首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The binding of progesterone-receptor complexes to chromatin from target and nontarget tissues was studied in vitro. Chromatin from both target and non-target tissues responds in a similar manner to saly and cofactors and has the same KD (approx. 3·10−9 M) for the progesterone-receptor complex. The only observed difference in the binding of the progesterone-receptor complex to target and nontarget chromatins is the difference in total number of acceptor sites. Oviduct chromatin has approx. 1300 sites/pg DNA, spleen chromatin has approx. 840 sites/pg DNA, and erythrocyte chromatin has about 330 sites/pg DNA. The KD and number of acceptor sites for progesterone-receptor complex binding to oviduct chromatin remains the same even after extensive purification of the progesterone-receptor complex. Activation of cytosol labeled with [3H]progesterone by preincubation at 25°C, analogous to that required for maximal nuclear binding, occurs if the binding studies to chromatin are performed in 0.025 M salt. The absence of an observable temperature effect when the studies are performed at 0.15 M salt is due to the activation of the receptor by salt. The dissociation of the progesterone-receptor complex from chromatin exhibits a single dissociation rate and the initial event is the appearance of free progesterone rather than a progesterone-receptor complex. Lastly, the treatment of chromatin with an antibody prepared against either single-stranded DNA or double-stranded DNA does not alter the extent of binding of the progesterone-receptor complex. Similarly, pretreatment of chromatin with a single-stranded nuclease does not inhibit the capacity of chromatin to bind the hormone-receptor complex.  相似文献   

3.
Chromosome breakage is a major threat to genome integrity. The most accurate way to repair DNA double strand breaks (DSB) is homologous recombination (HR) with an intact copy of the broken locus. Mobility of the broken DNA has been seen to increase during the search for a donor copy. Observing chromosome dynamics during the earlier steps of HR, mainly the resection from DSB ends that generates recombinogenic single strands, requires a visualization system that does not interfere with the process, and is small relative to the few kilobases of DNA that undergo processing. Current visualization tools, based on binding of fluorescent repressor proteins to arrays of specific binding sites, have the major drawback that highly-repeated DNA and lengthy stretches of strongly bound protein can obstruct chromatin function. We have developed a new, non-intrusive method which uses protein oligomerization rather than operator multiplicity to form visible foci. By applying it to HO cleavage of the MAT locus on Saccharomyces cerevisiae chromosome III, we provide the first real-time analysis of resection in single living cells. Monitoring the dynamics of a chromatin locus next to a DSB revealed transient confinement of the damaged chromatin region during the very early steps of resection, consistent with the need to keep DNA ends in contact. Resection in a yku70 mutant began ∼10 min earlier than in wild type, defining this as the period of commitment to homology-dependent repair. Beyond the insights into the dynamics and mechanism of resection, our new DNA-labelling and -targeting method will be widely applicable to fine-scale analysis of genome organization, dynamics and function in normal and pathological contexts.  相似文献   

4.
5.
6.
7.
A new genetic model system for studying position effect variegation in Drosophila melanogaster was found. It allows the analysis of genetic inactivation and changes in chromosome morphology in the same cells. In T(1;2)dor var7 strains the 2B5 early ecdysone puff, and the ecs locus which maps in this puff are translocated into the vicinity of centromeric heterochromatin. The ecs locus plays a key role in the system of ecdysone puffs: genetic damage to this locus results in loss of sensitivity of cells to the hormone and, as a consequence, ecdysone-induced puffs do not develop. In the T(1;2)dor var7 chromosome the ecs and at least five adjoining loci are inactivated in a variegated fashion. In the salivary gland cells of T(1;2)dor var7/ ecslt435 0 h prepupae which do not show the ecdysone puffs, the morphology of the 2B region was analysed. In all cases where the ecs locus was inactivated, a dense block of chromatin reminiscent of a solid band was found in the 2B region instead of the four bands 2B1–2, 3–4, 5 and 6. Sometimes compaction of the chromatin reached the 2A1–2 or even 1E1–4 bands. Formation of the compact block of chromatin coincided with late replication in this region. In situ hybridization of polytene chromosomes with a DNA clone from the ecs locus showed that when the dense chromatin block was present, no DNA was accessible for hybridization in 2B5. Hybridization of DNA of another clone located in the region of the translocation breakpoint (2B7–8) was found only in polytene chromosomes of larvae grown at 25° C, and never in those grown at 18° C, independently of the morphology of the 2B5 puff. The possibility that in the case of block formation both late replication and, as a consequence, underreplication of chromosome DNA take place, is discussed.Dedicated to Professor W. Beermann on the occasion of his 65th birthday  相似文献   

8.
Rad4p is a DNA damage recognition protein essential for global genomic nucleotide excision repair in Saccharomyces cerevisiae. Here, we show that Rad4p binds to the heterochromatic HML locus. In a yeast mutant lacking Rad4p, an increased level of SIR complex binding at the HML locus is accompanied by an altered, more compact heterochromatin structure, as revealed by a topological analysis of chromatin circles released from the locus. In addition, gene silencing at the HML locus is enhanced in the rad4Δ mutant. Importantly, re-expression of Rad4p in the rad4Δ mutant restores the altered heterochromatin structure to a conformation similar to that detected in wild-type cells. These findings reveal a novel role of Rad4p in the regulation of heterochromatin structure and gene silencing.  相似文献   

9.
10.
11.
Holocarboxylase synthetase (HLCS) is a chromatin protein that facilitates the creation of histone H3 lysine 9-methylation (H3K9me) gene repression marks through physical interactions with the histone methyltransferase EHMT-1. HLCS knockdown causes a depletion of H3K9me marks in mammalian cell cultures and severe phenotypes such as short lifespan and low stress resistance in Drosophila melanogaster. HLCS displays a punctuate distribution pattern in chromatin despite lacking a strong DNA-binding domain. Previous studies suggest that the binding of HLCS to chromatin depends on DNA methylation. We tested the hypothesis that HLCS interacts physically with the DNA methyltransferase DNMT1 and the methyl CpG binding protein MeCP2 to facilitate the binding of HLCS to chromatin, and that these interactions contribute toward the repression of long-terminal repeats (LTRs) by H3K9me marks. Co-immunoprecipitation and limited proteolysis assays provided evidence suggesting that HLCS interacts physically with both DNMT1 and MeCP2. The abundance of H3K9me marks was 207% greater in the LTR15 locus in HLCS overexpression human embryonic kidney HEK293 cells compared with controls. This gain in H3K9me was inversely linked with a 87% decrease in mRNA coding for LTRs. Effects of HLCS abundance on LTR expression were abolished when DNA methylation marks were erased by treating cells with 5-azacytidine. We conclude that interactions between DNA methylation and HLCS are crucial for mediating gene repression by H3K9me, thereby providing evidence for epigenetic synergies between the protein biotin ligase HLCS and dietary methyl donors.  相似文献   

12.
Dolan WP  Sherman DA  Forsburg SL 《Chromosoma》2004,113(3):145-156
Cdc45 is a conserved protein required for firing of replication origins and processive DNA replication. We used an in situ chromatin-binding assay to determine factors required for fission yeast Cdc45p chromatin binding. Assembly of the pre-replicative complex is essential for Cdc45p chromatin binding, but pre-replicative complex assembly occurs independently of Cdc45p. Fission yeast Cdc45p associates with MCM proteins in asynchronously growing cells and cells arrested in S phase by hydroxyurea, but not in cells arrested at the G2/M transition. Both hsk1+ (the fission yeast CDC7 homologue) and rad4+/cut5+ (the fission yeast DPB11 homologue) are required for Cdc45p chromatin binding. Cdc45p also remains chromatin-bound in mutants that fail to recover from replication arrest. In summary, Cdc45p chromatin binding requires an intact pre-replicative complex as well as signaling from both the Dbf4-dependent kinase and cyclin-dependent kinases.  相似文献   

13.
14.
Eukaryotic DNA replication initiates at origins of replication by the assembly of the highly conserved pre-replicative complex (pre-RC). However, exact sequences for pre-RC binding still remain unknown. By chromatin immunoprecipitation we identified in vivo a pre-RC-binding site within the origin of bidirectional replication in the murine rDNA locus. At this sequence, ORC1, -2, -4 and -5 are bound in G1 phase and at the G1/S transition. During S phase, ORC1 is released. An ATP-dependent and site-specific assembly of the pre-RC at origin DNA was demonstrated in vitro using partially purified murine pre-RC proteins in electrophoretic mobility shift assays. By deletion experiments the sequence required for pre-RC binding was confined to 119 bp. Nucleotide substitutions revealed that two 9 bp sequence elements, CTCGGGAGA, are essential for the binding of pre-RC proteins to origin DNA within the murine rDNA locus. During myogenic differentiation of C2C12 cells, we demonstrated a reduction of ORC1 and ORC2 by immunoblot analyses. ChIP analyses revealed that ORC1 completely disappears from chromatin of terminally differentiated myotubes, whereas ORC2, -4 and -5 still remain associated.  相似文献   

15.
We have studied the linear dichroism (LD) of rat liver chromatin oriented by flow. Soluble chromatin, prepared by brief nuclease digestion, is found to exhibit a positive LD at low ionic strength (1 mM NaCl), with a constant LD/A over the absorption band centered at 260 nm (A, isotropic absorbance). Several previous dichroism studies on soluble chromatin have been performed on sonicated materials and have given negative LD, probably due to the presence of uncoiled DNA. The positive dichroism can be interpreted in terms of a supercoil of DNA in chromatin with a pitch angle larger than 55°, and is, for example, consistent with a model where the cylindrical nucleosome core particles are stacked face to face in the chromatin filament. In contrast to the nuclease-digested chromatin, sonicated chromatin was confirmed to exhibit negative LD. This difference can be attributed to a partial uncoiling of the linker regions between the nucleosomes due to the shearing. The structural transition of chromatin to a compact form can be observed as a reduction of the positive LD of the nuclease-digested chromatin to almost zero in 0.1 M NaCl or in 0.1 mM MgCl2. This transition is due to a decreased electrostatic repulsion between negative phosphate groups on the DNA chain. In the case of Na+, this can be explained as a screening effect due to the bulk concentration of Na+. With Mg2+ a considerably stronger effect may indicate a more localized binding to the phosphates. At ionic strengths higher than 0.5M NaCl, the dissociation of the histones from DNA leads to uncoiling of chromatin. The change in LD during this process shows that histone H1 contributes only to a small degree to the coiling of the DNA chain, whereas histones H3 and H4 play the major role in the coiling.  相似文献   

16.
We have experimentally examined the characteristics of nucleosome array formation in different regions of mouse liver chromatin, and have computationally analyzed the corresponding genomic DNA sequences. We have shown that the mouse adenosine deaminase (MADA) gene locus is packaged into an exceptionally regular nucleosome array with a shortened repeat, consistent with our computational prediction based on the DNA sequence. A survey of the mouse genome indicates that <10% of 70 kb windows possess a nucleosome-ordering signal, consisting of regular long-range oscillations in the period-10 triplet motif non-T, A/T, G (VWG), which is as strong as the signal in the MADA locus. A strong signal in the center of this locus, confirmed by in vitro chromatin assembly experiments, appears to cooperate with weaker, in-phase signals throughout the locus. In contrast, the mouse odorant receptor (MOR) locus, which lacks locus-wide signals, was representative of ~40% of the mouse genomic DNA surveyed. Within this locus, nucleosome arrays were similar to those of bulk chromatin. Genomic DNA sequences which were computationally similar to MADA or MOR resulted in MADA- or MOR-like nucleosome ladders experimentally. Overall, we provide evidence that computationally predictable information in the DNA sequence may affect nucleosome array formation in animal tissue.  相似文献   

17.
To clarify the mechanism of the cellular DNA-breaking reaction of epinephrine (Ep), we examined the interaction between Ep and chromatin components. The Ep-binding activity of histone increased after the dissociation of histone subunits. The Ep bound to DNA increased with the increase of Ep concentration and pH. Solubilized chromatin, v bodies, showed Ep-oxidizing activity in the absence of Cu2+. The binding of Ep to v bodies occurred immediately after mixing and was highly specific. These data suggest the presence of some Ep-specific binding protein(s) in chromatin which oxidizes Ep and induces DNA breakage.  相似文献   

18.
We have investigated the possible relationship between replicons and chromatin loops during Xenopus development. In early embryos, replication of the ribosomal RNA genes (rDNA) can initiate at apparently any sequence. Nevertheless, the need for a regular spacing of replication origins suggests that some periodic chromatin folding might dictate which sites are actually used for initiation. After the midblastula transition, replication initiation is restricted to the rDNA intergenic spacers. A remodeling of chromatin folding could account for this change in origin usage. Here, it is reported that nuclear matrix anchorage of the Xenopus rDNA occurs at multiple, apparently random sequences, throughout embryonic development as well as in adult cells. In vitro matrix rebinding assays confirmed the lack of specific anchoring sequences in the rDNA, before as well as after specific replication origins are established. Thus, no change in loop attachment sites could explain the change in origin usage at this locus. Nonspecific loop anchorage was a special feature of the rDNA locus, since the same nuclear matrices were able selectively to bind the scaffold attachment region (SAR) of the Drosophila histone gene cluster in vitro. Blastula and gastrula nuclear matrices bound a higher amount of SAR sequences than matrices from later stages or adult cells. This developmental change in SAR binding might explain the increase in size of the bulk of genomic DNA loops that occurs after the gastrula stage. However, no change in chromatin loop organization that could explain the midblastula stage transition from small to large replicons was observed. Received: 15 January 1998; in revised form: 4 March 1998 / Accepted: 9 March 1998  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号