首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Strain Gsoil 348T was isolated from a ginseng field soil sample by selecting micro-colonies from one-fifth strength modified R2A agar medium after a long incubation period. 16S rRNA gene sequence analysis indicated that the strain is related to members of the phylum Armatimonadetes (formerly called candidate phylum OP10). Strain Gsoil 348T is mesophilic, strictly aerobic, non-motile and rod-shaped. It only grows in low nutrient media. The major respiratory quinones are menaquinones MK-11 and MK-10, and the main fatty acids are iso-C15:0, iso-C17:0, C16:0 and C16:1 ω11c. The G+C content is 61.4 mol%. The 16S rRNA gene sequences in public databases belonging to the phylum Armatimonadetes were clustered here into 6 groups. Five of these groups constituted a coherent cluster distinct from the sequences of other phyla in phylogenetic trees that were constructed using multiple-outgroup sequences from 49 different phyla. On the basis of polyphasic taxonomic analyses, it is proposed that strain Gsoil 348T (= KACC 14959T = JCM 17079T) should be placed in Fimbriimonas ginsengisoli gen. nov., sp. nov., as the cultured representative of the Fimbriimonadia class. nov., corresponding with Group 4 of the phylum Armatimonadetes.  相似文献   

2.
A spiral-shaped, highly motile bacterium was isolated from freshwater sulfidic sediment. Strain J10T is a facultative autotroph utilizing sulfide, thiosulfate, and sulfur as the electron donors in microoxic conditions. Despite high 16S rRNA gene sequence sequence identity to Magnetospirillum gryphiswaldense MSR-1 T (99.6 %), digital DNA-DNA hybridisation homology and average nucleotide identity between the two strains was of the different species level (25 % and 83 %, respectively). Strain J10T is not magnetotactic. The DNA G + C content of strain J10T is 61.9 %. The predominant phospholipid ester-linked fatty acids are C18:1ω7, C16:1ω7, and C16:0. Strain J10T (=DSM 23205 T = VKM B-3486 T) is the first strain of the genus Magnetospirillum showing lithoautotrophic growth and is proposed here as a novel species, Magnetospirillum sulfuroxidans sp. nov. In addition, we propose to establish a framework for distinguishing genera and families within the order Rhodospirillales based on phylogenomic analysis using the threshold values for average amino acid identity at ̴ 72 % for genera and ̴ 60 % for families. According to this, we propose to divide the existing genus Magnetospirillum into three genera: Magnetospirillum, Paramagnetospirillum, and Phaeospirillum, constituting a separate family Magnetospirillaceae fam. nov. in the order Rhodospirillales. Furthermore, phylogenomic data suggest that this order should accomodate six more new family level groups including Magnetospiraceae fam. nov., Magnetovibrionaceae fam. nov., Dongiaceae fam. nov., Niveispirillaceae fam. nov., Fodinicurvataceae fam. nov., and Oceanibaculaceae fam. nov.  相似文献   

3.
Pirellula-like planctomycetes are ubiquitous aquatic bacteria, which are often detected in anoxic or micro-oxic habitats. By contrast, the taxonomically described representatives of these bacteria, with very few exceptions, are strict aerobes. Here, we report the isolation and characterization of the facultatively anaerobic planctomycete, strain PX69T, which was isolated from a boreal lake. Its 16S rRNA gene sequence is affiliated with the Pirellula-related Pir4 clade, which is dominated by environmental sequences retrieved from a variety of low-oxygen habitats. Strain PX69T was represented by ellipsoidal cells that multiplied by budding and grew on sugars, some polysaccharides and glycerol. Anaerobic growth occurred by means of fermentation. Strain PX69T grew at pH 5.5–7.5 and at temperatures between 10 and 30 °C. The major fatty acids were C18:1ω9c, C16:0 and C16:1ω7c; the major intact polar lipid was dimethylphosphatidylethanolamine. The complete genome of strain PX69T was 6.92 Mb in size; DNA G + C content was 61.7 mol%. Among characterized planctomycetes, the highest 16S rRNA gene similarity (90.4%) was observed with ‘Bythopirellula goksoyri’ Pr1d, a planctomycete from deep-sea sediments. We propose to classify PX69T as a novel genus and species, Lacipirellula parvula gen. nov., sp. nov.; the type strain is strain PX69T (=KCTC 72398T = CECT 9826T = VKM B-3335T). This genus is placed in a novel family, Lacipirellulaceae fam. nov., which belongs to the order Pirellulales ord. nov. Based on the results of comparative genome analysis, we also suggest establishment of the orders Gemmatales ord. nov. and Isosphaerales ord. nov. as well as an emendation of the order Planctomycetales.  相似文献   

4.
A new halophilic anaerobe was isolated from the hypersaline surface sediments of El-Djerid Chott, Tunisia. The isolate, designated as strain 6SANG, grew at NaCl concentrations ranging from 14 to 30%, with an optimum at 20–22%. Strain 6SANG was a non-spore-forming, non-motile, rod-shaped bacterium, appearing singly, in pairs, or occasionally as long chains (0.7–1 × 4–13 μm) and showed a Gram-negative-like cell wall pattern. It grew optimally at pH values between 7.2 and 7.4, but had a very broad pH range for growth (5.9–8.4). Optimum temperature for growth was 42°C (range 30–50°C). Strain 6SANG required yeast extract for growth on sugars. Glucose, sucrose, galactose, mannose, maltose, cellobiose, pyruvate, and starch were fermented. The end products from glucose fermentation were acetate, butyrate, lactate, H2, and CO2. The G + C ratio of the DNA was 34.3 mol%. Strain 6SANG exhibited 16S rRNA gene sequence similarity values of 91–92% with members of the genus Halobacteroides, H. halobius being its closest phylogenetic relative. Based on phenotypic and phylogenetic characteristics, we propose that this bacterium be classified as a novel species of a novel genus, Halanaerobaculum tunisiense gen. nov., sp. nov. The type strain is 6SANGT (=DSM 19997T = JCM 15060T).  相似文献   

5.
6.
A novel anaerobic moderately thermophilic bacterium, designated strain 38H-strT, was isolated from a 12 m deep hot spring of the Kunashir Island shore. Gram-negative cells were non-spore-forming, motile, straight or curved filamentous rods, occasionally forming loops and knots. The strain grew at 20–65 °C and pH range of 4.0–9.0 with an optimum at 50 °C and pH 6.5–7.0. Strain 38H-strT required 0.5–2.5% NaCl (1.5% is an optimum) for growth. It was a chemoorganoheterotroph, growing on carbohydrates (starch, pullulan, alginate, laminarin, beta-glucan) or peptide mixtures and proteins (peptone, tryptone, gelatin, and α- or β- keratins). Major products of glucose fermentation were acetate, hydrogen, and carbon dioxide. Major cellular fatty acids were iso- and anteiso-C15:0. Phosphatidylethanolamine, an unidentified phospholipid, and three unidentified polar lipids were detected in cellular lipids fractions. The quinone was MK-7. The size of complete genome of strain 38H-strT was 3.2 Mb; DNA G+C content was 38.3 mol%. According to 16S rRNA gene sequence and conserved protein sequences phylogenies, strain 38H-strT represented a deeply branched lineage near the root of the class Bacteroidia. Based on phylogenetic analysis and phenotypic features the novel isolate was assigned to a novel family within the order Bacteroidales for which the name Tenuifilaceae fam. nov. is proposed. Strain 38H-strT (=DSM 100343T =VKM B-2964T) represents the first genus and species Tenuifilum thalassicum gen. nov., sp. nov.  相似文献   

7.
A novel facultative microaerophilic nitrate-reducing bacterium designated CA62NT was isolated from a thermal spring in France. Cells were non-motile rods (2–3 × 0.2 μm) and showed low cytoplasmic density when observed under a phase-contrast microscope. Strain CA62NT grew at temperatures between 50 and 75°C (optimum 65°C) and at a pH between 6.3 and 7.9 (optimum 7.0). NaCl was not required for growth but was tolerated up to 10 gl−1. Sulfate, thiosulfate, elemental sulfur, sulfite, and nitrite were not used as electron acceptors. Nitrate was reduced to nitrite. Strain CA62NT used lactate, pyruvate, glucose, mannose, fructose, and casamino acids and some amino acids as electron donors only in the presence of nitrate as electron acceptor. None of these substrates was fermented. The main end-products of glucose oxidation were acetate, CO2, and traces of H2. The G + C content of the genomic DNA was 70.3 mol% (HPLC techniques). Phylogenetic analysis of the small-subunit (SSU) ribosomal RNA (rRNA) gene sequence indicated that strain CA62NT was affiliated to the Symbiobacterium branch within the Firmicutes and had Symbiobacterium thermophilum and “S. toebii” as its closest phylogenetic relatives. On the basis of phylogenetical and physiological characteristics, strain CA62NT is proposed to be the type strain for the novel species in the novel genus, Caldinitratiruptor microaerophilus gen. nov., sp. nov. (DSM 22660, JCM 16183).  相似文献   

8.
Chhetri  Geeta  Kang  Minchung  Kim  Jiyoun  Kim  Inhyup  So  Yoonseop  Seo  Taegun 《Antonie van Leeuwenhoek》2021,114(9):1453-1463

An ovoid to rod shaped, white to brown pigmented, facultative anaerobic, mesophilic, non-phototrophic, Gram-staining-negative, non-motile, multiply by binary fission designated strain KVB23T, which was isolated from root of rice plant, near Ilsan, South Korea, was investigated for its taxonomic position by polyphasic approach. Optimal growth was found to occur at 30?C, at pH 6.5 and in the absence of NaCl on R2A. Phylogenetic analysis based on the 16S rRNA gene sequence of strain KVB23T revealed that it formed a distinct lineage, as a separate deep branch within the family Rhodobacteriaceae, with?<?96.5% sequence similarity to representatives of the genera Rhodobacter, Xinfangfangia, Tabrizicola, Falsirhodobacter, Haematobacter, Paenirhodobacter, Pseudorhodobacter and Pararhodobacter. Based in 16S rRNA sequences strain KVB23T was most closely related to Tabrizicola fusiformis KCTC 62105 T (96.5%) and Rhodobacter thermarum KCTC 52712 T (96.2%). The draft genome of strain KVB23T was 3.80 bp long with a DNA G?+?C content of 63.1%. Genome of strain KVB23T harboured gene clusters for tryptophan and cobalamin biosynthesis. The strain contained Q-10 as the sole respiratory quinone. The predominant fatty acids were found to consist of C16:0, C18:0 and summed feature 8 (comprising C18:1 ω7c and / or C18:1 ω6). The polar lipids were identified as diphosphatidylglycerol, phosphatidylethanolamine, seven unidentified phosphoglycolipids, two unidentified aminophosphoglycolipid, one unidentified glycolipid and four unidentified lipids. Phosphate-solubilizing bacteria have the ability to dissolve insoluble phosphates and enhance the soil fertility. Strain KVB23T can solubilize calcium phosphate tribasic. Phosphate solubilizing and tryptophan biosynthesis property of strain KVB23T could be a possible factor for the increase in growth of rice plant. Differential phenotypic, chemotaxonomic and genotypic properties, together with the phylogenetic distinctiveness, demonstrated that strain KVB23T was found to represent a novel genus in the Rhodobacteriaceae family, for which the name Fuscibacter oryzae gen. nov., sp. nov. is proposed, with the type strain KVB23T(=?KACC 21711 T?=?NBRC 114716 T).

  相似文献   

9.
A Gram-staining positive, endospore-forming, motile and rod-shaped bacterial strain, BR-29T, was isolated from soil from west coast of the Korean peninsula, and its taxonomic position was investigated by a polyphasic study. Strain BR-29T grew optimally at around pH 7.5, at 30°C and in the presence of 0.5% (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain BR-29T fell into a clade comprising the type strains of Cohnella species, with which it exhibited 16S rRNA gene sequence similarity values of 92.8–96.4%. Strain BR-29T contained a cell wall peptidoglycan based on meso-diaminopimelic acid and MK-7 as the predominant menaquinone. The major fatty acids were anteiso-C15:0, C16:0 and iso-C16:0. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, lysylphosphatidylglycerol and two unidentified phospholipids; a minor amount of phosphatidylglycerol was present. The DNA G+C content was 54.9 mol%. Strain BR-29T could be differentiated from phylogenetically related Cohnella species by differences in phenotypic characteristics. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain BR-29T represents a novel species of the genus Cohnella, for which the name Cohnella boryungensis sp. nov., is proposed. The type strain is BR-29T (= KCTC 13735T = CCUG 59598T).  相似文献   

10.
Bao  Yixuan  Liu  Junwei  Zhang  Xuan  Lei  Peng  Qiu  Jiguo  He  Jian  Li  Na 《Antonie van Leeuwenhoek》2021,114(10):1609-1617

An obligate anaerobic bacterial strain (BAD-6T) capable of degrading acetochlor and butachlor was isolated from an anaerobic acetochlor-degrading reactor. Cells were Gram-stain positive, straight to gently curved rods with flagella. The major fermentation products in peptone-yeast broth were acetate and butyrate. The optimum temperature and pH for growth was 30 °C and 7.2–7.5, respectively. The major cellular fatty acids (>?10%) were C14:0 FAME, C16:0 FAME and cyc-9,10-C19:0 DMA. Genome sequencing revealed a genome size of 4.80 Mb, a G?+?C content of 43.6 mol% and 4741 protein-coding genes. The most closely related described species on the basis of 16S rRNA gene sequences was Anaerovorax odorimutans NorPutT in the order Clostridiales of the class Clostridia with sequence similarity of 94.9%. The nucleotide identity (ANI) value and digital DNA–DNA hybridization (dDDH) between the genomes of strain BAD-6T and Ana. odorimutans NorPutT were 70.9% and 15.9%, respectively. Based on the distinct differences in phylogenetic and phenotypic characteristics between strain BAD-6T and related species, Sinanaerobacter chloroacetimidivorans gen. nov., sp. nov. is proposed to accommodate the strain. Strain BAD-6T is the type strain (=?CCTCC AB 2021092T?=?KCTC 25290T).

  相似文献   

11.
Xie  Fuquan  Pei  Shengxiang  Huang  Xiaoyun  Wang  Lina  Kou  Jinyan  Zhang  Gaiyun 《Antonie van Leeuwenhoek》2021,114(12):2133-2145

A novel Gram-staining positive, aerobic, rod-shaped, non-motile and yellow-pigmented actinobacterium, designated strain WY83T, was isolated from a marine sediment of Indian Ocean. Strain WY83T grew optimally at 30–35 °C, pH 7–8 and with 0–3% (w/v) NaCl. The predominant menaquinones were MK-10, MK-11 and MK-12, and the major fatty acids were C19:1 ω9c/C19:1 ω11c, anteiso-C15:0, C17:0 3OH, and iso-C16:0. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol and one unidentified glycolipid. The cell-wall peptidoglycan contained lysine as a diamino acid. The DNA G?+?C content was 72.3 mol%. Phylogenetic analysis based on 16S rRNA gene sequences and ninety-two bacterial core genes indicated that strain WY83T formed an evolutionary lineage with Chryseoglobus frigidaquae JCM 14730T, Chryseoglobus indicus CTD02-10-2T, Yonghaparkia alkaliphila JCM 15138T, Microcella alkaliphila DSM 18851T and Microcella putealis DSM 19627T within the radiation enclosing members of the family Microbacteriaceae. All pairwise percentage of conserved proteins between strain WY83T and the closely related phylogenetic neighbors were greater than 65%. The average nucleotide identity and in silico DNA–DNA hybridization values were both below the thresholds used for the delineation of a new species. On the basis of the evidence presented, strains WY83T, Y. alkaliphila JCM 15138T, C. frigidaquae JCM 14730T, M. alkaliphila DSM 18851T and M. putealis DSM 19627T should belong to different species of the same genus. Strain WY83T represents a novel species of the genus Microcella, for which the name Microcella flavibacter sp. nov. is proposed. The type strain is WY83T (=?KCTC 39637T?=?MCCC 1A07099T). Furthermore, Chryseoglobus frigidaquae, Chryseoglobus indicus, and Yonghaparkia alkaliphila were reclassified as Microcella frigidaquae comb. nov., Microcella indica nom. nov., and Microcella alkalica nom. nov., respectively.

  相似文献   

12.
A thermophilic, rod-shaped, motile, Gram-positive, spore-forming bacterium strain 70BT was isolated from a geothermally active underground mine in Japan. The temperature and pH range for growth was 50–81°C (optimum 71°C) and 6.2–9.8 (optimum pH 7–7.5), respectively. Growth occurred in the presence 0–2% NaCl (optimum 1% NaCl). Strain 70BT could utilize glucose, fructose, mannose, mannitol, pyruvate, cellobiose and tryptone as substrates. Thiosulfate was used as electron acceptor. Major whole-cell fatty acids were iso-C15:0, C16:0 DMA (dimethyl acetal), C16:0 and anteiso-C15:0. The G+C mol% of the DNA was 44.2%. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the closest relatives of strain 70BT were Thermosediminibacter oceani DSM 16646T (94% similarity) and Thermosediminibacter litoriperuensis DSM 16647 (93% similarity). The phenotypic, chemotaxonomic and phylogenetic properties suggest that strain 70BT represents a novel species in a new genus, for which the name Thermovorax subterraneus gen. nov., sp. nov. is proposed. The type strain of Thermovorax subterraneus is 70BT (=DSM 21563 = JCM 15541).  相似文献   

13.
A novel facultatively anaerobic moderately thermophilic bacterium, strain B-154 T, was isolated from a terrestrial hot spring in the Baikal lake region (Russian Federation). Gram-negative, motile, spherical cells were present singly, in pairs, or aggregates, and reproduced by binary fission. The strain grew at 30–57 °C and within a pH range of 5.1–8.4 with the optimum at 50 °C and pH 6.8–7.1. Strain B-154 T was a chemoorganoheterotroph, growing on mono-, di- and polysaccharides (xylan, starch, galactan, galactomannan, glucomannan, xyloglucan, pullulan, arabinan, lichenan, beta-glucan, pachyman, locust bean gum, xanthan gum). It did not require sodium chloride or yeast extract for growth. Major cellular fatty acids were anteiso-C15:0, iso-C16:0 and iso-C14:0. The respiratory quinone was MK-7. The complete genome of strain B-154 T was 4.73 Mbp in size; its G + C content was 61%. According to the phylogenomic analysis strain B-154 T forms a separate family-level phylogenetic lineage. Moreover, together with Limisphaera ngatamarikiensis and “Pedosphaera parvula” this strain forms a separate order-level phylogenetic lineage within Verrucomicrobiae class. Hence, we propose a novel order, Limisphaerales ord. nov., with two families Limisphaeraceae fam. nov. and Fontisphaeraceae fam. nov., and a novel genus and species Fontisphaera persica gen. nov., sp. nov. with type strain B-154 T. Ecogenomic analysis showed that representatives of the Limisphaerales are widespread in various environments. Although some of them were detected in hot springs the majority of Limisphaerales (54% of the studied metagenome-assembled genomes) were found in marine habitats. This study allowed a better understanding of physiology and ecology of Verrucomicrobiota – a rather understudied bacterial phylum.  相似文献   

14.
Five strains (LN12, LN14T, LN15T, LN16 and LN17T) representing three novel methylotrophic yeast species were isolated from the external surface of plant leaves by three-consecutive enrichments. On the basis of morphological, biochemical, physiological and chemotaxonomic characteristics, the sequence analysis of the D1/D2 domain of the large subunit (LSU) rRNA gene and the phylogenetic analysis, the five strains were assigned to be one novel Ogataea species and two novel Candida species. Three strains (LN12, LN14T and LN16) represent a single novel species of the genus Ogataea, for which the name Ogataea phyllophila sp. nov. is proposed. The type strain is LN14T (= BCC 42666T = NBRC 107780T = CBS 12095T). Strain LN15T was assigned to be Candida chumphonensis sp. nov. (type strain LN15T = BCC 42667T = NBRC 107781T = CBS 12096T). Strain LN17T represented another novel species of Candida that was named Candida mattranensis sp. nov. (type strain LN17T = BCC 42668T = NBRC 107782T = CBS 12097T).  相似文献   

15.
A novel facultatively anaerobic moderately thermophilic bacterium, strain B-254T, was isolated from a terrestrial hot spring near the town of Goryachinsk in the Baikal lake region (Russian Federation). Motile spherical cells of the strain were present as single cocci, in pairs, or aggregates. The cells had a Gram negative cell wall and reproduced by binary fission. The isolate grew at 30–57 °C (opt. 50–54 °C) and at pH 5.1–8.4 (opt. 6.6–7.1). Strain B-254T was a chemoorganoheterotroph, growing on mono-, di- and polysaccharides (xylan, starch, galactan, galactomannan, xyloglucan, arabinan, curdlan, beta-glucan, locust bean gum, xanthan gum). Sodium chloride or yeast extract were not required for growth. Major cellular fatty acids were iso-C16:0, anteiso-C17:0, and C20:0; major polar lipid was phosphatidylethanolamine. The complete genome of strain B-254T was 5.54 Mb; its GC content was 64 %. According to the results of 16S rRNA gene sequence-based phylogenetic analysis and the conserved proteins sequences-based phylogenomic analysis strain B-254T was on a separate lineage within the order Tepidisphaerales (Phycisphaerae, Planctomycetes). Based on phylogenetic and phylogenomic analyses of Phycisphaerae, whole genome comparisons of Tepidisphaerales as well as distinctive phenotypic features of the strain, it was assigned to a novel genus and species for which the name Fontivita pretiosa gen. nov. sp. nov. is proposed. Strain B-254T = KCTC 82380T = VKM B-3507T.  相似文献   

16.
A Gram-negative, aerobic, motile and slightly curved rod-shaped bacterium (BFLP-8T) was isolated from cutaneous mucus of wild long-snouted seahorses (Hippocampus guttulatus) captured in northwest Spain (Toralla, Galicia). Strain BFLP-8T grew at 10–35 °C and pH 5–9 (optimally at 25 °C and pH 7.0) and with 1–6 % (w/v) NaCl (optimally with 2 % NaCl). The predominant respiratory quinone (90 %) was ubiquinone with ten isoprene units (Q-10) and the major fatty acids identified were C18:1 ω7c (54.8 % of the total), C19:0 cyclo ω8c (11.6 %), C16:0 (9.5 %), C18:1 2-OH (7.1 %) and C16:1 ω11c (6.7 %). The G+C content of the DNA was 57.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain BFLP-8T formed a distinct clade within the family Sneathiellaceae but is not specifically associated with any species in the family. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain BFLP-8T represents a novel species within a new genus, for which the name Oceanibacterium hippocampi gen. nov., sp. nov. is proposed. The type strain is BFLP-8T (=CECT 7691T = DSM 23444T).  相似文献   

17.
A novel bacterial strain, designated T-Y1T, capable of degrading a variety of polysaccharides was isolated from seawater of an oyster farm in the South Sea, Korea. It was found to be aerobic, Gram-negative, non-flagellated, non-gliding and rod-shaped. Strain T-Y1T grew optimally at 25 °C, at pH 7.0–7.5 and in the presence of 2 % (w/v) NaCl. A neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showed that strain T-Y1T belonged to the genus Winogradskyella. Strain T-Y1T exhibited 16S rRNA gene sequence similarity values of 95.0–96.8 % to the type strains of recognized Winogradskyella species and less than 94.5 % to other validly named species. The chemotaxonomic data concurred with the phylogenetic inference. Strain T-Y1T contained MK-6 as the predominant menaquinone and anteiso-C15:0, iso-C15:0, iso-C15:1 G and iso-C16:0 3-OH as the major fatty acids. The major polar lipids of strain T-Y1T were phosphatidylethanolamine and two unidentified lipids. The DNA G+C content was 36.2 mol%. Differential phenotypic properties, together with its phylogenetic distinctiveness, enabled strain T-Y1T to be differentiated from the recognized Winogradskyella species. On the basis of the data presented here, strain T-Y1T is considered to represent a novel species of the genus Winogradskyella, for which the name Winogradskyella multivorans sp. nov. is proposed. The type strain is T-Y1T (=KCTC 23891T = CCUG 62216T).  相似文献   

18.
A novel thermophilic anaerobic and microaerophilic bacterium (optimal growth in the presence of 5–10% O2), strain Nad S1T was isolated from the terrestrial hot spring of Hammam Sidi Jdidi, Nabeul, Tunisia. Cells were motile rods having a Gram-positive cell wall structure. Strain Nad S1T grew optimally at 55°C (range 37–70°C). Optimum pH for growth was 6.5–7.0. It was halotolerant growing with NaCl up to 7% (optimum concentration 1.5–3.0%). It grew chemoorganotrophically on various carbohydrates, organic-acids and amino-acids as energy sources, or chemolithotrophically on H2 using nitrate, as terminal electron acceptor. Beside oxygen (under microaerobic conditions) and nitrate, nitrite was also used. Nitrate was completely reduced to N2. No fermentation occurred. The genomic DNA G + C content was 41.8 mol%. Based on 16S rRNA gene sequence analysis, strain Nad S1T belongs to the Bacillaceae family within the class ‘Bacilli’. Because of its phylogenetic and phenotypic characteristics, we propose this isolate to be assigned as a novel genus and a novel species within the domain Bacteria, Microaerobacter geothermalis gen. nov., sp. nov. The type strain is Nad S1T (=DSM 22679T =JCM 16213T).  相似文献   

19.
Strain Marseille-P1302 was isolated from the stool of a 2-year-old Nigerian boy suffering from Kwashiorkor, a form of severe acute malnutrition. The strain grows in aerobic atmosphere and bacterial cells are Gram-positive cocci ranging in diameter from 0.8 to 1 μm. Among species with standing in nomenclature, strain Marseille-P1302 exhibited a highest 16S rRNA sequence similarity of 94.97% with Brevilactibacter flavus strain VG341T, but was phylogenetically-closest to Brevilactibacter sinopodophylli strains KCTC 33808T. The draft genome of strain Marseille-P1302 was 2,934,258-bp-long with a 70.38% G + C content, and contained 2704 protein-coding genes and 55 RNAs that included 9 rRNA genes. On the basis of these data, we propose the creation of the new genus Nigeribacterium gen. nov., with strain Marseille-P1302T (= CSUR P1302 = DSM 29084) being the type strain of the new species Nigeribacterium. massiliense gen. nov., sp. nov.  相似文献   

20.

A pink-coloured, salt- and alkali-tolerant planctomycetal strain (JC658T) with oval to pear-shaped, motile, aerobic, Gram-negative stained cells was isolated from a marine sponge, Pseudoceratina sp. Strain JC658T shares the highest 16S rRNA gene sequence identity with Maioricimonas rarisocia Mal4T (<?89.2%) in the family Planctomycetaceae. The genomic analysis of the new strain indicates its biotechnological potential for the production of various industrially important enzymes, notably sulfatases and carbohydrate-active enzymes (CAZymes), and also potential antimicrobial compounds. Several genes encoding restriction-modification (RM) and CRISPR-CAS systems are also present. NaCl is obligate for growth, of which strain JC658T can tolerate a concentration up to 6% (w/v). Optimum pH and temperature for growth are 8.0 (range 7.0–9.0) and 25 ºC (range 10–40 °C), respectively. The major respiratory quinone of strain JC658T is MK6. Major fatty acids are C16:1ω7c/C16:1ω6c, C18:0 and C16:0. Major polar lipids are phosphatidylcholine, phosphatidyl-dimethylethanolamine and phosphatidyl-monomethylethanolamine. The genomic size of strain JC658T is 7.36 Mb with a DNA G?+?C?content of 54.6 mol%. Based on phylogenetic, genomic (ANI, AAI, POCP, dDDH), chemotaxonomic, physiological and biochemical characteristics, we conclude that strain JC658T belongs to a novel genus and constitutes a novel species within the family Planctomycetaceae, for which we propose the name Thalassoroseus pseudoceratinae gen. nov., sp. nov. The novel species is represented by the type strain JC658T (=?KCTC 72881 T?=?NBRC 114371 T).

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号