首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Non-native aquatic macrophytes have invaded different types of ecosystems all over the world. The exotic submersed macrophyte Hydrilla verticillata recently invaded the Paraná basin, Brazil, being recorded by the first time in the natural habitats of this river in 2005. We investigated the effects of this species on ostracod assemblages and compared the abundance, richness, and Shannon–Wiener diversity of ostracod assemblages that colonize the invading species with those that colonize Egeria najas, a native submersed species with similar architecture and physical complexity. Fragments of these two species were left for 28 days in tanks to root and grow and then they were transferred to a floodplain lake where they remained in pairs (one plant of each species; N = 7) during 30 days for colonization by ostracods. A detrented correspondence analysis was used to summarize ostracod assemblage composition. Although there were no significant differences in ostracod abundance, richness and Shannon diversity when analyzed separately, cumulative curves, which permit to eliminate effects of abundance on richness, indicated a significantly higher number of ostracod species on H. verticillata. Assemblage composition was significantly different between both plant species, as shown by the first DCA axis. Our results show that H. verticillata might provide favorable habitats for native ostracod assemblages.  相似文献   

2.
Ostracods are important members of the benthos and littoral communities of lake ecosystems. Ostracods respond to hydrochemistry (water chemistry) which is influenced by climatic factors such as water balance, temperature, and chemicals in rainfall runoff from the land. Thus, at local scales, environmental preferences of ostracods and characteristics of lakes are used to infer changes in climate, hydrology, and erosion of lake catchments. This study addresses potential drivers of ostracod community structure and biodiversity at multiple spatial scales using NMS, CART?, and multiple regression models. We identified 23 ostracod species from 12 lake sites. Lake area, maximum depth, spring conductivity, chlorophyll a, pH, dissolved oxygen, sedimentary carbonate, and organic matter all influence ostracod community structure based on our NMS. Based on regression analysis, lake depth, chlorophyll a, and total dissolved solids best explained ostracod richness and abundance. Land uses are also important community structuring elements that varied with scale; locally and regionally agriculture, wetlands, and grasslands were important. Nationally, using regression tree analysis of lakes sites in the North American Non-marine ostracod database (NANODe), row-crop agriculture was the most important predictor of biodiversity. Low agriculture corresponded to low species richness but greater landscape heterogeneity produced sites of high ostracod richness.  相似文献   

3.
The research of a generation of ecologists was catalysed by the recognition that the number and identity of species in communities influences the functioning of ecosystems. The relationship between biodiversity and ecosystem functioning (BEF) is most often examined by controlling species richness and randomising community composition. In natural systems, biodiversity changes are often part of a bigger community assembly dynamic. Therefore, focusing on community assembly and the functioning of ecosystems (CAFE), by integrating both species richness and composition through species gains, losses and changes in abundance, will better reveal how community changes affect ecosystem function. We synthesise the BEF and CAFE perspectives using an ecological application of the Price equation, which partitions the contributions of richness and composition to function. Using empirical examples, we show how the CAFE approach reveals important contributions of composition to function. These examples show how changes in species richness and composition driven by environmental perturbations can work in concert or antagonistically to influence ecosystem function. Considering how communities change in an integrative fashion, rather than focusing on one axis of community structure at a time, will improve our ability to anticipate and predict changes in ecosystem function.  相似文献   

4.
We examined species richness separately for cladocerans and ostracods in 52 temporary pools in a small geographical area, relating species richness with habitat traits using multiple regressions. Habitat traits considered included surface area, water depth, permanence and sediment depth. Permanence was an important predictor of species richness of both cladocerans and ostracods. Additionally, variation in ostracod species richness was significantly explained by water depth (negative relationship) and sediment depth (positive relationship). Surface area was not a statistically significant factor in any of our analyses. The importance of permanence supports the hypothesis that extinction due to pool drying is a major driving force behind the structuring of microcrustacean communities in temporary pools.  相似文献   

5.
1. It is widely acknowledged that sudden, large‐scale flood pulses are drivers of benthic and planktonic biodiversity change in floodplains. The impact of such pulses on pleuston (biotic communities associated with root systems of floating plants) remains to be demonstrated. Here, we investigate the effects of local and regional drivers on seasonal changes in abundance and diversity of ostracod communities in pleuston. 2. Temporal and spatial distribution patterns of species richness, abundance, diversity and evenness of ostracods associated with the floating water hyacinth, Eichhornia crassipes, in a lentic environment from the upper Paraná River floodplain, were investigated in relation to local, as well as regional, environmental factors. Ostracods were sampled monthly over an annual cycle (March 2004–February 2005). Twenty‐seven species were found, representing the families Cyprididae, Candonidae, Limnocytheridae and Darwinulidae. Both diversity and abundance of ostracod communities showed seasonal changes, although species turn‐over during the year was limited. 3. We tested two hypotheses concerning the causality of these fluctuations: seasonal recruitment and influx of allochthonous ostracods during the flood pulse. Our results indicate that seasonal recruitment is more likely to be the driver of fluctuations in relation to the flood pulse. We postulate that pleuston communities are buffered against possible detrimental effects of flood pulses.  相似文献   

6.
While there has been a rapidly increasing research effort focused on understanding whether and how composition and richness of species and functional groups may determine ecosystem properties, much remains unknown about how these community attributes affect the dynamic properties of ecosystems. We conducted an experiment in 540 mini‐ecosystems in glasshouse conditions, using an experimental design previously shown to be appropriate for testing for functional group richness and composition effects in ecosystems. Artificial communities representing 12 different above‐ground community structures were assembled. These included treatments consisting of monoculture and two‐ and four‐species mixtures from a pool of four plant species; each plant species represented a different functional group. Additional treatments included two herbivore species, either singly or in mixture, and with or without top predators. These experimental units were then either subjected to an experimentally imposed disturbance (drought) for 40 d or left undisturbed. Community composition and drought both had important effects on plant productivity and biomass, and on several below‐ground chemical and biological properties, including those linked to the functioning of the decomposer subsystem. Many of these compositional effects were due to effects both of plant and of herbivore species. Plant functional group richness also exerted positive effects on plant biomass and productivity, but not on any of the below‐ground properties. Above‐ground composition also had important effects on the response of below‐ground properties to drought and thus influenced ecosystem stability (resistance); effects of composition on drought resistance of above‐ground plant response variables and soil chemical properties were weaker and less consistent. Despite the positive effects of plant functional group richness on some ecosystem properties, there was no effect of richness on the resistance of any of the ecosystem properties we considered. Although herbivores had detectable effects on the resistance of some ecosystem properties, there were no effects of the mixed herbivore species treatment on resistance relative to the single species herbivore treatments. Increasing above‐ground food chain length from zero to three trophic levels did not have any consistent effect on the stability of ecosystem properties. There was no evidence of either above‐ground composition or functional group richness affecting the recovery rate of ecosystem properties from drought and hence ecosystem resilience. Our data collectively point to the role of composition (identity of functional group), but not functional group richness, in determining the stability (resistance to disturbance) of ecosystem properties, and indicates that the nature of the above‐ground community can be an important determinant of the consistency of delivery of ecosystem services.  相似文献   

7.
Eichhornia crassipes, commonly known as water hyacinth, is a free-floating perennial aquatic plant native to South America, which has been widely introduced on different continents, including Africa. E. crassipes is abundant in both the Congo (Africa) and Amazon (South America) River catchments. We performed a comparative analysis of the ostracod communities (Crustacea, Ostracoda) in the E. crassipes pleuston in the Amazon (South America) and Congo (Africa) River catchments. We also compared the ostracod communities from the invasive E. crassipes with those associated with stands of the native African macrophyte Vossia cuspidata. We recorded 25 species of ostracods associated with E. crassipes in the Amazon and 40 in the Congo River catchments, distributed over 31 ostracod species in E. crassipes and 27 in V. cuspidata. No South American invasive ostracod species were found in the Congolese pleuston. Diversity and richness of Congolese ostracod communities was higher in the invasive (Eichhornia) than in a native plant (Vossia). The highest diversity and abundance of ostracod communities were recorded in the Congo River. The result of principal coordinates analysis, used to evaluate the (dis)similarity between different catchments, showed significant differences in species composition of the communities. However, a dispersion homogeneity test (PERMDISP) showed no significant differences in the variability of the composition of species of ostracods (beta diversity) within Congo and Amazon River catchments. It appears that local ostracod faunas have adapted to exploit the opportunities presented by the floating invasive Eichhornia, which did not act as “Noah’s Ark” by introducing South American ostracods in the Congo River.  相似文献   

8.
In a sample of benthos collected at the location of a nuclear submarine accident in Chazhma Cove (Peter the Great Bay, Sea of Japan), we found remains (valves and shells) of 37 ostracod species, along with living pollution-tolerant organisms. The death of ostracods may be due to the consequences of the nuclear accident, but most likely was caused by domestic and technogenic pollution of the bay by oil products, which are particularly harmful to ostracods. The data provide a vivid example of detrimental anthropogenic impact on the fauna of ostracods, suggesting their increased sensitivity to adverse environmental factors, compared to many other marine organisms.  相似文献   

9.
The study of materials collected by Russian expeditions and literature data showed that the pelagic ostracod fauna of the Somov Sea, which lies south of the Antarctic Divergence (AD), is an impoverished complex of the fauna of the Australian-New Zealand Antarctic sector. While to the north of the AD the ostracod fauna includes species introduced from waters of the subantarctic and tropical-subtropical structures, ostracods of the Somov Sea are mainly typical Antarctic species. To the north and south of the AD, ostracod abundance and species richness are highest in the depth range of 200–500 m (especially at 300–400 m). Austrinoecia isocheira is the most common species in the Somov Sea and Alacia hettacra in the adjacent northern region. The more southerly Ross Sea has harsher environmental conditions than the Somov Sea and its ostracod fauna is a more impoverished complex of mainly Antarctic species. Alacia belgicae and A. isocheira are the dominant species in the Ross Sea, with their highest abundances at 200–300 m depths. The proportion of A. hettacra in the Ross Sea taxocene decreases southwards. The taxonomical composition and biogeographical structure of ostracod faunas change in the AD region at the northern boundaries of both seas.  相似文献   

10.
Competition between large and small species for the same food is common in a number of ecosystems including aquatic ones. How diversity of larger consumers affects the access of smaller competitors to a limiting resource is not well understood. We tested experimentally how species richness (0–3 spp.) of benthic deposit-feeding macrofauna changes meiofaunal ostracods’ incorporation of fresh organic matter from a stable-isotope-labeled cyanobacterial bloom, using fauna from the species-poor Baltic Sea. Presence of macrofauna mostly decreased meiofaunal incorporation of bloom material, depending on the macrofauna species present. As expected, the species identity of macrofauna influenced the incorporation of organic matter by meiofauna. Interestingly, our results show that, in addition, species richness of the macrofauna significantly reduced meiofauna incorporation of freshly settled nitrogen and carbon. With more than one macrofauna species, the reduction was always greater than expected from the single-species treatments. Field data from the Baltic Sea showed a negative correlation between macrofauna diversity and meiofaunal ostracod abundance, as expected from the experimental results. We argue that this is caused by interference competition, due to spatial niche differentiation between macrofauna species reducing the sediment volume in which ostracods can feed undisturbed by larger competitors. Interference from macrofauna significantly reduces organic matter incorporation by meiofauna, indicating that diversity of larger consumers is an important factor controlling the access of smaller competitors to a limiting food resource.  相似文献   

11.
Ecological communities show great variation in species richness, composition and food web structure across similar and diverse ecosystems. Knowledge of how this biodiversity relates to ecosystem functioning is important for understanding the maintenance of diversity and the potential effects of species losses and gains on ecosystems. While research often focuses on how variation in species richness influences ecosystem processes, assessing species richness in a food web context can provide further insight into the relationship between diversity and ecosystem functioning and elucidate potential mechanisms underpinning this relationship. Here, we assessed how species richness and trophic diversity affect decomposition rates in a complete aquatic food web: the five trophic level web that occurs within water-filled leaves of the northern pitcher plant, Sarracenia purpurea. We identified a trophic cascade in which top-predators--larvae of the pitcher-plant mosquito--indirectly increased bacterial decomposition by preying on bactivorous protozoa. Our data also revealed a facultative relationship in which larvae of the pitcher-plant midge increased bacterial decomposition by shredding detritus. These important interactions occur only in food webs with high trophic diversity, which in turn only occur in food webs with high species richness. We show that species richness and trophic diversity underlie strong linkages between food web structure and dynamics that influence ecosystem functioning. The importance of trophic diversity and species interactions in determining how biodiversity relates to ecosystem functioning suggests that simply focusing on species richness does not give a complete picture as to how ecosystems may change with the loss or gain of species.  相似文献   

12.
This study investigates two different effects of an ostracod on a rotifer. The rotifer Keratella tropica and the ostracod Cypris pubera were cultured on the alga Cryptomonas erosa. Adult ostracods (2.2 mm body length) significantly reduced the population growth rate (r day–1) of K. tropica from 0.42 to 0.13. Individuals of this size ingested live rotifers and produced fecal pellets with rotifer loricas. Smaller ostracods (both 0.59 and 1.61 mm body lengths) did not affect K. tropica 's population growth rate. Surprisingly, C. pubera significantly inhibited spine development in K. tropica. Rotifers cultured with juvenile, non‐predatory ostracods had similar lorica lengths but right and left posterior spines that were 10 and 30% shorter, respectively. The spine reduction induced by the ostracod kairomone is in striking contrast to the spine elongation induced in this rotifer by kairomones from copepods, cladocerans and Asplanchna. In shallow ecosystems, large ostracods that swim in the plankton may be important predators of rotifers. In addition, the presence of ostracods in plankton communities may be one of many factors affecting rotifer spine development. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Big sagebrush (Artemisia tridentata Nutt.) plant communities are widespread in western North America and, similar to all shrub steppe ecosystems worldwide, are composed of a shrub overstory layer and a forb and graminoid understory layer. Forbs account for the majority of plant species diversity in big sagebrush plant communities and are important for ecosystem function. Few studies have explored geographic patterns of forb species richness and composition and their relationships with environmental variables in these communities. Our objectives were to examine the fine and broad-scale spatial patterns in forb species richness and composition and the influence of environmental variables. We sampled forb species richness and composition along transects at 15 field sites in Colorado, Idaho, Montana, Nevada, Oregon, Utah, and Wyoming, built species-area relationships to quantify differences in forb species richness at sites, and used Principal Components Analysis, non-metric multidimensional scaling, and redundancy analysis to identify relationships among environmental variables and forb species richness and composition. We found that species richness was most strongly correlated with soil texture, while species composition was most related to climate. The combination of climate and soil texture influences water availability, which our results indicate has important consequences for forb species richness and composition, and suggests that climate change-induced modification of soil water availability may have important implications for plant species diversity in the future.  相似文献   

14.
Marine ecosystems are experiencing rapid and pervasive changes in biodiversity and species composition. Understanding the ecosystem consequences of these changes is critical to effectively managing these systems. Over the last several years, numerous experimental manipulations of species richness have been performed, yet existing quantitative syntheses have focused on a just a subset of processes measured in experiments and, as such, have not summarized the full data available from marine systems. Here, we present the results of a meta‐analysis of 110 marine experiments from 42 studies that manipulated the species richness of organisms across a range of taxa and trophic levels and analysed the consequences for various ecosystem processes (categorised as production, consumption or biogeochemical fluxes). Our results show that, generally, mixtures of species tend to enhance levels of ecosystem function relative to the average component species in monoculture, but have no effect or a negative effect on functioning relative to the ‘highest‐ performing’ species. These results are largely consistent with those from other syntheses, and extend conclusions to ecological functions that are commonly measured in the marine realm (e.g. nutrient release from sediment bioturbation). For experiments that manipulated three or more levels of richness, we attempted to discern the functional form of the biodiversity–ecosystem functioning relationship. We found that, for response variables related to consumption, a power‐function best described the relationship, which is also consistent with previous findings. However, we identified a linear relationship between richness and production. Combined, our results suggest that changes in the number of species will, on average, tend to alter the functioning of marine ecosystems. We outline several research frontiers that will allow us to more fully understand how, why, and when diversity may drive the functioning of marine ecosystems. Synthesis The oceans host an incredible number and variety of species. However, human activities are driving rapid changes in the marine environment. It is imperative we understand ecosystem consequences of any associated loss of species. We summarized data from 110 experiments that manipulated species diversity and evaluated resulting changes to a range of ecosystem responses. We show that losing species, on average, decreases productivity, growth, and a myriad of other processes related to how marine organisms capture and utilize resources. Finally, we suggest that the loss of species may have stronger consequences for some processes than others.  相似文献   

15.
滴水湖作为人工新建湖泊,其生态系统形成过程中的跟踪数据对重建其他湖泊生态系统具有重要的参考意义。2013年7月和2014年8月对滴水湖现生介形类分布状况及水环境因子分别进行了调查,结果发现,滴水湖湖水盐度范围介于1.4‰—2.0‰之间,属于微咸水湖。12个采样点共鉴定出现生介形类13种,包括非海相类克氏丽星介Cypria kraepelini(G.W.Müller)和无偶斗星介Cypridopsis vidua(O.F.Müller),海相类中华洁面介Albileberis sinensis Hou、向岛薄丽星介Dolerocypria mukaishimensis Okubo、腹结细花介Leptocythere ventriclivosa Chen、东台新单角介Neomonoceratina dongtaiensis Yang et Chen、长新中华花介Neosinocythere elongata(Hu)、闪光似异口介Paradoxostoma nitida Ho、典型中华美花介Sinocytheridea impressa(Brady)、长中华海花介Sinopontocythere elongata(Gou)、古屋刺花介Spinileberis furuyaensis Ishizaki et Kato、美丽刺面介Spinileberis pulchra Chen和丰满陈氏介Tanella opima Chen。应用典范对应分析(CCA)方法对滴水湖12个样点的8种介形类和9个环境因子进行了相关性研究,结果显示:介形类和环境因子间具有明显的相关性;9个环境因子中叶绿素、总磷和电导率对介形类的分布影响最大,总氮和湖水水温对介形类也有一定影响;从物种分布状况看,相对于低分布频度物种,高分布频度(Y>0.01)物种对环境的耐受性更大,其中Cypria kraepelini和Neomonoceratina dongtaiensis对环境因子的敏感性明显高于其它物种。结合历史资料分析发现,不仅自然环境因子(如电导率、水温等),而且人为干扰因素(如总磷、总氮)都对介形类分布的改变起到重要影响。  相似文献   

16.
The species composition and distribution of ostracods were investigated at two sites with different pollution levels on the eastern coast of Amurskii Bay within the limits of Vladivostok City. A total of 41 species were found. In all, thirty-eight species (28 of them alive) were found at the first site between Krasnyi and Groznyi capes. Another twenty-seven species were found at a depth of 1.5–3 m in the phytal zone with a diversity of microbiotopes. As the bottom became increasingly silty and the depth increased, the number of species decreased. A total of 25 species (only 15 of them alive) were found at the mouth of the Vtoraya Rechka River, which is heavily polluted by municipal and industrial sewage discharge. No valves of ostracods were found in surface sediments on silts at a depth down to 5.5m. At 4 m, only 2 species were found alive on stones overgrown with Saccharina japonica. At 500 m from a sewage discharge site, few ostracod valves were found that seemed to have died recently. At a distance of over 1 km, an ostracod assemblage typical of the silty substrates of Amurskii Bay was found below a 7 m depth (21 species, 12 of them alive).  相似文献   

17.
The current study presents the ostracod communities recovered from 26 shallow waterbodies in southern Kenya, combined with an ecological assessment of habitat characteristics. A total of 37 waterbodies were sampled in 2001 and 2003, ranging from small ephemeral pools to large permanent lakes along broad gradients in altitude (700–2 800 m) and salinity (37–67 200 µS cm?1). Between 0 and 12 species were recorded per site. Lack of ostracods was associated with either hypersaline waters, or the presence of fish in fresh waters. Three of the 32 recovered ostracod taxa, Physocypria sp., Sarscypridopsis cf. elizabethae and Oncocypris mulleri, combined a wide distribution with frequent local dominance. Canonical correspondence analysis on species–environment relationships indicated that littoral vegetation, altitude, surface water temperature and pH best explain the variation in ostracod communities. Presence of fish and water depth also influence species occurrence, with the larger species being more common in shallow waterbodies lacking fish. Based on Chao’s estimator of total regional species richness, this survey recovered about two-thirds (60–68%) of the regional ostracod species pool. Scanning electron micrographs (SEM) of the valve morphology of 14 ostracod taxa are provided, in order to facilitate their application in biodiversity and water-quality assessments and in palaeoenvironmental reconstruction.  相似文献   

18.
Aim Predicting and preventing invasions depends on knowledge of the factors that make ecosystems susceptible to invasion. Current studies generally rely on non‐native species richness (NNSR) as the sole measure of ecosystem invasibility; however, species identity is a critical consideration, given that different ecosystems may have environmental characteristics suitable to different species. Our aim was to examine whether non‐native freshwater fish community composition was related to ecosystem characteristics at the landscape scale. Location United States. Methods We described spatial patterns in non‐native freshwater fish communities among watersheds in the Mid‐Atlantic region of the United States based on records of establishment in the U.S. Geological Survey’s Nonindigenous Aquatic Species Database. We described general relationships between non‐native species and ecosystem characteristics using canonical correspondence analysis. We clustered watersheds by non‐native fish community and described differences among clusters using indicator species analysis. We then assessed whether non‐native communities could be predicted from ecosystem characteristics using random forest analysis and predicted non‐native communities for uninvaded watersheds. We estimated which ecosystem characteristics were most important for predicting non‐native communities using conditional inference trees. Results We identified four non‐native fish communities, each with distinct indicator species. Non‐native communities were predicted based on ecosystem characteristics with an accuracy of 80.6%, with temperature as the most important variable. Relatively uninvaded watersheds were predicted to be invasible by the most diverse non‐native community. Main conclusions Non‐native species identity is an important consideration when assessing ecosystem invasibility. NNSR alone is an insufficient measure of invasibility because ecosystems with equal NNSR may not be equally invasible by the same species. Our findings can help improve predictions of future invasions and focus management and policy decisions on particular species in highly invasible ecosystems.  相似文献   

19.
Abstract Aim and location Alluvial flood plains support higher levels of vascular plant species richness than other terrestrial ecosystems. Whereas the spatial and temporal heterogeneity of these ecosystems has been considered the local determinant of high plant richness, regional influences, such as regional species pools have received little attention. In this study we surveyed plant species richness across the entire Nyack catchment (c. 21,000 ha), in Glacier National Park, USA, to determine the relation of upland ecosystem community structure to biodiversity patterns on montane floodplains that are relatively extensive and flood‐scoured ecosystems. Method We surveyed floodplain and other terrestrial ecosystems within the Nyack catchment using 50 × 2 m plots to record species present and visual estimates of percentage cover. Species pools from flood plains and three other terrestrial ecosystems (low elevation forests, sub‐Alpine forests and alpine) were analysed with nested subset analysis, detrended correspondence analysis (DCA), and an index of beta diversity to identify dissimilarity in species composition and richness, and the separate contributions of generalists (species occurring in more than one ecosystem) and specialists to richness in each ecosystem. Analysis of variance and post hoc Tukey–Kramer tests were used to identify where in the Nyack catchment each species was most abundant. Species life form and dispersal strategies were analysed to better understand influences on beta diversity. Results Our data show that in this pristine system, floodplain ecosystems host 202 (63%) of the 320 vascular plants identified within Nyack catchment. Of these species, the nested subset analysis showed that 146 (72%) are found in at least one adjacent upland ecosystem. While the DCA ordination scatter plots show statistically significant separations of ecosystems on the first two axes, values of beta diversity showed that substantial similarity exists between floodplain and all upland species pools. Further, of the 146 floodplain species shared with upland ecosystems, 61% were more frequent in upland ecosystems, whereas 55% were more abundant in uplands than flood plains (Tukey–Kramer P ≤ 0.05). Significant numbers of specialists were found on flood plains (24% of floodplain species), but also within upland ecosystems, where 23% and 40% of low elevation forest and alpine species were found to be specialists, respectively. Whereas 83% of herb generalists were wind dispersed, <70% of specialists were animal dispersed, indicating that similarity in species pools may be driven by wind dispersal. Main conclusions These results suggest a re‐evaluation of the contribution of floodplain ecosystems to regional plant species richness. While flood plains host specialists, other ecosystems had equal or higher levels of regional ‘endemism’. Furthermore, these data suggest that conservation of high levels of biodiversity on floodplain ecosystems may require consideration of upland ecosystems throughout the catchment as the majority of species were relatively rare on flood plains, indicating they may be sink habitats for some species.  相似文献   

20.
The American red swamp crayfish Procambarus clarkii (Girard, 1852) was introduced in 1973 into the Iberian Peninsula for commercial purposes. As a result of both the expansion from the Iberian Peninsula and, probably, further introductions in other European countries, now it is widely distributed throughout much of Europe. The ecological impacts of this invading crayfish have received increasing attention, but nothing is known about its symbiotic entocytherid ostracods outside the American continent. The present survey has examined more than 200 crayfishes from 12 localities distributed over a wide area of Eastern Spain. Entocytherid ostracods were extracted from individual crayfishes and they were identified, counted, assigned to developmental instars and sexed. In all the study locations but one, we found at least one crayfish individual infected by entocytherid ostracods and the species determined was the same in all cases: Ankylocythere sinuosa (Rioja, 1942). The number of ostracods on individual P. clarkii varied notably in relation to crayfish size and also differed significantly among sampling sites. The crayfish size effects on ostracod densities might be related to the amount of resources and to the crayfish age and moulting frequency affecting ostracod distribution and population structure. In addition, the spatial variation in ostracod densities could also be related to site-specific habitat traits and the variability of crayfish population dynamics. Our study represents the first citation of an alien entocytherid species in Europe and demonstrates its wide distribution in the Iberian Peninsula. Further research is needed to know the potential effects of this ostracod species on the ecology of P. clarkii and of native species, with implications on the management of this aquatic invader.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号