首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have isolated a strongly mitogenic, type beta transforming growth factor (beta TGF) released by Snyder-Theilen feline sarcoma virus-transformed rat embryo (FeSV-Fre) cells that induces phenotypic transformation of normal NRK cells when they are concomitantly stimulated by analogues of epidermal growth factor (EGF). Molecule filtration chromatography separates beta TGF from an EGF-like TGF (eTGF) which is also present in acid extracts from medium conditioned by FeSV-Fre cells (J. Massagué, (1983) J. Biol. Chem. 258, 13606-13613). Final purification of beta TGF is achieved by reverse phase high pressure liquid chromatography (HPLC) on octadecyl support, molecular filtration HPLC, and nonreducing dodecyl sulfate-polyacrylamide gel electrophoresis steps, yielding a 300,000-fold purified polypeptide with a final recovery of 21%. The purified rat beta TGF consists of two Mr = 11,000-12,000 polypeptide chains disulfide-linked as a Mr = 23,000 dimer. Induction of anchorage-independent proliferation of NRK cells by rat beta TGF depends on the simultaneous presence of eTGF or EGF. In the presence of a saturating (300 pM) concentration of either rat eTGF or mouse EGF, half-maximal anchorage-independent proliferation of NRK cells is obtained with 4-6 pM rat beta TGF. In the presence of a saturating (20 pM) concentration of rat beta TGF, half-maximal anchorage-independent proliferation of NRK cells is obtained with either rat eTGF or mouse EGF at a 50-70 pM concentration. Rat beta TGF is also able to induce DNA synthesis and cell proliferation on growth-arrested NRK, human lung, and Swiss mouse 3T3 fibroblast monolayers, this effect being half-maximal at 2-3 pM beta TGF for NRK cells. These results identify eTGF and beta TGF as the two synergistically acting factors responsible for the transforming action of culture fluids from FeSV-Fre cells.  相似文献   

2.
The Gardner and Snyder-Theilen isolates of feline sarcoma virus (FeSV) have previously been shown to encode high-molecular-weight polyproteins with a transforming function and an associated tyrosine-specific protein kinase activity. Cells transformed by these viruses exhibited morphological alterations, elevated levels of phosphotyrosine, and a reduced capacity for binding epidermal growth factor. In addition, polyproteins encoded by both of these FeSV isolates bound to, and phosphorylated tyrosine acceptor sites within, a 150,000-molecular-weight cellular substrate (P150). McDonough FeSV-transformed cells resembled Gardner and Snyder-Theilen FeSV transformants with respect to morphological changes and a reduced capacity for epidermal growth factor binding. in contrast to the other two FeSV isolates, however, McDonough FeSV encoded as its major translational product a high-molecular-weight polyprotein with probable transforming function but without protein kinase activity detectable under similar assay conditions. Moreover, total cellular levels of phosphotyrosine remained unaltered in McDonough FeSV-transformed cells, and the major McDonough FeSV polyprotein translational product lacked binding affinity for P150. These findings argue for differences in the mechanisms of transformation by these independently derived FeSV isolates.  相似文献   

3.
The previously described high-molecular-weight polyprotein major translational product of the Snyder-Theilen strain of feline sarcoma virus (FeSV) was shown to possess protein kinase activity with specificity for tyrosine acceptor sites. Cells transformed by Snyder-Theilen FeSV exhibited constitutively elevated levels of phosphotyrosine and a concomitant reduction in epidermal growth factor (EGF) binding sites. By endpoint cloning in microtiter plates, a number of transformation-defective (tf) mutants of the Snyder-Theilen strain of FeSV were isolated. Mink cells nonproductively infected by such mutants were morphologically nontransformed, failed to grow in soft agar, bound EGF as efficiently as control mink cells, and lacked rescuable transforming virus. Although the level of expression of the major viral polyprotein translational product in td mutant-infected clones was comparable to that of wild-type (wt) transformants, the polyprotein in mutant clones lacked detectable protein kinase activity and total cellular phosphotyrosine levels were not elevated significantly above control values. Of a large number of wt Snyder-Theilen FeSV-transformed mink cell clones isolated, the majority were found to revert to a nontransformed morphology upon continuous passage in cell culture. Such nontransformed variants, as well as a Gardner FeSV-transformed mink cell revertant, lacked detectable polyprotein expression and exhibited levels of phosphotyrosine and EGF binding similar to those of control mink cells. These findings provide strong evidence favoring the involvement of the Snyder-Theilen FeSV-encoded high-molecular-weight polyprotein and its associated tyrosine-specific protein kinase activity in transformation.  相似文献   

4.
We have previously described a factor(s) produced by 8387 fibrosarcoma cells, which can affect plasminogen activator (PA) activity of cultured cells. Since then, transforming growth factor-beta (TGF beta) has been established as a major growth factor/growth inhibitor that regulates both the expression and activity of PAs and their endothelial-type inhibitor (PAI-1). The present study was undertaken to characterize the 8387 fibrosarcoma cell-derived factor(s) and to investigate its relationships to TGF beta by analysis of modulation of PA activity and cell growth. The fibrosarcoma cell-derived proteins were partially purified from serum-free conditioned culture medium using Bio-Gel P-10 chromatography. Two separate fractions with apparent molecular weights of 16,000 and 12,000 contained activities that both decreased the secretion of PA activity by human lung fibroblasts and inhibited the soft agar growth of A549 lung adenocarcinoma cells. Both factors affected similarly the production of urokinase-type PA and PAI-1 in various cell lines and enhanced anchorage-independent growth of murine AKR-2B fibroblasts. The effects of these factors thus resembled those of TGF beta. The immunological relationships between the Mr 16,000 and Mr 12,000 factors and TGF beta were therefore studied using neutralizing anti-TGF beta antibodies. The TGF beta antibodies efficiently inhibited the effects of the Mr 16,000 factor but not those of the Mr 12,000 factor in cell culture assays. The results suggest that 8387 fibrosarcoma cells produce two major growth inhibitors, one of which is closely related to TGF beta.  相似文献   

5.
Medium conditioned by BRL-3A cells, a known source of insulin-like growth factor II (IGF-II), induced phenotypic transformation (anchorage-independent proliferation) of mouse BALB/c 3T3 fibroblasts but not rat NRK-49F fibroblasts, in the presence of 10% calf serum. A specific radioreceptor assay and a bioassay indicated that BRL-3A conditioned medium contained 0.5-1 ng/ml of type beta transforming growth factor (beta TGF). Purified IGF-II and beta TGF acting together reconstituted the transforming activity of BRL-3A conditioned medium on BALB/c 3T3 cells. Insulin was 5-10% as potent as IGF-II in supporting the transforming action of beta TGF on BALB/c 3T3 cells. NRK-49F cells were phenotypically transformed by beta TGF in the presence of EGF and 10% calf serum as the sole source of IGFs. However, transformation of NRK-49F cells under these conditions was inhibited by addition of purified IGF-binding protein. Addition of an excess of IGF-II prevented the inhibitory action of IGF-binding protein. The different sensitivity of the two cell lines to IGFs was correlated with lower levels of type I IGF receptor and higher levels of type II IGF receptor in NRK-49F cells as compared with BALB/c 3T3 cells. The results suggest that cellular stimulation by IGFs is a prerequisite for transformation of rodent fibroblasts by beta TGF. We propose that transformation of fibroblasts by beta TGF requires concomitant stimulation by the set of growth factors that support normal cell proliferation.  相似文献   

6.
The feline c-fes proto-oncogene, different parts of which were captured in feline leukemia virus (FeLV) to generate the transforming genes (v-fes) of the Gardner-Arnstein (GA) strain of feline sarcoma virus (FeSV) and the Snyder-Theilen strain (ST) of FeSV, was cloned and its genetic organization determined. Southern blot analysis revealed that the c-fes genetic sequences were distributed discontinuously and colinearly with the v-fes transforming gene over a DNA region of around 12.0 kb. Using cloned c-fes sequences, complementation of GA-FeSV transforming activity was studied. Upon replacement of the 3' half of v-fesGA with homologous feline c-fes sequences and transfection of the chimeric gene, morphological transformation was observed. Immunoprecipitation analysis of these transformed cells revealed expression of high Mr fusion proteins. Phosphorylation of these proteins was observed in an in vitro protein kinase assay, and tyrosine residues appeared to be involved as acceptor amino acid.  相似文献   

7.
An acid-stable transforming growth factor (TGF) that interacts with epidermal growth factor (EGF) receptors and is structurally related to EGF was isolated from serum-free culture fluids of Snyder-Theilen feline sarcoma virus-transformed rat embryo (FeSV-Fre) cells. Purification of this EGF-like TGF (eTGF) was achieved by molecular filtration chromatography and successive reverse-phase high pressure liquid chromatography steps on octadecyl support eluted with acetonitrile and 1-propanol gradients, respectively. Rat eTGF consists of a 7.4-kD single polypeptide chain that co-migrates with biological activity in dodecyl sulfate-polyacrylamide electrophoresis gels. Like preparations of a related TGF from human melanoma cells (Marquardt, H., and Todaro, G.J. (1982) J. Biol. Chem. 257, 5220-5225), but unlike EGF from rat, human, or mouse, rat eTGF has phenylalanine and lacks methionine. However, the sequence of the first 30 amino acid residues in rat eTGF is H2N-Val-Val-Ser-His-Phe-Asn-Lys-Cys-Pro-Asp-Ser-His-Thr-Gln-Tyr-Cys-Phe-His-Gly - Thr-(x)-Arg-Phe-Leu-Val-Gln-Glu-Glu-(Lys)-(Lys)-, which is significantly (20% and 28%) homologous to the NH2-terminal region of mouse EGF and human EGF, respectively. In addition to eTGF, molecular filtration chromatography of acid-soluble extracts from medium conditioned by FeSV-Fre cells resolved a 14-kD transforming factor(s) apparently devoid of intrinsic mitogenic activity but able to elicit a strong anchorage-independent growth response in the presence of eTGF or EGF. These results show that: 1) a 7.4-kDa TGF structurally and functionally related to EGF has been isolated from FeSV-Fre cells and 2) the full anchorage-independent growth-promoting activity of medium conditioned by FeSV-Fre cells is due to the coordinate action of at least two types of factors, the 7.4-kDa eTGF and a second 14-kDa transforming factor(s).  相似文献   

8.
Cells nonproductively transformed by a variant of the Snyder-Theilen strain of feline sarcoma virus (FeSV) expressed an 85,000-dalton polyprotein (P85) with associated tyrosine-specific protein kinase activity. We identified within this polyprotein a single tyrosine acceptor site for its enzyme activity. This acceptor site, as well as two serine phosphorylation sites localized with the p12 structural component of Snyder-Theilen FeSv P85, was phosphorylated in cells nonproductively transformed by Snyder-Theilen FeSv. In contrast, infection by Snyder-Theilen FeSV transformation-defective mutants resulted in phosphorylation only of the two serine acceptor sites, indicating phosphorylation of the tyrosine acceptor site to be transformation specific. In addition, we describe in vitro labeling conditions, using unfractionated cell extracts, which resulted in preferential phosphorylation of the single Snyder-Theilen FeSV tyrosine-specific acceptor site.  相似文献   

9.
Treatment of the transformed mouse embryo fibroblast cell line AKR-MCA with 1% N,N-dimethylformamide (DMF) resulted in the restoration of a nontransformed phenotype in these cells. In order to determine if an increase in growth inhibitory peptides might be responsible for these changes in growth properties of the DMF-treated AKR-MCA cells we examined the serum-free conditioned medium for its ability to inhibit the anchorage-independent growth of a human colon carcinoma cell line. The extracellular levels of inhibitory activity were two-fold higher in conditioned medium derived from AKR-MCA cells than in AKR-MCA cells grown in 1% DMF (AKR-MCA/DMF). Fractionation of the crude conditioned medium indicated the presence of an Mr 20,000 inhibitory fraction in AKR-MCA/DMF conditioned medium which was reduced in AKR-MCA cells. This Mr 20,000 inhibitory activity was acid and heat stable and sensitive to dithiothreitol and trypsin. In addition to inhibiting the growth of a human colon carcinoma cell line this protein induced colony formation in AKR-2B cells and competed for binding to the transforming growth factor beta (TGF-beta) receptor. Therefore, this Mr 20,000 inhibitory polypeptide induced by DMF is probably TGF-beta. TGF-beta was also shown to inhibit the growth of AKR-MCA cells in monolayer culture.  相似文献   

10.
《The Journal of cell biology》1986,103(6):2403-2410
Cultured human embryonic lung fibroblasts were used as a model to study the effects of transforming growth factor-beta (TGF beta) on the plasminogen activator (PA) activity released by nontumorigenic cells into the culture medium. The cells were exposed to TGF beta under serum- free conditions, and the changes in PA activity and protein metabolism were analyzed by caseinolysis-in-agar assays, zymography, and polypeptide analysis. Treatment of the cells with TGF beta caused a significant decrease in the PA activity of the culture medium as analyzed by the caseinolysis-in-agar assays. The quantitatively most prominent effect of TGF beta on confluent cultures of cells was the induction of an Mr 47,000 protein, as detected by metabolic labeling. The Mr 47,000 protein was a PA inhibitor as judged by reverse zymography. It was antigenically related to a PA inhibitor secreted by HT-1080 tumor cells as demonstrated with monoclonal antibodies. The induced Mr 47,000 inhibitor was deposited into the growth substratum of the cells, as detected by metabolic labeling, immunoblotting analysis, and reverse zymography assays of extracellular matrix preparations. TGF beta also decreased the amounts of urokinase-type and tissue-type PAs accumulated in the conditioned medium, as detected by zymography. Epidermal growth factor antagonized the inhibitory effects of TGF beta by enhancing the amounts of the PAs. These results indicate that growth factors modulate the proteolytic balance of cultured cells by altering the amounts of PAs and their inhibitors.  相似文献   

11.
12.
Mink cell cultures infected with the Snyder-Theilen strain of feline sarcoma-leukemia virus were cloned from single cells under conditions favoring single virus-single cell interactions. The primary colonies included (i) typical feline sarcoma virus (FeSV)-transformed nonproducer clones, one of which segregated revertants, and (ii) FeSV-infected, phenotypically normal clones, three of which spontaneously converted to the transformed phenotype. The revertants and spontaneous transformants were compared with parental and sister clones expressing the opposite phenotype. Transformed subclones formed colonies in agar, were tumorigenic in nude mice, and failed to bind epidermal growth factor, whereas flat sister subclones were indistinguishable from uninfected mink cells in each of these assays. Sister subclones derived from the same infectious event contained FeSV proviruses integrated at the same molecular site, regardless of which phenotype was expressed. One revertant clone, however, lacked most FeSV proviral DNA sequences but retained terminal portions of the FeSV genome which persisted at the original site of proviral DNA insertion. Two flat subclones expressed viral RNA and the phosphorylated "gag-x" polyprotein (pp78gag-x) encoded by the gag and src sequences of the FeSV genome. Both of these clones were susceptible to retransformation by FeSV. Although unable to induce foci, the viruses rescued from these cells contained as much FeSV RNA as the focus-forming viruses rescued from transformed sister subclones and could be retransmitted to mink cells, again inducing FeSV gene products without signs of morphological transformation. We conclude that these FeSV genomes represent transformation-defective mutants.  相似文献   

13.
Progenitor cells of the valves and membranous septa of the vertebrate heart are formed by transformation of a specific population of endothelial cells into mesenchyme. Previous studies have shown that this epithelial-mesenchymal cell transformation is mediated by a signal produced by the myocardium of the atrioventricular (AV) canal and transferred across the extracellular matrix. Data are presented here that transforming growth factor beta (TGF beta 1 or TGF beta 2), in combination with an explant of ventricular myocardium, will produce an epithelial-mesenchymal transformation by cultured AV canal endothelial cells in vitro. Alone, neither component is capable of producing this effect. The factor provided by the ventricular explant cannot be substituted by either epidermal growth factor or basic fibroblast growth factor. Further experiments show that an antibody that blocks TGF beta activity is effective in preventing the epithelial-mesenchymal cell transformation normally produced by AV canal myocardium. Control antibodies are without effect. By immunological criteria, a member of the TGF beta family of molecules can be demonstrated in the chicken embryo and heart at the time overt valvular formation begins. Together, these data show that TGF beta 1 can produce mesenchymal cell formation in vitro and provide evidence that a member of the TGF beta family is present and plays a role in the process of epithelial-mesenchymal cell transformation in the embryonic heart.  相似文献   

14.
Polyproteins encoded by several independent isolates of feline sarcoma virus (FeSV) were analyzed with respect to molecular weight, extent of phosphorylation, and tryptic peptide composition. As previously reported, cells nonproductively transformed by the Gardner strain of FeSV express a polyprotein which has a molecular weight of approximately 115,000 and contains feline leukemia virus p15, p12, and minor portion of p30. In addition, a major 72,000-dalton possible cleavage product can be identified. Snyder-Theilen FeSV-transformed cells express a major polyprotein of approximately 115,000 daltons and a second highly related 80,000-dalton protein. The p12 structural component of Gardner FeSV P115, but not Snyder-Theilen FeSV 115, corresponds to feline leukemia virus subgroup A with respect to immunological type specificity, a finding consistent with the independent origin of these viruses. Tryptic peptide analysis revealed five methionine-containing peptides specific to the nonstructural portion of Gardner FeSV 115, three of which were also represented in Snyder-Theilen FeSV P115, three of which were also represented in Snyder-Theilen FeSV P115. None of these [35S]methionine-labeled tryptic peptides were present in translational products representative of the complete feline leukemia virus subgroup A genome, including Pr180gag-pol, Pr65gag, and Pr82env. Similarly phosphorylated tryptic peptides within the structural (p12) and nonstructural components of Gardner FeSV P115 and Snyder-Theilen FeSV P115 Are highly related. These findings support the possibility that acquired sequences of two independently derived isolates of FeSV encode structurally related proteins.  相似文献   

15.
In this study we have investigated the ability of epidermal growth factor (EGF), platelet-derived growth factor (PDGF), and transforming growth factor-beta (TGF beta) together with retinoic acid (RA) at saturating concentrations to induce phenotypic transformation of normal rat kidney (NRK) cells in a growth factor-defined medium. This medium contains serum in which all growth factor activity has been chemically inactivated, thereby eliminating the effects of growth factors from serum in the assay. It is shown that neither TGF eta nor a ligand binding to the EGF receptor is essential for phenotypic transformation of NRK cells, since anchorage-independent growth is also induced by EGF in combination with RA and by PDGF in combination with RA and TGF beta. Our data indicate strong similarities between TGF beta and RA in their ability to act as modulators for phenotypic transformation. In addition, both agents enhance the number of EGF receptors in NRK cells, without affecting the number of PDGF receptors. On the other hand, TGF beta has mitogenic effects on a number of non-transformed cell lines, such as Swiss 3T3 fibroblasts, particularly when assayed in the absence of insulin, whereas RA is mitogenic for these cells only in the presence of insulin. These data demonstrate that phenotypic transformation of NRK cells requires specific combinations of polypeptide growth factors and modulating agents, but that this process can be induced under many more conditions than previously described. Moreover, our data point toward both parallels and differences in the activities of TGF beta and RA.  相似文献   

16.
The control of rat hepatocyte DNA synthesis in vitro by Kupffer cells and transformed perisinusoidal lipocytes, i.e. myofibroblast-like cells was studied. Conditioned media from Kupffer cells inhibit the replicative (hydroxyurea-sensitive) DNA synthesis dose-dependently in primary cultures of hepatocytes stimulated by epidermal growth factor (EGF). The cytokine responsible for the inhibition was identified as transforming growth factor beta (TGF beta). After neutralization of activated TGF beta in these media, DNA synthesis is stimulated in quiescent hepatocytes via transforming growth factor alpha (TGF alpha) demonstrated by competitive TGF alpha/EGF-receptor blocking on hepatocytes. Results similar to those obtained with Kupffer cells were found with conditioned media of myofibroblast-like cells. Northern blot hybridization confirms the expression of both TGF beta and TGF alpha in Kupffer cells and myofibroblast-like cells, respectively. These findings support the notion that Kupffer cells and myofibroblast-like cells might regulate in both directions liver regeneration depending on the proportion of secreted TGF alpha and TGF beta and on the activation status of TGF beta, of which a significant fraction is secreted in the latent form.  相似文献   

17.
18.
Normal growth and differentiation of the lung depends upon mesenchymal-epithelial interactions during development. Recombination experiments using immature (Day 17) and mature (Day 21) fetal rat lung fibroblasts (FRLF) revealed that the stimulatory effect of mature fibroblasts on fetal type II epithelial cells is blocked by immature fibroblasts. Similarly, conditioned medium from Day 17 FRLFs blocks the stimulatory effect (fibroblast-pneumonocyte factor) of Day 21 conditioned medium on type II epithelial cells. This blocking activity is nondialyzable, trypsin sensitive, and heat stable. Its activity is neutralized by an antibody to TGF beta, in both conditioned media and recombined cell studies, and its activity is mimicked by TGF beta. Developmentally, TGF beta-like activity is present in conditioned medium from 15- to 19-day FRLF, decreasing precipitously between 19 and 21 days gestation. Northern blot analysis of mRNAs from fetal rat lung fibroblasts on Days 17, 19, and 21 revealed expression of TGF beta at all three stages of development.  相似文献   

19.
Transforming growth factor beta (TGF beta) treatment of rat osteoblast-rich calvarial cells or of the clonal osteogenic sarcoma cells, UMR 106-01, resulted in dose-dependent inhibition of plasminogen activator (PA) activity, and increased production of 3.2 kb mRNA and protein for PA inhibitor -1 (PAI-1). Although tissue-type PA (tPA) protein was not measured, TGF beta did not influence production of mRNA for tPA. Production of 2.3 kb mRNA for urokinase-type PA (uPA) was also increased by TGF beta in a dose-dependent manner. The effects of TGF beta on synthesis of mRNA for PAI-1 and uPA were maintained when protein synthesis was inhibited, and were abolished by inhibition of RNA synthesis. Although uPA had not been detected previously as a product of rat osteoblasts, treatment of lysates of osteoblast-like cells with plasmin yielded a band of PA activity on reverse fibrin autography, corresponding to a low Mr form of uPA. Untreated conditioned media from normal osteoblasts or UMR 106-01 cells contained no significant TGF beta activity, but activity could be detected in acidified medium. Treatment of conditioned media with plasmin resulted in activation of approximately 50% of the TGF beta detectable in acidified media. The results identify several effects of TGF beta on the PA-PA inhibitor system in osteoblasts. Net regulation of tPA activity through the stimulatory actions of several calciotropic hormones and the promotion of PAI-1 formation by TGF beta could determine the amount of osteoblast-derived TGF beta activated locally in bone. Stimulation of osteoblast production of mRNA for uPA could reflect effects on the synthesis of sc-uPA, a precursor for the active form of the enzyme.  相似文献   

20.
Two flat cellular revertant cell lines, F-2 and C-11, which were originally selected from the DT line of Kirsten murine sarcoma virus (Ki-MuSV)-transformed NIH/3T3 cells, were examined for the production of transforming growth factors (TGFs). The revertant cells fail to grow in semisolid medium as colonies and exhibit a markedly reduced level of tumorigenicity in nude mice, although they are known to express high levels of p21ras, the product of the Kirsten sarcoma virus oncogene, ras, and they contain a rescuable transforming virus. TGF activity associated with the transformed, revertant, and non-transformed cell lines was measured by the ability of concentrated conditioned medium (CM) from these cells to induce normal rat kidney (NRK) and NIH/3T3 cells to form colonies in semisolid agar suspension cultures and to inhibit the binding of 125I epidermal growth factor (EGF) to specific cell surface receptors. CM from the transformed DT cells and from both the F-2 and C-11 revertants contains TGF activity, in contrast to CM obtained from normal NIH/3T3 cells. Furthermore, unlike NIH/3T3 cells, neither the DT nor the revertant cells were able to bind 125I EGF. All four cell lines were able to proliferate in serum-free medium supplemented with transferrin, insulin, EGF, and Pedersen fetuin. However, in basal medium lacking these growth factors, only DT cells and, to a lesser extent, the revertant cells were able to grow. These results suggest that the F-2 and C-11 revertants fail to exhibit all of the properties associated with transformation because the series of events leading to the transformed phenotype is blocked at a point(s) distal both to the expression of the p21 ras gene product and also to the production of TGFs and that the production of TGFs may be necessary but not sufficient for maintaining the transformed state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号