the root exclusion collars was 32.2% lower in the second growing season at 1.20 g CO2‐C m?2 day?1 compared to the previous year at 1.77 g CO2‐C m?2 day?1. Of the total respiration flux over the two‐year time period, aboveground autotrophic respiration plus litter decomposition contributed 38.46% to total ecosystem respiration while belowground autotrophic respiration and stimulation by live root inputs contributed 46.44% to soil surface respiration. This figure is notably higher than mean figures for nonforest soils derived from the literature and demonstrates the importance of crop‐specific parameterization of respiration models.  相似文献   

15.
The aim of our study was to identify interactions between the decomposition of aboveground litter and rhizosphere activity. The experimental approach combined the placement of labelled litter (13C=–37.9) with forest girdling in a 35-year-old Norway spruce stand, resulting in four different treatment combinations: GL (girdled, litter), GNL (girdled, no litter), NGL (not girdled, litter), and NGNL (not girdled, no litter). Monthly sampling of soil CO2 efflux and 13C of soil respired CO2 between May and October 2002 allowed the partitioning of the flux into that derived from the labelled litter, and that derived from native soil organic matter and roots. The effect of forest girdling on soil CO2 efflux was detectable from June (girdling took place in April), and resulted in GNL fluxes to be about 50% of NGNL fluxes by late August. The presence of litter resulted in significantly increased fluxes for the first 2 months of the experiment, with significantly greater litter derived fluxes from non-girdled plots and a significant interaction between girdling and litter treatments over the same period. For NGL collars, the additional efflux was found to originate only in part from litter decomposition, but also from the decay of native soil organic matter. In GL collars, this priming effect was not significant, indicating an active role of the rhizosphere in soil priming. The results therefore indicate mutual positive feedbacks between litter decomposition and rhizosphere activity. Soil biological analysis (microbial and fungal biomass) of the organic layers indicated greatest activity below NGL collars, and we suppose that this increase indicates the mechanism of mutual positive feedback between rhizosphere activity and litter decomposition. However, elimination of fresh C input from both above- and belowground (GNL) also resulted in greater fungal abundance than for the NGNL treatment, indicating likely changes in fungal community structure (i.e. a shift from symbiotic to saprotrophic species abundance).  相似文献   

16.
We studied the relative effects of landscape configuration, environmental variables, forest age, and spatial variables on estimated aboveground biomass (AGB) in Costa Rican secondary rain forests patches. We measured trees ≥5 cm dbh in 24, 0.25 ha plots and estimated AGB for trees 5–24.9 cm dbh and for trees >25 cm dbh using two allometric equations based on multispecies models using tree dbh and wood‐specific gravity. AGB averaged 87.3 Mg/ha for the 24 plots (not including remnant trees) and 123.4 Mg/ha including remnant trees (20 plots). There was no effect of forest age on AGB. Variation partitioning analysis showed that soils, climate, landscape configuration, and space together explained 61% of tree AGB variance. When controlling for the effects of the other three variables, only soils remained significant. Soil properties, specifically K and Cu, had the strongest independent effect on AGB (variation partitioning, R2 = 0.17, p = 0.0310), indicating that in this landscape, AGB variation in secondary forest patches is influenced by soil chemical properties. Elucidating the relative influence of soils in AGB variation is critical for understanding changes associated with land cover modification across Neotropical landscapes, as it could have important consequences for land use planning since secondary forests are considered carbon sinks. Abstract in Spanish is available with online material.  相似文献   

17.
Many studies have shown that root–shoot imbalance influences vegetative growth and development of cotton (Gossypium hirsutum L.), but few have examined changes in leaf senescence and endogenous hormones due to stem girdling. The objective of this study was to determine the correlation between some endogenous phytohormones, particularly cytokinins and abscisic acid (ABA), and leaf senescence following stem girdling. Field-grown cotton plants were girdled on the main stem 5 days after squaring (DAS), while the non-girdled plants served as control. Plant biomass, seed cotton yield, main-stem leaf photosynthetic (Pn) rate, chlorophyll (Chl) and malondialdehyde (MDA) concentrations, as well as levels of cytokinins and ABA in main-stem leaves and xylem sap were determined after girdling or at harvest. Main-stem girdling decreased the dry root weight and root/shoot ratio from 5 to 70 days after girdling (DAG) and reduced seed cotton yield at harvest. Main-stem leaf Pn and Chl concentration in girdled plants were significantly lower than in control plants. Much higher levels of MDA were observed in main-stem leaves from 5 to 70 DAG, suggesting that stem girdling accelerated leaf senescence. Girdled plants contained less trans-zeatin and its riboside (t-Z + t-ZR), dihydrozeatin and its riboside (DHZ + DHZR), and isopentenyladenine and its riboside (iP + iPA), but more ABA than control plants in both main-stem leaves and xylem sap. These results suggested that main-stem girdling accelerated leaf senescence due to reduced levels of cytokinin and/or increased ABA. Cytokinin and ABA are involved in leaf senescence following main-stem girdling.  相似文献   

18.
Management of ecological disturbances requires an understanding of the time scale and dynamics of community responses to disturbance events. To characterize long-term seagrass bed responses to nutrient enrichment, we established six study sites in Florida Bay, USA. In 24 plots (0.25 m2) at each site, we regularly added nitrogen (N) and phosphorus (P) in a factorial design for 7 years. Five of the six sites exhibited strong P limitation. Over the first 2 years, P enrichment increased Thalassia testudinum cover in the three most P-limited sites. After 3 years, Halodule wrightii began to colonize many of the P-addition plots, but the degree of colonization was variable among sites, possibly due to differences in the supply of viable propagules. Thalassia increased its allocation to aboveground tissue in response to P enrichment; Halodule increased in total biomass but did not appear to change its aboveground: belowground tissue allocation. Nutrient enrichment did not cause macroalgal or epiphytic overgrowth of the seagrass. Nitrogen retention in the study plots was variable but relatively low, whereas phosphorus retention was very high, often exceeding 100% of the P added as fertilizer over the course of our experiments. Phosphorus retentions exceeding 100% may have been facilitated by increases in Thalassia aboveground biomass, which promoted the settlement of suspended particulate matter containing phosphorus. Our study demonstrated that low-intensity press disturbance events such as phosphorus enrichment can initiate a slow, ramped successional process that may alter community structure over many years.  相似文献   

19.
明晰放牧干扰下高寒草甸植物丰富度与生物量的相关关系,为草地植物不同生长时期生物量的预测提供依据。设置6个放牧强度样地,连续3a放牧,2014年进行3个季节(6月、8月、10月)的植物丰富度和地上、地下生物量调查,对比分析放牧干扰下物种和生活型丰富度(生活型的种类)分别与地上、地下生物量的相关关系。结果表明:(1)物种和生活型丰富度与地上生物量均受放牧强度的显著影响,物种丰富度仅在8月与放牧强度显著负相关,生活型丰富度在10月随放牧强度单峰变化,地上生物量在不同季节均与放牧强度显著负相关,而地下生物量与放牧强度无关。(2)物种丰富度与地上和地下生物量均受季节的显著影响,物种丰富度和地上生物量仅在低强度放牧区随季节呈单峰变化,地下生物量在中等强度放牧区随季节呈单峰变化;生活型丰富度与季节无关。(3)放牧干扰前物种和生活型丰富度与地上和地下生物量均显著正相关。3a放牧后仅在8月,物种丰富度只与地上生物量显著正相关,生活型丰富度与地上和地下生物量均显著正相关。(4)对于不同放牧强度,物种丰富度仅在低强度放牧区与地上生物量显著正相关,而生活型丰富度在所有放牧强度区均与地上生物量显著正相关。综上所述,放牧干扰扰乱了高寒草甸丰富度与生物量之间的关系,尤其影响了物种丰富度与地下生物量之间的相关关系。生活型丰富度与地上生物量之间的显著关系不受放牧强度干扰,使生活型丰富度在预测生物量方面表现出优势。  相似文献   

20.
The objectives were to quantify aboveground, belowground and dead wood carbon pools near Mayoko in the Chaillu massif of Republic of Congo and explore relationships between carbon storage and plant diversity of all growth forms. A total of 190 plots (25 m by 25 m) were sampled (5072 stems, 211 species) and data analysed using recommended central-African forest allometric equations. Mean stem diameter at breast height was 33.6 cm, mean basal area 47.7 m2 ha−1 and mean density of individuals 407 ha−1. Mean aboveground carbon (AGC) ranged from 13.93–412.66 Mg C ha−1, belowground carbon from 2.86–96.97 Mg C ha−1 and dead wood from 0.00–7.59 Mg C ha−1. The maximum AGC value recorded in a plot was 916 Mg C ha−1. The analysis performed using phytosociological association as basis rather than broad vegetation type is unique. AGC values for undisturbed terra firme forest sites featured among the highest recorded for African tropical forests. Considering only tree diversity, a weak, yet significant, relationship existed between AGC and species richness, Shannon-Wiener index of diversity and Fisher's alpha. However, if diversity of all plant growth forms is considered, no relationship between carbon and plant diversity existed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号