首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression and may contribute to the development and progression of many infective diseases including human immunodeficiency virus 1 (HIV-1) infection. The Tat protein is fundamental to viral gene expression. In this study, our goal was to investigate the regulation of a specific miRNA (known as miR-217) in multinuclear activation of galactosidase indicator (MAGI) cells and explore the mechanisms by which miR-217 influenced Tat-induced HIV-1 transactivation through down-regulation of SIRT1 expression. We showed that miR-217 was up-regulated when Tat was expressed in multinuclear activation of galactosidase indicator cells. Forced expression of "miR-217 mimics" increased Tat-induced LTR transactivation. In addition, miR-217 significantly inhibited SIRT1 protein expression by acting on the 3'-UTR of the SIRT1 mRNA. In turn, the decrease in SIRT1 protein abundance provoked by miR-217 affected two important types of downstream signaling molecules that were regulated by Tat. Lower expression of SIRT1 caused by miR-217 enhanced Tat-induced phosphorylation of IKK and p65-NFkB and also exacerbated the loss of AMPK phosphorylation triggered by Tat. Our results uncover previously unknown links between Tat and a specific host cell miRNA that targets SIRT1. We also demonstrate that this regulatory mechanism impinges on p65-NFkB and AMPK signaling: two important host cell pathways that influence HIV-1 pathogenesis. Our results also suggest that strategies to augment SIRT1 protein expression by down-regulation of miR-217 may have therapeutic benefits to prevent HIV-1 replication.  相似文献   

3.
4.
5.
HIV-1 protein Tat is neurotoxic and increases macrophage and microglia production of TNF-alpha, a cytopathic cytokine linked to the neuropathogenesis of HIV dementia. Others have shown that intracellular calcium regulates TNF-alpha production in macrophages, and we have shown that Tat releases calcium from inositol 1,4, 5-trisphosphate (IP3) receptor-regulated stores in neurons and astrocytes. Accordingly, we tested the hypothesis that Tat-induced TNF-alpha production was dependent on the release of intracellular calcium from IP3-regulated calcium stores in primary macrophages. We found that Tat transiently and dose-dependently increased levels of intracellular calcium and that this increase was blocked by xestospongin C, pertussis toxin, and by phospholipase C and type 1 protein kinase C inhibitors but not by protein kinase A or phospholipase A2 inhibitors. Xestospongin C, BAPTA-AM, U73122, and bisindolylmalemide significantly inhibited Tat-induced TNF-alpha production. These results demonstrate that in macrophages, Tat-induced release of calcium from IP3-sensitive intracellular stores and activation of nonconventional PKC isoforms play an important role in Tat-induced TNF-alpha production.  相似文献   

6.
We previously showed that human corneal epithelial cells (HCECs) express Toll-like receptors (TLRs), which recognize gram-positive bacteria and respond to Staphylococcus aureus infection by the expression and secretion of proinflammatory cytokines and beta-defensin-2 (hBD2). In this study, we further elucidated the underlying mechanisms regulating hBD-2 expression and its role in innate defense in HCECs in response to S. aureus challenge. Exposure of HUCL cells, a telomerase-immortalized HCEC line, to S. aureus, its exoproducts (1:10 dilution), or synthetic lipopeptide Pam3Cys (10 microg/ml) resulted in the up-regulation of hBD-2, but not hBD1 and hBD3. Similar to HUCL cells, primary HCECs responded to S. aureus-exoproducts and Pam3Cys challenge by expressing hBD2 mRNA and secreting hBD2 into the culture media. Furthermore, these stimuli induced the expression of TLR2 at both mRNA and protein levels. Consistently with its role as a major pattern-recognizing receptor, TLR2 was located at the cell surface by cell surface biotinylation. The treatment of HUCL cells with TLR2 neutralizing antibody resulted in a significant decrease in Pam3Cys-induced hBD2 production as well as IL-6, IL-8, and TNF-alpha secretion. The Pam3Cys-induced hBD2 expression was completely blocked by NF-kappaB inhibitors and partially inhibited by p38 MAP kinase and the JNK inhibitors. Conditioned media derived from HCECs challenged with S. aureus-exoproducts or Pam3Cys exhibited antibacterial activity against S. aureus, Pseudomonas aeruginosa and Escherichia coli. These findings suggest that S. aureus induces hBD2 production through TLR2-mediated pathways in HCECs and that pathogen-challenged, TLR-activated HCECs possess antimicrobial activity. Thus, the epithelium might play a role in innate defense against bacterial infection by directly killing bacteria in the cornea.  相似文献   

7.
8.
CXCR4-using human immunodeficiency virus, type 1 (HIV-1) variants emerge late in the course of infection in >40% of individuals infected with clade B HIV-1 but are described less commonly with clade C isolates. Tat is secreted by HIV-1-infected cells where it acts on both uninfected bystander cells and infected cells. In this study, we show that clade B Tat, but not clade C Tat, increases CXCR4 surface expression on resting CD4+ T cells through a CCR2b-dependent mechanism that does not involve de novo protein synthesis. The expression of plectin, a cytolinker protein that plays an important role as a scaffolding platform for proteins involved in cellular signaling including CXCR4 signaling and trafficking, was found to be significantly increased following B Tat but not C Tat treatment. Knockdown of plectin using RNA interference showed that plectin is essential for the B Tat-induced translocation of CXCR4 to the surface of resting CD4+ T cells. The increased surface CXCR4 expression following B Tat treatment led to increased function of CXCR4 including increased chemoattraction toward CXCR4-using-gp120. Moreover, increased CXCR4 surface expression rendered resting CD4+ T cells more permissive to X4 but not R5 HIV-1 infection. However, neither B Tat nor C Tat was able to up-regulate surface expression of CXCR4 on activated CD4+ T cells, and both proteins inhibited the infection of activated CD4+ T cells with X4 but not R5 HIV-1. Thus, B Tat, but not C Tat, has the capacity to render resting, but not activated, CD4+ T cells more susceptible to X4 HIV-1 infection.  相似文献   

9.
10.
Intensive use of corticosteroids may be accompanied by increased susceptibility to infections; hence, we investigated the effects of dexamethasone on the expression of antimicrobial peptides, termed human beta-defensins (hBD), by cultured bronchial epithelial cells and mononuclear phagocytes. The results revealed that dexamethasone inhibited the (stimulated) expression of mRNA for hBD-3, but not hBD-1 and hBD-2 by these epithelial cells. Dexamethasone did not affect the (stimulated) mRNA expression of hBD-1 and hBD-2 by mononuclear phagocytes, whereas these cells did not express hBD-3 mRNA.  相似文献   

11.
12.
13.
Human immunodeficiency virus (HIV) regulatory protein Tat has pro-oxidant property, which might contribute to Tat-induced long terminal repeat region (LTR) transactivation. However, the intracellular mechanisms whereby Tat triggers ROS production, and the relationship between Tat-induced ROS production and LTR transactivation, are still subject to debate. The present study was undertaken to evaluate the specific effects of Tat on nicotinamide adenine denucleotide phosphate (NADPH) oxidase in MAGI cells, and to determine the specific role of NADPH oxidase in Tat-induced LTR transactivation. Application of Tat to MAGI cells caused increases in ROS formation that were prevented by both pharmacologic NADPH oxidase inhibitors and by siRNA Nox2, but not by other inhibitors of pro-oxidant enzymes or siRNA Nox4. Furthermore, inhibition of NADPH oxidase by both pharmacologic NADPH oxidase inhibitors and by siRNA Nox2 attenuated Tat-induced p65 phosphorylation and IKK phosphorylation. Phosphatidylinositol 3-kinase/Akt signaling pathway was involved in Tat-induced NADPH oxidase stimulation. Finally, NADPH oxidase inhibitors or Nox2 siRNA, but not control siRNA, inhibited Tat-induced LTR transactivation. Tat-induced HIV-1 LTR transactivation was inhibited in wortmannin or LY294002 treated cells compared to control cells. Together, these data describe a specific and biologically significant signaling component of the MAGI cells response to Tat, and suggest the PI3K/Akt signaling pathway might originate in part with Tat-induced activation of NADPH oxidase and LTR transactivation.  相似文献   

14.
The human immunodeficiency virus-1 (HIV-1) regulatory protein Tat plays an important role during HIV-1-associated neurocognitive disorders (HAND) by inducing neuronal autophagy. In this study, we used immunohistochemistry, immunofluorescence, western blot, qRT-PCR, and RNA interference to elucidate the involvement of Bcl-2-associated athanogene 3 (BAG3) in the pathogenesis of HIV-1 Tat-induced autophagy during HAND. We found that BAG3 expression is elevated in astrocytes in frontal cortex of macaques infected with simian immunodeficiency virus-human immunodeficiency chimeric virus (SHIV). In addition, in human primary glioblastoma cells (U87), HIV-1 Tat upregulated BAG3 in an NF-κB-dependent manner to induce autophagy. Importantly, suppression of BAG3 or inhibition of NF-κB activity reversed the HIV-1 Tat-induced autophagy. These results indicate that HIV-1 Tat induces autophagy by upregulating BAG3 via NF-κB signaling, which suggests BAG3 and NF-κB could potentially serve as novel targets for HAND therapies.  相似文献   

15.
16.
17.
18.
19.
20.
Expression of cell adhesion molecule in endothelial cells upon activation by human immunodeficiency virus (HIV) infection is associated with the development of atherosclerotic vasculopathy. We postulated that induction of vascular cell adhesion molecule-1 (VCAM-1) by HIV-1 Tat protein in endothelial cells might represent an early event that could culminate in inflammatory cell recruitment and vascular injury. We determined the role of HIV-1 Tat protein in VCAM-1 expression in human pulmonary artery endothelial cells (HPAEC). HIV-1 Tat protein treatment significantly increased cell-surface expression of VCAM-1 in HPAEC. Consistently, mRNA expression of VCAM-1 was also increased by HIV-1 Tat protein as measured by RT-PCR. HIV-1 Tat protein-induced VCAM-1 expression was abolished by the NF-kappaB inhibitor pyrrolidine dithiocarbamate (PDTC) and the p38 MAPK inhibitor SB-203580. Furthermore, HIV-1 Tat protein enhanced DNA binding activity of NF-kappaB, facilitated nuclear translocation of NF-kappaB subunit p65, and increased production of reactive oxygen species (ROS). Similarly to VCAM-1 expression, HIV-1 Tat protein-induced NF-kappaB activation and ROS generation were abrogated by PDTC and SB-203580. These data indicate that HIV-1 Tat protein is able to induce VCAM-1 expression in HPAEC, which may represent a pivotal early molecular event in HIV-induced vascular/pulmonary injury. These data also suggest that the molecular mechanism underlying the HIV-1 Tat protein-induced VCAM-1 expression may involve ROS generation, p38 MAPK activation, and NF-kappaB translocation, which are the characteristics of pulmonary endothelial cell activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号